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Abstract. This study introduces the stochastic two-echelon multicommodity location routing 
problem with stochastic and correlated demands. We propose a two-stage stochastic 
programming formulation, with second-echelon facilities design decisions defining the first 
stage, while recourse decisions, which are made in the second stage, establish how the 
observed demands are distributed. The overall objective is to optimize the cost of the first-
stage design decisions plus the total expected routing cost incurred in the second stage. To 
solve this formulation, we propose a progressive hedging metaheuristic with a series of 
algorithmic enhancements to accelerate the exploration of the solution space. These 
enhancements include: 1) population structures to obtain alternative and diverse solutions 
for the scenario subproblems that need to be solved throughout the search process; 2) 
alternative strategies to define the reference solutions which are used to guide and 
accelerate the overall search; and 3) a reset procedure that reduces the risk of the method 
becoming trapped in local optima. We assess the efficiency and effectiveness of all 
proposed strategies through extensive computational experiments, evaluating their 
capability to generate high-quality solutions across various problem characteristics and 
demand correlations. 
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1 Introduction

The two-echelon location-routing problem (2ELRP) is an important class of combinato-
rial optimization problems with a wide rage of applications in the freight transportation
industry. At its core, the concept is to design a two-layer freight transportation system
that enables indirect freight transportation between platforms (distribution centers) and
customers through a set of intermediate facilities named satellites. The 2ELRP has been
defined as the preferred methodology for efficiently capturing the simultaneous decisions
concerning the location of one or two levels of facilities (platforms and/or satellites) and
creating a limited set of routes at both echelons to effectively serve all customer demands
(Cuda et al., 2015). Despite the growing number of scientific contributions and advances
in this field, most research on 2ELRP has focused on models and solution methods for
“classic” problem variants and deterministic cases, while uncertain factors are often over-
looked (Gendreau et al., 2014).

Considering demand uncertainty and its interrelation is of great significance for when
planning decisions are involved. In logistics planning, which encompasses strategic and
tactical choices in distribution network design, obtaining accurate information about cus-
tomer demand variations is essential for long-term planning (Lium et al., 2009). Several
sources of uncertainty related to demand can be observed, such as variations in volume,
inaccuracies in forecasted values, or unexpected demand fluctuations between specific
origin-destination pairs (Crainic et al., 2011). While studies in LRPs with stochastic
demands often assume statistically independent request fluctuations, variability and cor-
relation are observed in many logistics contexts (Verma and Campbell, 2019). Different
demand values often display degrees of positive or negative correlation relative to other
customer demands (Bucci et al., 2006). Seasonal demand variations serve as an example,
though they may not entail high uncertainty due to their predictability. Correlations and
more intricate covariation gain importance during planning, especially when systematic
relationships exist among customer demands (e.g., regions, product types, time periods)
(Heath and Jackson, 1994; Thapalia et al., 2012; Verma and Campbell, 2019; Mirhedaya-
tian et al., 2019). One can thus assume that demand correlation exhibits a mixed nature,
rather than being purely positive or uncorrelated. To the best of our knowledge, 2ELRPs
considering correlated and uncertain demands, specifically involving non-substitutable
demand with a known origin and destination, remains unexplored. This study is aimed
at deepening the understanding of the effects of the integrated treatment of uncertain
and correlated non-substitutable demands on location and routing decisions. Our goal is
to provide a methodology to respond to the modelling and algorithmic challenges and,
thus, to contribute toward filling the gaps in the literature.

This paper address a 2ELRP with stochastic and correlated multicommodity, origin-
to-destination (OD) demands. We thus introduce the Two-Echelon Multicommodity
Location-Routing Problem with Stochastic and Correlated Demands (2E-MLRPSCD) as
a unified view of the attributes considered. The problem centers around design decisions
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concerning the selection of satellite facilities and the allocation of multicommodity origin-
destination (OD) demands to these satellites, while also encompassing the definition of
a limited set of routes at both echelons to efficiently fulfill the demand. To address the
uncertainty, we propose a stochastic programming approach oriented towards devising
a singular system design capable of maintaining cost-effectiveness in the presence of di-
verse demand realizations. Specifically, we present a two-stage stochastic programming
formulation, with satellite facility design decisions defining the first stage, while recourse
decisions which are made in the second stage, establish how the observed demands are
distributed. We thus represent the demand uncertainty through a finite set of scenarios,
which must approximate the uncertainty inherent in the planning context. However,
employing scenario-based uncertainty modeling yield large-scale models that may prove
impractical to address using standalone exact solution methods King and Wallace (2012).

The proposed work thus introduces a progressive hedging-based metaheuristic for ad-
dressing the 2E-MLRPSCD, building on the work of Crainic et al. (2011) for the network
design problem. From a methodological standpoint, the classic progressive-hedging (PH)
algorithm iteratively solves deterministic subproblems derived from the scenario-based
decomposition of the stochastic program. The PH metaheuristic iterates by adjusting
the mathematical formulation of scenario subproblems using aggregated solutions until
reaching an optimal solution when a general consensus among non-scenario-dependent
decisions is observed. However, the classic structure of the PH metaheuristic and the
metaheuristic methods derived from it lack alternative aggregation methods to effec-
tively derive key insights from the subproblem solutions. To address this, we present
a specialized PH-based metaheuristic with a series of algorithmic enhancements. These
enhancements include: population structures to obtain alternative and diverse solutions
for the scenario subproblems that need to be solved throughout the search process; 2)
alternative strategies to define the reference solutions which are used to guide and ac-
celerate the overall search; and 3) a reset procedure that reduces the risk of the method
becoming trapped in local optima. In the computational study, we analyze the cost sen-
sitivity, infrastructure usage, and a comparison between the uncertain and deterministic
definition of the demand to derive insights of the effectiveness of the proposed solution
method.

The remaining parts of the paper are organized as follows. Section 2 is dedicated
to describing the problem definition. An overview of the related scientific literature
is provided in Section 3. Section 4 presents the system modelling and the proposed
mathematical formulation. The solution method we developed is described in Section 5.
Computational results are then presented and analyzed in Section 6.

2
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2 Problem definition

This section introduces the 2E-MLRPSCD, which involves addressing a 2E-LRP with
stochastic and correlated multicommodity origin-to-destination (OD) demands. The sec-
tion is divided into two parts. Section 2.1 presents the physical problem setting of the
2E-MLRPSCD. Section 2.2 outlines representation of stochastic and correlated demands
as well as the main lines, objective and requirements, of the problem.

2.1 The 2E-MLRPSCD setting

The two-echelon system consists of three main components: platforms (primary facilities
serving as demand origins), satellites (intermediate facilities), and customers (demand
destinations).

Formally, the 2E-MLRPSCD is represented as a complete weighted directed graph
N = (V,A), with vertices V = P ∪ Z ∪ C, divided into three disjoint sets: platforms
P , satellites Z, and customers C. Platforms are large-sized facilities with a known
set of commodities to be distributed to customers. Satellites are medium- to small-sized
multimodal infrastructures that serve as intermediate facilities, allowing the consolidation
and sorting of freight between the two transportation echelons involved in distributing
goods to customers. Each satellite location z ∈ Z is associated with a limited storage
capacity Qz and a fixed opening cost Fz.

Demand is defined between platforms and customers, each individual demand being
characterized by an origin, a destination and a requested volume to be delivered. Let
K denote the set of origin-destination (OD) demands. For the deterministic version of
the 2E-MLRPSCD, each OD demand k ∈ K, is thus characterized by a volume volk,
an origin O(k) associated with a platform node in P , and a destination D(k) associated
with a customer node in C. Additionally, a fixed allocation cost ∆pzk represents the cost
of serving OD demand k ∈ K through platform p ∈ P and satellite z ∈ Z.

Each arc (i, j) ∈ A = A1 ∪ A2 is associated with a non-negative cost ζij for a vehicle
to travel between i and j. Let A1 denote the set of arcs of the first echelon, corresponding
to the connections between platforms P and satellites Z and between satellites. The set
A2 includes the arcs of the second echelon, that is, the connection of the satellites Z with
the final customers C and between customers.

Freight delivery is performed by two homogeneous fleets of vehicles H = H1 ∪ H2

with limited load capacities cap1 and cap2, which are respectively available for the first
and second echelon, and are able to transport any demand. Vehicles are assumed to
be available at each existing facility for each echelon, where vehicles start and end their
routes.

3
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Figure 1: Topology of the 2E-MLRPSCD.

The considered problem involves the selection of satellite facilities, the allocation of
OD demands to satellites, as well as the routing of vehicles at each echelon to deliver
the freight from platforms to customers, going through satellite facilities. As depicted in
Figure 1, each OD demand that is made available at its originating platform has to be
moved by a first-echelon vehicle to a given satellite to be then transferred to a second-
echelon vehicle. Loads delivered at satellites are then transshipped and consolidated into
second-echelon vehicles, which will perform the deliveries to the final destinations.

2.2 The stochastic setting

The 2E-MLRPSCD involves uncertainty in the volume of demand stemming from random
changes occurring between correlated OD pairs. We assume that probability distributions
exist to describe the variation in the random events affecting the volume of demands.
Moreover, the problem setting involves correlation among OD pairs, where each OD
pair can be either positively or negatively correlated with other distinct OD pairs. The
problem is characterized by two sets of OD pairs used to represent the correlation; OD
pairs within each set are positively correlated, while all correlations between OD pairs in
different sets are strongly negative (i.e., low demands in one set result in high demands
in the other).

The 2E-MLRPSCD problem setting addresses strategic and tactical planning deci-
sions in multiple application fields. In terms of decision-making and information pro-
cessing, the design and allocation decisions during the planning stage must be defined
based on an evaluation/estimation of their impact on operations, including the available
recourse actions to adapt the plan to the observed demands. The recourse actions in the
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present case involve the definition of the optimal routes to fulfill observed (“realized”)
customer demands including, when necessary, the use of external outsourcing services
with high additional operational costs.

The 2E-MLRPSCD then consists in the selection of the locations of the satellite
facilities, the allocation of OD demands to satellites, as well as the construction of a
limited set of routes for the first and second echelons vehicles in such a way that: (i)
the demand of each platform is assigned to an open satellite; (ii) every route of the first
echelon starts and ends at the same platform; (iii) every route of the second echelon starts
and ends at the same satellite; (iv) all the customers’ demands are satisfied either by the
system or an outsource service; (v) the load capacity of each vehicle is not exceeded; (vi)
each customer served by the system is visited by only one vehicle; (vii) the total demand
assigned to a satellite facility must not exceed its capacity; and (viii) the sum of the
fixed location and allocation costs and the expected routing costs (the recourse action)
is minimized.

3 Literature review

The 2E-MLRPSCD belongs to the Location-Routing Problem (LRP) category, which
constitutes an important problem class that contains a vast number of contributions
and ongoing works in the literature. LRPs fundamentally appear in the context of the
planning process that seeks to open one or more platforms from a given set of pre-
defined locations, define the customer assignments to them and establish a variety of
routes required to meet the demands of each customer considered. Studies dedicated to
the LRPs and the 2E-LRP are increasingly gaining attention, in particular on realistic
multi-attribute problem settings (Escobar-Vargas and Crainic, 2022). This section aims
to situate the 2E-MLRPSCD within the relevant literature on both the 2E-LRP and
LRP, specially pointing out the gaps in knowledge concerning how to deal with stochastic
demands in this setting. A brief discussion on the progressive-hedging strategy is also
provided, focusing on the challenges and gaps of the application of this method when
tackling integer programming problems. Works on 2E-LRP and LRP dedicated to their
deterministic versions or stochastic aspects other than demand uncertainty are out of the
scope of this study. Therefore, we refer the interested readers to the recent surveys by
Cuda et al. (2015), Schiffer et al. (2019) and Mara et al. (2021).

Because of its practical relevance, the LRP has attracted much attention from the
research community resulting in a wide variety of high-quality solution approaches for its
deterministic versions since its introduction in Maranzana (1964). While studies on de-
mand uncertainty are still scarce, more attention has been devoted to this variant spurred
by the desire to solve more realistic distribution planning problems (Cuda et al., 2015;
Escobar-Vargas and Crainic, 2022). Because of the complexity of considering demand un-
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certainty in LRP, most studies have focused on proposing heuristics methods to solve the
problem setting considered. The literature is notably characterized by the extensive use
of local-search-based metaheuristic frameworks to address the underlying transportation
problems to guide two- or multi-stage heuristics, where location, allocation and routing
decisions are treated by different heuristics at different stages (see, Albareda-Sambola
et al., 2007; Huang, 2015; Marinakis, 2015; Marinakis et al., 2016; Zhang et al., 2019).
A different approach is proposed by Quintero-araujo et al. (2019), where a simheuristic
algorithm is proposed to deal with the LRP with stochastic demands. This simheuris-
tic algorithm then hybridizes a Monte Carlo simulation with an iterated local search
metaheuristic. In spite of the advances in the field, the literature in LRPs with demand
uncertainty is quite limited, especially in the case of non-substituable demands. The case
where stochastic demands are statistically independent remains the most predominant
setting studied in the literature. Research concerning correlation features and their im-
pact on the decision making process has yet to be addressed. Important contributions are
also still required to deepen the understanding of the impact of richer problem settings
and their influence on location decisions under uncertainty.

The literature on 2E-LRP with uncertain demands is very limited. To the best of
our knowledge only Snoeck et al. (2018) have presented a stochastic mixed-integer linear
programming formulation to model a two-echelon capacitated location-routing problem
with uncertain demands arising from a practical application. However, particular de-
velopments are required in the field, especially in relation to explicitly consider demand
correlations, non-substituable demand considerations, and meeting the modelling and
algorithmic challenges these considerations imply.

Aside from the modelling aspects, there is a fundamental need for more effective solu-
tion procedures for 2E-LRP with uncertainty considerations. Concerning exact and ap-
proximate solution frameworks, decomposition-based methods have shown very promis-
ing results for solving two- and multi-stage stochastic optimization models Atakan and
Sen (2018). The effectiveness of such methods rely on how the stochastic problem can
be decomposed. Two general decomposition strategies are usually applied here. The
first strategy decomposes the model according to the scenarios used to formulate the
uncertain phenomena, while the second strategy separates the model according to the
decision stages that define the optimization model. The progressive hedging algorithm
is one of the most used dual decomposition frameworks in the field. Rockafellar and
Wets (1991) developed progressive hedging to solve convex stochastic programs. The
algorithm involves decomposing the stochastic problem by scenario, solving each of the
resulting scenario subproblems independently, and then determining the stochastic prob-
lem’s solution based on the consensus (or averaging) of all scenario subproblems solutions.
However, converging to a globally optimal solution for mixed-integer stochastic programs
in a computationally-efficient manner is challenging, primarily because of the non-convex
nature of the feasible set (Atakan and Sen, 2018). To overcome such computational bur-
den several studies have proposed different heuristic frameworks following the progressive
hedging algorithm to allow the application of the method to integer programming formu-
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lations (see, Løkketangen and Woodruff, 1996; Haugen et al., 2001; Crainic et al., 2011;
Lamghari and Dimitrakopoulos, 2016; Alvarez et al., 2021). To reach a consensus for
the complete integer stochastic problem, the standard structure of these PH-based meta-
heuristics, usually relies on obtaining the best solution possible (not necessarily optimal)
for each scenario subproblem. This strategy enables the use of the best decisions to
guide the search of the solution space. Nonetheless, considering the single best solution
possible for each scenario subproblem can also reduce the overall diversity of solutions
of the complete stochastic problem, which is crucial at each iteration of the PH. The
current work seeks to close these gaps in the literature by extending and enhancing a
progressive-hedging-based metaheuristic to the 2ELRP, by introducing a specialised set
of heuristics to allow the consideration of diverse alternative solutions for each scenario
subproblem, as well as a set of novel techniques to accelerate consensus for the stochastic
problem.

4 Modelling

Section 4.1 introduces the initial outline of the modelling approach, followed by the
proposed mathematical formulation in Section 4.2.

4.1 Modelling uncertainty

The 2E-MLRPSCD is formulated as a two-stage stochastic program to account for the
strategic planning decisions. The proposed two-stage model consists of a first stage, where
the location of satellite facilities and the OD demand to satellite allocation decisions are
made, and a second stage, where the vehicle routes for both echelons are determined
when customer demands are observed. Additionally, the option of resorting to ad-hoc,
outsourced capacity when necessary is also part of the second stage, where an operational
cost R is associated with the percentage of the demand volume that is served by an
outsourced service.

The demand uncertainty is represented through known distributions, while correla-
tions are given by matrices.

We model the demand uncertainty and correlation in this system through the gener-
ation of a set of scenarios, obtained by sampling probability distributions, each scenario
representing a possible realization of the random event affecting the demands. Let S
denote the set of scenarios, where scenario s ∈ S, represents a possible realization of the
random events which sets the demand values of each customer and the correlations. Let
ρs be the probability of occurrence of scenario s, such that

∑
s∈S ρs = 1. Then for a given

s ∈ S, there is a demand volume fixed to volk(s) for all k ∈ K, such that volk(s) ≥ 0.

7
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4.2 Two-stage formulation for the 2E-MLRPSCD

This section presents the Mixed-Integer Programming (MIP) formulation for the 2E-
MLRPSCD, as a two-stage stochastic programming problem using a three-index vehicle-
flow formulation. Two sets of decision variables are defined. First-stage variables address
the satellite location and OD demand to satellite allocation decisions. Vehicle-routing
decisions at both echelons are made in the second stage. Following the general trend
in the literature, we save space and present the formulation directly in terms of the
set of scenarios S. This yields second-stage variables indexed by scenario, while first-
stage ones are not (they are not supposed to be modified in the second-stage). The
following definitions describe the decision variables that constitute the extensive form of
the proposed two-stage formulation:

• yi ∈ {0, 1}, i ∈ Z: location variable, 1 if a satellite is opened in location i, 0
otherwise;

• fpzk ∈ {0, 1}, p ∈ P, z ∈ Z, k ∈ K: allocation variable, 1 if satellite z is assigned to
platform p to serve the demand k, 0 otherwise;

• uspzkh ∈ {0, 1}, p ∈ P, z ∈ Z, k ∈ K,h ∈ H1, s ∈ S: vehicle allocation variable, 1 if
vehicle h is assigned to serve satellite z from platform p with demand k for scenario
s, 0 otherwise;

• vszch ∈ {0, 1}, z ∈ Z, c ∈ C, h ∈ H2, s ∈ S: vehicle allocation variable, 1 if vehicle h
is assigned to serve the customer c with satellite z for scenario s, 0 otherwise;

• xsijh ∈ {0, 1}, (i, j) ∈ A, h ∈ H, s ∈ S: vehicle flow variable, 1 if arc (i, j) is used by
vehicle h for scenario s, and 0 otherwise;

• ws
zkh ≥ 0, z ∈ Z, k ∈ K,h ∈ H2, s ∈ S: percentage of demand k served by a satellite

z with a vehicle h for scenario s;

• osk ≥ 0, k ∈ K, s ∈ S: percentage of demand k that is outsourced for scenario s;

• bskh ≥ 0, k ∈ K,h ∈ H1, s ∈ S: percentage of demand k dispatched with a vehicle h
for scenario s;

• Ls
zh ≥ 0, z ∈ Z, h ∈ H1, s ∈ S: integer variable used to record the position of the

satellite z in the route assigned to the first-echelon vehicle h for scenario s;

• N s
ch ≥ 0, c ∈ C, h ∈ H2, s ∈ S: integer variable used to record the position of the

customer c in the route assigned to the second-echelon vehicle h for scenario s;
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The extensive two-stage formulation of the 2E-MLRPSCD then becomes:

min
∑
s∈S

ρs

Ñ∑
h∈H

∑
(i,j)∈A

ζijx
s
ijh +

∑
k∈K

Rosk

é
+
∑
i∈Z

Fiyi +
∑
i∈P

∑
j∈Z

∑
k∈K

∆ijkfijk (1)

subject to ∑
j∈(P∪Z),i̸=j

xsijh ≤ 1 ∀i ∈ (P ∪ Z), h ∈ H1, s ∈ S (2)

∑
i∈(P∪Z),i̸=j

xsijh −
∑

i∈(P∪Z),i̸=j

xsjih = 0 ∀j ∈ (P ∪ Z), h ∈ H1, s ∈ S (3)

Ls
ih − Ls

jh + |Z| xsijh ≤ |Z| − 1 ∀i, j ∈ Z, i ̸= j, h ∈ H1, s ∈ S (4)∑
h∈H2

∑
j∈(Z∪C),i̸=j

xsijh = 1 ∀i ∈ C, s ∈ S (5)

∑
i∈(Z∪C),i̸=j

xsijh −
∑

i∈(Z∪C),i̸=j

xsjih = 0 ∀j ∈ (Z ∪ C), h ∈ H2, s ∈ S (6)

∑
h∈H2

∑
j∈C

xsijh ≤ |H2|yi ∀i ∈ Z, s ∈ S (7)

N s
ih −N s

jh + |C| xsijh ≤ |C| − 1 ∀i, j ∈ C, i ̸= j, h ∈ H2, s ∈ S (8)∑
j∈(Z∪C),i̸=j

xsijh +
∑

j∈(Z∪C),l ̸=j

xsljh − vslih = 0 ∀i ∈ C, l ∈ Z, h ∈ H2, s ∈ S (9)

∑
h∈H2

∑
i∈Z

vsijh = 1 ∀j ∈ C, s ∈ S (10)∑
i∈P

∑
h∈H1

usijkh =
∑
h∈H2

vsjD(k)h ∀j ∈ Z, k ∈ K, s ∈ S (11)∑
h∈H2

∑
i∈Z

ws
ijh + osj = 1 ∀j ∈ K, s ∈ S (12)

ws
ijh ≤ vsiD(j)h ∀i ∈ Z, j ∈ K,h ∈ H2, s ∈ S (13)

bskh ≥ ws
ikl − (2− vsiD(k)l −

∑
p∈P

uspikh)M

∀h ∈ H1, l ∈ H2, i ∈ Z, k ∈ K, s ∈ S (14)∑
k∈K

volk(s)
∑
h∈H2

ws
ikh ≤ Qi ∀i ∈ Z, s ∈ S (15)∑

k∈K

volk(s)
∑
i∈Z

ws
ikh ≤ cap2 ∀h ∈ H2, s ∈ S (16)∑

k∈K

bskh ≤ cap1 ∀h ∈ H1, s ∈ S (17)
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∑
h∈H1

usijkh = fijk ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S (18)∑
h∈H2

vszD(k)h =
∑
p∈P

fpzk ∀z ∈ Z, k ∈ K, s ∈ S (19)

yi ∈ {0, 1} ∀i ∈ Z (20)

fpzk ∈ {0, 1} ∀p ∈ P, z ∈ Z, k ∈ K (21)

uspzkh ∈ {0, 1} ∀p ∈ P, z ∈ Z, k ∈ K,h ∈ H1, s ∈ S (22)

vszch ∈ {0, 1} ∀z ∈ Z, c ∈ C, h ∈ H2, s ∈ S (23)

xsijh ∈ {0, 1} ∀(i, j) ∈ A, h ∈ H, s ∈ S (24)

ws
zkh ≥ 0 ∀z ∈ Z, k ∈ K,h ∈ H2, s ∈ S (25)

osk ≥ 0 ∀k ∈ K, s ∈ S (26)

bskh ≥ 0 ∀k ∈ K,h ∈ H1, s ∈ S (27)

Ls
zh ≥ 0 ∀z ∈ Z, h ∈ H1, s ∈ S (28)

N s
ch ≥ 0 ∀c ∈ C, h ∈ H2, s ∈ S (29)

The objective function (1) seeks to minimize the sum of the expected total routing
and outsourced costs and the total fixed cost of opening satellites and allocating them to
the platforms. Constraints (2) ensure that each available vehicle is assigned to at most
one platform. Constraints (3) are the flow conservation constraints for platforms and
satellite facilities. Constraints (4) are the sub-tour elimination constraints for the first-
echelon vehicles. Constraints (5) ensure that every customer is served by a single second-
echelon vehicle. Constraints (6) are the flow conservation constraints at satellites and
at customers. Constraints (7) state that second echelon vehicles can only be used from
located satellites. Constraints (8) are sub-tour elimination constraints for the second-
echelon vehicles. Constraints (9) link the allocation and routing variables. Constraints
(10) impose that each customer has to be assigned to a satellite.

Constraints (11) are the flow conservation constraints for each commodity k at each
satellite z. Constraints (12) ensure that the portion of the customer demand served by
a satellite and the portion served by an outsourced service meet the complete demand
for each customer. Constraints (13) ensure that each satellite can only serve its assigned
customers. Constraints (14) ensure that, for each commodity k, the portion of the
demand that is serviced via the located satellite corresponds to the inbound portion
that originates from the associated platform. Constraints (15) impose that flow leaving
an open satellite z is less or equal than its storage capacity. Constraint (16) and (17)
guarantee that the commodity flow carried by each vehicle, in the first and second echelon,
respectively, is less than or equal to its own capacity. Constraints (18) and (19) link
allocation and vehicle allocation variables for the first echelon and second echelon vehicles,
respectively. Constraints (20)-(29) impose the integrality and non-negativity of each
decision variables in the model.
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5 A progressive hedging-based metaheuristic for the

2E-MLRPSCD

This section presents a progressive hedging-based metaheuristic to address the 2E-MLRPSCD,
building on the work of Crainic et al. (2011) for the stochastic network design problem.

As its name implies, the methodology derives from the progressive hedging (PH)
algorithm introduced by Rockafellar and Wets (1991) for multi-stage stochastic opti-
mization problems. From a methodological perspective, the ‘classic’ progressive-hedging
algorithm, iteratively solves the set of deterministic subproblems, which result from the
scenario-based decomposition of the extensive formulation. At each iteration, the PH
metaheuristic solves each scenario-specific deterministic subproblem separately, thus pro-
ducing a series of solutions that may differ from one another. The search then proceeds by
computing a reference solution (the expected value of the best scenario-specific solutions
is traditionally used), which also serves to assess the overall level of consensus among
the scenario-specific solutions. The formulations of the scenario subproblems are then
adjusted to incentivize agreement (i.e., to make subproblems move toward the same im-
plementable solution). This general process is repeated until either a consensus solution
is found or another stopping criterion is reached (e.g., a computation time limit).

It is well known that the PH algorithm does not necessarily converge to an opti-
mal solution when it is applied in the case of mixed-integer programs, such as the 2E-
MLRPSCD. A significant algorithmic challenge also arises from the computational load
of solving a series of NP-hard problems (one for each scenario) at each iteration of the
PH metaheuristic. There is a clear need of an efficient guiding strategy and procedures to
direct the algorithm toward finding a consensus solution more quickly. We thus introduce
a PH metaheuristic with a set of algorithmic and methodological enhancements aimed
at accelerating the search for an efficient implementable solution. These enhancements
encompass: (1) a set of population structures to obtain alternative and diverse solutions
for the scenario subproblems, (2) a set of novel scenario-selection strategies that effec-
tively derive key insights from subproblem solutions to identify potential consensus, (3)
a specialized heuristic to define a high-quality reference solution in the first PH iteration,
and (4) a reset procedure to prevent the PH metaheuristic from getting trapped in local
optima. This section presents the structure of our proposed PH metaheuristic and the
novel strategies developed to accelerate the consensus.

5.1 General structure

The proposed PH metaheuristic, illustrated in Figure 2, follows the general structure of
the method proposed by Crainic et al. (2011). The algorithm starts with the scenario
decomposition of the extensive formulation introduced in Section 4.2. This results in a set

11

The Two-Echelon Multicommodity Location-Routing Problem with Stochastic and Correlated Demands

CIRRELT-2023-38



of subproblems that take the form of a deterministic 2E-MLRPSCD for each scenario s ∈
S. Unlike the standard structure of Crainic et al. (2011), the proposed PH metaheuristic
is set up to define a group of alternative solutions for each scenario subproblem, instead
of using the single best solution, aiming to broaden the design options, specifically for
location and allocation decisions.

We introduce two population structures to handle the group of alternative solutions
for each scenario subproblem: a set of local populations, one for each scenario subproblem,
and a single global population for the complete problem.

Each local population serves to organize scenario-specific alternative solutions. These
local populations start empty and are updated at each iteration of the PH with the
objective of maintaining the best representative solutions for each scenario subproblem.
To assess the value of the solutions obtained for each scenario at each PH iteration, a
ranking measure is defined. Each scenario-specific solution is ranked based on its quality
and contribution to diversity. This ranking is performed with respect to the solutions
already present in the local population and determines whether a solution should be
included in the local population at each PH iteration. This ranking prioritizes diversity
in solutions, favoring those that exhibit the most dissimilarity with respect to the first-
stage decision variables compared to other solutions already present in the same local
population.

The global population is constructed at each iteration of the PH, based on the best
subset of solutions from each local population. A general reference solution is then de-
termined based on a selected subset of solutions from the global population defined by
one of the proposed scenario-selection strategies. This reference solution is used to guide
the search by adjusting the costs in the objective function of each scenario subproblem,
aiming to reach a consensus on the first-stage decisions across all scenarios.

Finally, the algorithm ends when a consensus is reached on the first-stage decisions or
when external stopping criteria are met, while saving the best feasible solution obtained at
each iteration of the PH. In the following sections, we provide a more in-depth description
of each step of the proposed PH metaheuristic.

5.2 Scenario decomposition for the 2E-MLRPSCD

The decomposition strategy applied to the extensive formulation, requires the first-stage
decisions to be reformulated (detailed reformulation in the supplementary material Ap-
pendix A. Specifically, these decisions need to be defined as scenario-dependent and con-
straints must be added to ensure that first-stage variables are the “same” in all scenario-
subproblems. Let ysi and f s

ijk be the reformulation of the first-stage variables for each
scenario s ∈ S, for the location and allocation decisions, respectively. In doing so, con-
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Decompose the two-stage formulation

Address scenario subproblems and update local populations

Update the global population

Compute reference solution using the global population

Apply adjustment strategies

Update the best current solution z

stopping criteria is met

z∗ = z

Section 5.2

Section 5.3

Section 5.4

Section 5.5

yes

no

Figure 2: Progressive Hedging-based metaheuristic for the 2E-MLRPSCD

straints (7), (18) and (19) are reexpressed according to the scenario-specific location and
allocation first-stage decisions. This reformulation explicitly includes the following non-
anticipativity constraints, which prevent the first-stage decision variables to be set to
different scenario-specific values:

ysi = ȳi ∀i ∈ Z, s ∈ S (30)

f s
ijk = f̄ijk ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S (31)

ȳi ∈ {0, 1} ∀i ∈ Z (32)

f̄ijk ∈ {0, 1} ∀i ∈ P, j ∈ Z, k ∈ K. (33)

The non-anticipativity constraints (30) and (31) ensure that the first-stage solutions
will be the same for all the scenarios, with variables ȳi and f̄ijk serving as the reference
variables for the first-stage decisions. This ensure that a single set of facility location
and allocation decisions are made for all the scenarios (thus preventing tailored scenario-
specific decisions to be made). Then, following the decomposition scheme, originally
proposed by Rockafellar and Wets (1991), constraints (30) and (31) are relaxed using an
augmented Lagrangean method, which results in the following relaxed reformulation of
the extensive model:

min
∑
s∈S

ρs

Å∑
h∈H

∑
(i,j)∈A

ζijx
s
ijh +

∑
k∈K

Rosk +
∑
i∈Z

Å
Fi + λsi +

1

2
γ + γȳi

ã
ysi

+
∑
i∈P

∑
j∈Z

∑
k∈K

Å
∆ijk + µs

ijk +
1

2
γ + γf̄ijk

ã
f s
ijk

ã (34)
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subject to

(2)− (6)

(8)− (17)∑
h∈H2

∑
j∈C

xsijh ≤ |H2|ysi ∀i ∈ Z, s ∈ S (35)∑
h∈H1

usijkh = f s
ijk ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S (36)∑

h∈H2

vszD(k)h =
∑
p∈P

f s
pzk ∀z ∈ Z, k ∈ K, s ∈ S (37)

ysi ∈ {0, 1} ∀i ∈ Z, s ∈ S (38)

f s
ijk ∈ {0, 1} ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S. (39)

The objective function now involves the Lagrangean multipliers λsi and µs
ijk for the

relaxed non-anticipativity constraints corresponding to the location and allocation de-
cisions, respectively, and a penalty term γ. Constraints (35) state that second echelon
vehicles can only be used from located satellites. Constraints (36) and (37) link the fa-
cility allocation variables with the vehicle allocation variables. Constraints (38) and (39)
impose the integrality and non-negativity of each decision variables in the model.

For a given overall design ȳi and f̄ijk, the relaxed reformulation then undergoes a
scenario-based decomposition (the initial values for the overall design are discussed in
Section 5.5). This decomposition yields individual scenario subproblems, each adopting
the structure of a deterministic scenario-specific problem with modified fixed costs. For
a particular scenario subproblem, the Lagrangean multipliers λsi and µs

ijk, along with
the term γ, penalize the discrepancies between the values of the location and allocation
decision in the local design and those present in the current overall design. The following
sections examine the proposed strategies to extract the overall design and allocation
decisions and the approach to adjust the fixed costs of the scenario subproblem to guide
the search toward consensus of the first-stage variables.

5.3 Subproblem algorithm

This section presents the algorithm proposed to address the scenario subproblems. The
objective of the proposed subproblem algorithm is twofold, (1) generate a set of candidate
solutions to represent each scenario subproblem; (2) rank and define the set of candidate
solutions in terms of diversity and quality. In what follows, we describe the strategies
that are proposed to achieve these two objectives.

First, we solve the MIP defined for each scenario s ∈ S to identify a sufficient number
of high-quality alternative solutions for each subproblem. The MIP for each scenario
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subproblem consists of the objective function (34), the constraint set: (2)-(6), (8)-(17),
(35)-(39), as well as a complete a priori enumeration of the subtour elimination con-
straints.

To handle the set of alternative solutions defined for each scenario subproblem we
introduce two types of solution population, a local population for each scenario subprob-
lem, and a global population for the complete problem. Each local population serves to
organize the scenario-specific alternative solutions found at each iteration of the PH. It
is chraracterized by a total number ψT of individual alternative solutions associated with
each scenario subproblem, including a reduced number ψE of elite solutions.

At each iteration of the PH, our approach involves the individual evaluation of all
the feasible solutions found for the MIP defined by each scenario subproblem s ∈ S.
This evaluation serves to determine whether an individual solution should be retained
in the local population of its respective scenario subproblem. To evaluate each scenario-
specific solution, we define a ranking measure. This ranking is determined based on the
contribution of each individual solution in terms of both quality and diversity relative to
the other solutions present in the same local population.

The ranking of each individual solution is determined by a fitness measure. We define
this fitness measure by combining both the objective value and the diversity contribution
of a given solution Soli. In this context, the diversity contribution or Ξ(Soli) refers to
the average distance between solution Soli and the set of solutions N present in the
respective local population, as calculated according to equation (40), where |N | ≤ ψT .
This diversity contribution aims to favor solutions that exhibit the greatest dissimilarity
with respect to the first-stage decision variables when compared to other solutions already
present in the same local population.

To measure the dissimilarity between two distinct solutions Soli and Solj, we propose
a normalized Hamming distance σ(Soli, Solj), inspired by the work of Vidal et al. (2012).
We define σ(Soli, Solj) as a measure of the dissimilarities between: (1) the satellite
allocation decisions ξk(Soli) and (2) the negative correlation score ϕk(Soli) for each OD
demand k ∈ K. For each OD pair k ∈ K, the negative correlation score ϕk(Soli)
represents the number of different OD pairs assigned to the same satellite that share a
negative correlation with k. It is worth noting that the negative correlation score ϕk(Soli)
is introduced to take advantage of negative correlations between OD pairs, as suggested
by the opportunities arising from consolidating negatively correlated demands and their
impact on system efficiency (King and Wallace, 2012). The proposed Hamming distance
is defined according to equation (41), where 1 (cond) is an indicator function that returns
the value 1 if condition cond is true, and 0 otherwise.

Ξ(Soli) =
1

|N |
∑

Solj∈N

σ(Soli, Solj) (40)
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σ(Soli, Solj) =
1

2|K|
∑
k∈K

1(ξk(Soli) ̸= ξk(Solj)) + 1(ϕk(Soli) ̸= ϕk(Solj)) (41)

We then define a biased fitness function BF (Soli) computed according to equation
(42), where, RKQ(Soli) and RKD(Soli) define the ranks of the solution Soli with re-
spect to the local population, in terms of the objective function (34) and the diversity
contribution Ξ(Soli), respectively,

BF (Soli) = RKQ(Soli) +

Å
1 +

ψE

ψT

ã
RKD(Soli). (42)

This ranking process is performed while solving each scenario subproblem until all
local populations have been updated. It is important to mention that the local populations
are designed to be updated rather than being built from scratch at each iteration of the
PH. This allows each local population to serve as a ‘memory’ for the PH, as it can retain
well-ranked solutions from previous iterations.

5.4 Defining the reference solution

Once the ranking process presented in Section 5.3 is completed, one can build the global
population of size ψG by including all the subset of elite solutions from all local populations.
Given that all alternative solutions for each scenario subproblem must be considered in
the global population, we have that ψG ≥ ψE|S|. This global population, defines the base
that is used to obtain the reference solution for the 2E-MLRPSCD in the subsequent
steps of the PH metaheuristic.

This section presents four scenario-selection strategies to determine the reference so-
lution at each iteration of the PH. These selection strategies include a classic strategy,
which is an adaptation of the original method traditionally used in PH-based methods
(Crainic et al., 2009), and three novel selection strategies. Moreover, a specialized heuris-
tic is also introduced to define the reference solution for the first PH iteration. In the
following sections, we provide a comprehensive description of each of these strategies.

5.4.1 Classic strategy

This approach represents the steps of the ‘classic’ selection strategy proposed by Crainic
et al. (2011). Fundamentally, the classic strategy follows the guidelines of the Rockafellar
and Wets (1991), by defining an aggregation operator to combine the scenario solution
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into a single solution, given a weight for each scenario s ∈ S. This classic strategy
defines the reference solution using the single best solution obtained for each scenario
subproblem. We describe the classic strategy by means of the population structures
introduced in this work (see, Section 5.3) to maintain a consistent notation throughout
the paper.

To describe the classic strategy, let Λs be the set of alternative solutions present in
the global population for each scenario s ∈ S. For this scenario-selection strategy, we
have that |Λs| = 1, ∀s ∈ S, to emulate the use of the single best solution for each
scenario subproblem. Let ν be the index of iterations performed by the proposed PH
metaheuristic. Let yνai and f

ν
aijk be the value of each alternative first-stage variable a ∈ Λs

defined for each subproblem associated with each scenario s ∈ S. Similarly, let ȳνi and
f̄ ν
ijk be the reference solution for iteration ν of the PH. The values of ȳνi and f̄ ν

ijk can then
be computed by equations (43) and (44) based on the content of the global population at
iteration ν and the probability of occurrence ρs of each scenario s ∈ S,

ȳνi =
∑
s∈S

∑
a∈Λs

ρsy
sν
ai ∀i ∈ Z, (43)

f̄ ν
ijk =

∑
s∈S

∑
a∈Λs

ρsf
sν
aijk ∀i ∈ P, j ∈ Z, k ∈ K. (44)

Notice that when ȳνi ∈ {0, 1}, ∀i ∈ Z and f̄ ν
ijk ∈ {0, 1}, ∀i ∈ P, j ∈ Z, k ∈ K, at a

given iteration ν, this means that the method has reached consensus for the first-stage
decision values. The PH metaheuristic has found thus an implementable solution for the
stochastic problem. In most cases, however, the integrality requirements of the first-stage
variables are not enforced, i.e., with 0 < ȳνi < 1 and 0 < f̄ ν

ijk < 1, implying that the
current reference solution is infeasible. Although these values are not feasible for the
complete stochastic problem, they can still be used to indicate a trend of facility usage
and allocation over the system. Therefore, if ȳνi ≈ 0, then one can interpret this as a
trend towards not opening the facility i, whereas ȳνi ≈ 1 indicates the reverse (i.e., a trend
towards opening the facility). Finally, the same observations can be made regarding the
reference solution values associated with the allocation decisions.

5.4.2 Probabilistic strategy

Similar to the classic strategy presented in Section 5.4.1, we define an aggregation op-
erator to combine the scenario solution into a single solution. The reference solution is
defined by means of the given weights determined by the probability of occurrence ρs and
the set of alternative solutions Λs of each scenario s ∈ S. Unlike the classic strategy, this
strategy uses more than one scenario-specific solutions to define the reference solution,
meaning that |Λs| ≥ 1, ∀s ∈ S. Let yνai and f

ν
aijk be the value of each alternative first-

stage variable a ∈ Λs defined for each subproblem associated with each scenario s ∈ S
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for iteration ν. The values of the reference solution defined by ȳνi and f̄ ν
ijk can then be

computed by equations (45) and (46) based on the content of the global population for
each scenario s ∈ S at iteration ν,

ȳνi =
∑
s∈S

ρs
|Λs|

∑
a∈Λs

ysνai ∀i ∈ Z (45)

f̄ ν
ijk =

∑
s∈S

ρs
|Λs|

∑
a∈Λs

f sν
aijk ∀i ∈ P, j ∈ Z, k ∈ K. (46)

The probabilistic strategy enables the consideration of a broader range of options
for the first-stage decision variables available in the global population for each scenario
subproblem s ∈ S. At the same time, the aggregation operator defined to combine
the scenario solution into a single solution is versatile enough to be used with other
selection strategies and can be adapted to behave like the classic strategy simply by
setting |Λs| = 1, ∀s ∈ S. We, therefore, use the same aggregation operator with the
remaining scenario-selection strategies in this section.

5.4.3 Social strategy

The idea behind the social strategy is to define the set of solutions with the best social
score among the global population. We define π(Soli, Solj) as a normalized Hamming
distance, which is computed using equation (47). This metric evaluates the similarity
between two distinct solutions, Soli and Solj. We thus define χz(Soli) and κk(Soli) as
the functions that return the location decision of each z ∈ Z and allocation of each OD
demand k ∈ K, respectively, of a given solution Soli,

π(Soli, Solj) =
1

|K|
∑
k∈K

1(κk(Soli) = κk(Solj)) +
1

|Z|
∑
z∈Z

1(χz(Soli) = χz(Solj)). (47)

The social score for a given solution Soli is defined by summing the values of equation
(47) between the solution Soli and all other solutions Solj in the global population, where
i ̸= j. Using these social score values, the solutions in the global population can be
ranked. It is important to note that this rank favors solutions that share the most
similarities with other solutions, meaning that solutions with the most commonalities
in both location and allocation first-stage decisions within the global population will be
ranked higher.

There are two main approaches for determining the reference solution based on the
rank of each scenario subproblem. The first approach involves selecting a reduced set
of elite solutions from the complete global population to define the reference first-stage
decisions. This can be achieved by following the steps defined for the probabilistic strat-
egy, as described in Section 5.4.2. The second approach involves identifying a single
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elite solution, whose first-stage decisions will be used as the reference solution. However,
preliminary experiments conducted using these two strategies have shown that using a
single elite solution as the reference solution can cause the PH metaheuristic to become
trapped in local optima; consequently, we exclusively utilize the first strategy.

5.4.4 Decision-based scenario clustering strategy

The decision-based scenario clustering strategy is proposed to identify scenario groups
that lead to mutually acceptable solutions (i.e., solutions that remain efficient when
considering all the subproblems associated with the scenarios included in the group).
Fundamentally, the proposed strategy uses a dissimilarity function inspired by the op-
portunity cost, originally proposed by Hewitt et al. (2022). This opportunity cost is
defined as a measure to quantify the impact of implementing the first-stage decisions
associated with a given scenario s1 when another scenario s2 occurs. This measure relies
on the existence of a single solution for each of the scenarios involved. This characteristic
prevents the direct application of the opportunity cost defined by Hewitt et al. (2022) for
our PH metaheuristic, which uses a set of alternative solutions for each scenario subprob-
lem to determine the reference solution. Therefore, this section introduces the proposed
decision-based scenario clustering strategy to leverage the alternative solutions associated
with each scenario subproblem.

The proposed strategy aims to define a specialized opportunity cost measure based on
the subset of solutions in the global population associated with each scenario. Therefore,
let Λs be the set of indices of the solutions in the global population that are associated with
scenario s ∈ S. Let gνi ((ŷ

ν∗
n , f̂

ν∗
n ); sj) be the updated value of the objective function (34),

evaluated with the set of the best first-stage decision variables ŷν∗n and f̂ ν∗
n at iteration

ν, obtained for the solution n ∈ Λsi with scenario si, when a scenario sj occurs. The
opportunity cost, denoted by θν(si|sj), represents the value of the decision associated
with scenario si under the assumption that scenario sj actually occurs. This quantity
is calculated using equation (48) as the minimum value obtained by evaluating all the
combinations of solutions associated with each pair of distinct scenarios si and sj in S
with i ̸= j.

θν(si|sj) = min
n∈Λsi ; m∈Λsj

{gνi ((ŷν∗n , f̂ ν∗
n ); sj)− gνj ((ŷ

ν∗
m , f̂

ν∗
m ); sj)} (48)

Based on the opportunity costs determined for each scenario within the global popula-
tion, one can then define an opportunity cost dissimilarity function by equation (49) for
each pair of scenarios si, sj ∈ S with i ̸= j, which represents the loss incurred by opti-
mizing under the assumption that scenario si happens, when scenario sj occurs instead,
and vice versa.

dν(si|sj) = θν(si|sj) + θν(sj|si) (49)
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A Normalized Spectral Clustering is then used to determine which scenarios are
close to each other in terms of opportunity cost distance function building upon the
approach proposed by Hewitt et al. (2022). This process yields a set of clusters CL =
{cl1, cl2, . . . , cl|CL|} of the scenarios. Once the clusters are determined, we define a set of
representative scenarios Υ, where each representative scenario corresponds to the medoid
of each cluster (i.e., the scenario with the minimum average opportunity cost dissimilar-
ity function to all other scenarios within the same cluster). Subsequently, we assign the
probability ηi to each representative scenario s ∈ cli for all cli ∈ CL, computed as the
sum of the probabilities ρs of all scenarios within the same cluster, as shown in equation
(50). Finally, the reference solution for the location and allocation decisions can be de-
termined by computing equations (51) and (52) for each representative scenario s ∈ Υ
and the subset of solutions Λs associated with each scenario.

ηi =
∑
s∈cli

ρs ∀cli ∈ CL (50)

ȳνi =
∑
s∈Υ

ηs
|Λs|

∑
a∈Λs

ysνai ∀i ∈ Z (51)

f̄ ν
ijk =

∑
s∈Υ

ηs
|Λs|

∑
a∈Λs

f sν
aijk ∀i ∈ P, j ∈ Z, k ∈ K (52)

5.4.5 First iteration reference solution

A major goal of our PH metaheuristic is to efficiently guide the process searching for
solution consensus. An initial reference solution ȳi and f̄ijk must be defined to enable the
scenario-based decomposition of the extensive formulation, as described in Section 5.2.
These initial values are used to define the solutions for the scenario subproblems obtained
in the first iteration of the PH. However, no ‘memory’ is available in the PH to assess the
quality of these solutions since the local populations are empty at this stage. Defining
a high-quality reference solution at the end of the first iteration is crucial in this case,
considering that the consensus search is performed by successively adjusting the objective
function costs of the scenario subproblems to gradually encourage agreement. The quality
of the decisions defined in the first iteration will greatly influence the subsequent ones.

We propose an heuristic to define the reference solution to be applied in the first
iteration of the PH metaheuristic and the initial global population. Let us recall that the
global population is composed of at least one elite solution picked from the local population
of each scenario subproblem. The ‘quality’ of the initial reference solution will thus be a
function of both the quality of the solutions present in the initial global population and
the specific selection strategy that is used to obtain the point.

The proposed heuristic generates an initial global population by comparing two inde-
pendent population generation strategies. Let GP1 and GP2 be two independent popula-
tions, each constructed using one of the proposed heuristic strategies. GP1 is populated
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with the set of elite alternative solutions from the local population of each scenario sub-
problem, while GP2 is populated with the single best solution found for each subproblem.
Once GP1 and GP2 are populated, we let the given selection strategy determine the ref-
erence solution of the first-stage decisions for each population. Notice that the resulting
reference solutions may contain decision variables with continuous values. To address
this, the proposed heuristic approximates each reference solution by rounding each con-
tinuous value to the nearest discrete value. Each approximation now represents an integer
solution for the first-stage decisions, which can be evaluated in the extensive formulation.
After evaluating each approximation, the proposed heuristic selects the reference solution
leading to the best objective function to determine which of the two populations should
be defined as the first global population.

To keep the solutions used to define the best reference solution in subsequent iter-
ations, one must update each local population accordingly, as the global population is
built from scratch at each iteration. Note that local populations are only modified when
GP2 is selected as the best initial global population. In such case, each local population is
updated to retain only the best single scenario-specific solution, rather than the complete
set of alternative solutions.

It is worth mentioning that preliminary experiments conducted using the proposed
heuristic at each iteration of the PH led to the method relying on the approximation of
the reference solution as the main guiding strategy. This caused the method to become
trapped in local optima. Consequently, after the first iteration, the PH continues to work
with the set of alternative solutions for each scenario subproblem.

5.5 Consensus procedure

This section describes the heuristics to adjust the costs of the scenario subproblems
aiming to guide the PH method towards a consensus for the first-stage solutions over
all the scenario subproblems. We build on the work of Crainic et al. (2011) and present
two adjustment heuristics to modify the location and allocation costs in the scenario
subproblems, specifically, a global adjustment designed for the overall search and a local
adjustment to influence the search for each scenario subproblem.

The proposed global adjustment begins with the reference solution defined by ȳνi
and f̄ ν

ijk at iteration ν to identify trends among the scenario solutions. The costs are
defined according to the objective function (34). In this context, we define the costs
B̄sν

i =
(
Fi + λsi +

1
2
γ + γȳi

)
and Ēsν

ijk =
(
∆ijk + µs

ijk +
1
2
γ + γf̄ijk

)
as the location and

allocation costs of the scenario subproblem, respectively.

As mentioned previously, low values of ȳνi and f̄ ν
ijk indicate that most of the scenario

solutions share the decision to keep the given facility closed, while high values mean that
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the facility is open in the majority of the scenario solutions. Therefore, we introduce a
parameter β > 1 as the adjustment rate of the costs, and threshold parameters 0 ≤ ϵy ≤
0.5 and 0 ≤ ϵf ≤ 0.5 to determine when the values ȳνi and f̄ ν

ijk should be considered either

high or low. Specifically, when ȳνi and f̄ ν
ijk are lower than ϵy and ϵf , the fixed costs are

increased to incentivize the subproblems to avoid opening the corresponding facility and
performing the associated allocation. On the other hand, when ȳνi and f̄ ν

ijk are higher

than 1 − ϵy and 1 − ϵf , the fixed costs are decreased to encourage the subproblems to
include the facility in the network design and perform the allocation. We define this
procedure with equations (53) and (54):

B̄ν
i =


βBν−1

i if ȳν−1
i < ϵy,

1
β
Bν−1

i if ȳν−1
i > 1− ϵy,

Bν−1
i otherwise;

(53)

Ēν
ijk =


βĒ

(ν−1)
ijk if f̄

(ν−1)
ijk < ϵf ,

1
β
Ē

(ν−1)
ijk if f̄

(ν−1)
ijk > 1− ϵf ,

Ē
(ν−1)
ijk otherwise.

(54)

The second adjustment strategy is performed at the level of each scenario subproblem
s ∈ S, where the costs of variables with large differences between the value of the current
reference solution at iteration ν, are further adjusted using the equations (55) and (56).
In this context, we define 0.5 < δy < 1 and 0.5 < δf < 1 as the thresholds that prescribe
when a local adjustment has to be applied for the location and allocation variables,
respectively:

B̄sν
i =


βBν

i if |ys(ν−1)
i − ȳν−1

i | ≥ δy and y
s(ν−1)
i = 1,

1
β
Bν

i if |ys(ν−1)
i − ȳν−1

i | ≥ δy and y
s(ν−1)
i = 0,

Bν
i otherwise;

(55)

Ēsν
ijk =


βĒν

ijk if |f s(ν−1)
ijk − f̄

(ν−1)
ijk | ≥ δf and f

s(ν−1)
ijk = 1,

1
β
Ēν

ijk if |f s(ν−1)
ijk − f̄

(ν−1)
ijk | ≥ δf and f

s(ν−1)
ijk = 0,

Ēν
ijk otherwise.

(56)

Given that there is no reference solution in the original extensive formulation (Sec-
tion 4.2), we set the values of the initial overall design variables ȳi and f̄ijk to determine
the initial fixed costs for each scenario subproblem. We, therefore, define the initial
overall design in terms of the location costs B̄sν

i and allocation costs Ēsν
ijk at iteration

ν = 0 (i.e., before the PH starts its first iteration). The location and allocation costs
of the scenario subproblems are initialized with their original costs. Therefore, we set
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B̄
s(0)
i = Fi, ∀i ∈ Z, s ∈ S, and Ē

s(0)
ijk = ∆ijk, ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S. Note that

the values of the initial overall design ȳi and f̄ijk will be updated based on the reference
solution obtained at the end of the first iteration of the PH to adjust the costs for each
scenario subproblem.

The proposed PH is designed to terminate once either a consensus solution is found,
or another stopping criterion is reached (e.g., a limit on computation time). A consensus
solution is determined when all first-stage decisions ȳνi and f̄ ν

ijk have reached a general
consensus at a given iteration ν. However, consensus on all first-stage decisions may not
be observed at the end of each iteration of the PH metaheuristic. When such a situation
occurs, the PH is designed to define a feasible solution for the 2E-MLRPSCD by using
the extensive formulation presented in Section 4.2. The approach to defining a feasible
solution consists of fixing the location and allocation variables for which consensus is
obtained by the PH metaheuristic, and then solving the restricted mixed-integer program
defined by the extensive formulation. The results of solving the proposed formulation
yield a feasible solution for all the design decisions. One can then update the best solution
obtained and continue with the PH metaheuristic.

5.6 Reset procedure

As described previously, the proposed PH algorithm relies on the global population to
determine the reference solution at each iteration. This global population is constituted
by the collection of elite solutions from the local population of each scenario subproblem.
As the search progresses, certain solutions may remain in the local population of each
scenario subproblem for several iterations of the PH. Consequently, the global popula-
tion may also end up comprising the same set of solutions over consecutive iterations of
the PH. If the global population remains unchanged over several iterations, the reference
solution may become trapped on a series of values that hinder the overall search for a
consensus solution. To mitigate such occurrences, we propose a reset procedure that
partially reinitializes the overall search process. Specifically, the reset procedure is trig-
gered when the values of the reference solution do not change for ι consecutive iterations.
When triggered, the reset procedure clears the contents of all local populations and re-
populates them with solutions from their corresponding scenario subproblems obtained
in the ongoing iteration. It is important to note that while this process defines a new set
of alternative solutions for the global population, the current costs corresponding to the
first-stage decisions in each scenario subproblem, which were updated over the previous
PH iterations, remain unchanged.
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6 Computational results

This section presents the results of the computational experiments that were conducted
to assess: (1) the stability of the scenario generation procedure (Section 6.2), (2) the
performance of the proposed PH-based metaheuristic (Section 6.3), (3) the effectiveness
of the proposed acceleration procedures for the 2E-MLRPSCD and (4) evaluate the need
to explicitly consider stochastic demands and the impact of correlations (Section 6.5 and
Section 6.4). We first introduce the instances and the scenario generation procedure in
Section 6.1.

The experiments were conducted on a single machine with Intel(R) Core(TM) i7-
7800X processor, with 128 GB of RAM running Linux. The mathematical formulation
and the proposed solution method are implemented in C++ using IBM ILOG CPLEX
concert technology 20.1. The MIPs used within the solution method were solved with an
optimality gap tolerance of 1% as the stopping criterion. Finally, the computation times
reported are in seconds. The tables display summarized results; more detailed results are
provided in the supplementary material in Appendix B.

6.1 Instances

We define our testbed based on the instances introduced by Dellaert et al. (2019) for
the 2EVRPTW, since no instances were available in the literature involving the inte-
grated treatment of all of the attributes considered in the 2E-MLRPSCD. The instances
introduced by Dellaert et al. (2019) simulate an urban area constituted of platforms,
satellites, and customers. The original instances generated do not consider stochastic
correlated OD demands, which are explicitly included in the 2E-MLRPSCD. Further-
more, the original instances included delivery time windows, which are not considered
in the present setting. Therefore, adjustments were made to the original instances to
obtain the testbed for the present study. These adjustments involved the introduction of
stochastic and correlated OD demands and the exclusion of the temporal components in
the original instances.

Our instance set consists of 60 instances, each with 15 OD demands. We randomly
assigned to each platform facility an unique set of OD demands. The same load capacities
for vehicles set in Dellaert et al. (2019) were used. The first-level vehicles have thus a
capacity of cap1 = 200 and the second-level vehicles have a capacity of cap2 = 50. Travel
costs are computed as the ceiling of the Euclidean distances.

Scenarios are generated using the copula-based method proposed by Kaut (2014)
to adhere to the statistical properties defined for the stochastic OD demands. This
procedure requires the target marginal distribution for each OD demand (which can be
specified using a set of marginal distributions available in the method), and the correlation
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category distribution mean standard deviation
CA left-skewed lognormal 2.7 0.4
CB symmetrical lognormal 2.7 0.1
CC left-skewed lognormal 3.25 0.4
CD symmetrical lognormal 3.25 0.1

Table 1: Instance category description

Figure 3: Instance category distribution for scenario generation.

matrix between OD pairs as inputs.

To determine the marginal distribution for all OD demands, we considered the original
demand values in the set of instances defined by Dellaert et al. (2019). We identified the
distribution that provided the closest fit (among the marginal distributions available in
the copula-based method) to the value of the OD demands in the complete instance
set. This led us to select a lognormal distribution (with similar mean and standard
deviation values) as the best fit for the given demand values. We then defined a set of four
lognormal distributions with different mean and standard deviation values to capture the
impact on the variation of the marginal distributions representing the demand. Table 1
introduces the proposed instance set, categorized into four groups: CA, CB, CC, and CD.
As illustrated in Figure 3, a lognormal distribution with consistent mean and standard
deviation values, as defined in Table 1, is utilized for each instance category.

To define demand correlation, two testbed instances are proposed: one considering
demand correlation and the other without demand correlation. In the correlated case,
correlation matrices are randomly generated. Correlations between OD pairs are deter-
mined using a standard normal distribution with a range of [-0.6, 0.6] for each correlation
value.

A properly defined correlation matrix must be positive semidefinite (Xu and Evers,
2003). Before applying the scenario generation method, this condition is verified for each
correlation matrix obtained (i.e., correlation matrices that do not meet this condition
are ignored by the copula-based method). Scenarios are generated, once the positive
semidefinite condition is verified. The copula-based heuristic uses the mean and stan-
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dard deviation of the distributions for each instance category and the correlation matrix
defined for each instance to generate a predefined number of scenarios |S| with equal
probability. This means that the probability of occurrence ρs for scenario s ∈ S is
ρs = 1/|S|.

6.2 Scenario stability

This section presents the computational experiments conducted to assess the stability
of the chosen scenario generation procedure with and without demand correlation. As-
sessing scenario stability aims to guarante that there is no significant influence by the
scenario trees utilized with respect to the results obtained when solving the considered
stochastic problem (Kaut and Wallace, 2007). In our case, we used the copula-based
method introduced by Kaut (2014) to generate the scenario set. This method, in con-
trast to other ones (such as sampling methods), has a high probability of producing
identical scenario trees when consecutive runs are conducted with the same correlation
and distribution inputs. Using ‘standard’ in-sample and out-of-sample stability tests (see,
Kaut and Wallace, 2007) are inappropriate, as these stability tests could overestimate
the quality of the scenario generation method (Guo et al., 2019). Therefore, our scenario
stability tests build on the work of Zhang et al. (2021) to derive a valid variant of the
‘standard’ approach for our problem setting.

Based on the guidelines proposed by Zhang et al. (2021), stability tests require cre-
ating and evaluating a subset of scenario trees for each problem instance, with a fixed
scenario tree size. To test the stability of a scenario tree of size |S|, it is necessary to
define a set of 2m + 1 scenario trees of sizes |S| − m, |S| − (m − 1), ..., |S|, ..., |S| + m,
where m is a positive integer. Let Z|S|+i denote the optimal (or best-known) solution
for each i ∈ [−m,m] of the 2m + 1 scenario trees obtained for each problem instance.
The proposed PH metaheuristic is used to solve the 2E-MLRPSCD resulting from each
of the 2m + 1 scenario trees, resulting in 2m + 1 solutions Z|S|+i, one for each scenario
tree. These solutions are then evaluated by calculating the objective function F (Z|S|+i)
for each of the 2m + 1 scenario trees, yielding a set of 2m + 1 objective function values
for each solution Z|S|+i. Finally, for each problem instance, the maximum (F+(Z|S|+i)),
minimum (F−(Z|S|+i)), and variance (σ|S|+i) are defined based on the objective function
values of each solution Z|S|+i. Stability is then determined by computing the relative
difference (RD) between the maximum and minimum values and the variance (V AR) of
each scenario tree, as follows:

RD = max
i∈[−m,m]

{
F+(Z|S|+i)− F−(Z|S|+i)

F+(Z|S|+i)
× 100%

}
(57)

V AR = max
i∈[−m,m]

{σ|S|+i} (58)
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|S| RD (%) VAR
VSR AISR MIN AVERAGE MAX MIN AVERAGE MAX

10 38 3.96 0 1.79 8.58 0 1041.89 15222.89
20 47 3.17 0 1.13 5.93 0 335.62 3351.09
30 54 2.65 0 0.82 3.55 0 190.04 1944.3
40 53 2.25 0 0.58 2.25 0 108.05 1142.38
50 53 2.01 0 0.45 2.01 0 74.62 933.34
100 60 n.a 0 0.28 1.44 0 32.52 525.93

Table 2: Stability tests: summarized results of relative difference and variance for differ-
ent scenario sizes.

Table 2 presents a summary of the relative difference (RD) and variance (VAR) values
obtained for the 2m+1 scenario trees defined for each problem instance. The table shows
the number of scenarios for each scenario tree (|S|), as well as the minimum (MIN),
average (AVR), and maximum (MAX) values for the relative difference and variance. In
order to assess stability, a criterion of RD ≤ 2% is defined. Two additional performance
measures are used to present the number of instances satisfying the stability criterion
(valid stability requirement or VSR) and the average RD of the instances failing to meet
the criterion (average invalid stability requirement orAISR). Experiments are performed
using multiple scenario trees with varying numbers of scenarios (|S|) andm set to 4, based
on the work of Guo et al. (2019). To reduce noise in the results, only the best objective
function obtained for each instance by the proposed PH metaheuristic is used for the
stability tests.

The results reported in Table 2 show the expected reduction of the relative difference
with respect to the increased number of scenarios considered. It is worth mentioning
that due to the randomness and heuristic nature of the scenario generation procedure,
small fluctuations exist in the relative error for some instances, which do not affect the
validity of the proposed stability tests. In general, the use of 30 scenarios represents the
best balance between solution stability and scenario size, as it provides a relative error
of less than 2% for 53 out of 60 instances, with an average relative error of 2.6% for the
remaining instances. Although larger scenario trees are desirable for achieving a smaller
relative error, solving the resulting subproblems for the entire instance set using CPLEX
at each iteration of the PH metaheuristic becomes exceedingly challenging.

Figure 4 displays the relative difference values of each instance type as a function of the
number of scenarios used for the stability testing. One can observe that the dispersion of
the demand distributions significantly affects the stability of solutions. Notably, instances
of type CA and CC, characterized by more dispersed demand distributions, exhibit more
fluctuations in the relative difference values. This behavior can be attributed to the
copula-based method generating a diverse set of scenarios, leading to increased volatility
in the objective function values and greater fluctuations on recourse actions.

In conclusion, the results presented in Table 2 indicates that using |S| = 30 achieves
the best balance between solution stability and the size of the scenario tree. Additionally,
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Figure 4: Stability test: Relative difference for each instance type vs scenario size.

Figure 4 shows that increasing the number of scenarios beyond |S| = 30 only marginally
improves the relative difference percentage in terms of stability. This in turn indicates
that using scenario trees with |S| > 30 is not favorable due to the significantly increased
computational burden required to address this greater number of scenarios at each iter-
ation of the PH metaheuristic.

6.3 Performance of the PH metaheuristic

This section presents a performance analysis of the proposed PH metaheuristic. Com-
putational tests were conducted to compare the performance of the PH metaheuristic to
that of CPLEX when solving the complete stochastic model. The results presented in
this section focus on the quality of the upper bound obtained and the computational time
needed by each solution method. The stopping criteria for all solution methods were set
to a maximum running time of 2 hours. Additionally, the PH metaheuristic was limited
to a maximum of 60 iterations. CPLEX was used with the default parameter settings,
with a thread limit of 6 imposed when solving the overall stochastic model and a thread
limit of 1 specified when solving the scenario subproblems within the PH metaheuristic.

To address the stochastic problem, computational tests were conducted by solving
the complete two-stage stochastic model with CPLEX or by employing the proposed PH
metaheuristic. Additionally, experiments were performed using a classic strategy as the
baseline for the PH metaheuristic. This approach represents the steps of the ‘classic’ PH
metaheuristic proposed by Crainic et al. (2011) (Section 5.4.1). In all tables, the results
obtained using CPLEX and the PH metaheuristic are labeled as ‘CPLEX’ and ‘PH’,
respectively. Moreover, the PH metaheuristic results are differentiated based on the spe-
cific version of the procedure used that is: the classical approach (CL), the probabilistic
strategy (PS), the social strategy (SS), and the decision-based clustering strategy (DCS).
Each table presents the average optimality gap expressed as a percentage (OG), the av-
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erage computational time in seconds, and the average upper bound differences between
PH and CPLEX (Diff. UB).

Table 3 presents the results of solving instances with no demand correlation. One can
clearly observe that solving the overall stochastic problem using CPLEX is challenging.
CPLEX achieves an average optimality gap of 21% within the time limit of 2 hours. The
PH metaheuristic outperforms CPLEX. The classic approach (CL), achieves an average
improvement of 14.5% in solution quality over CPLEX. Moreover, the classic approach
is able of reaching consensus and generating high-quality upper bounds for 53 of the 60
instances within the 2-hour limit. One notices that the exclusive use of the best quality
solutions of each scenario subproblem to define the reference solution, is not effective
enough to reach consensus over the complete set of first-stage decisions. This general
adverse effect is particularly evident when analysing the results obtained when solving
the CA and CC instances. For these instances, the demand values are sparse, which
leads to scenario subproblems which, when solved, tend to produce more diverse first-
stage decisions.

Compared to the classic approach, the proposed strategies can achieve consensus
for the entire set of instances. The probabilistic strategy, which builds on the classic
approach, demonstrates significant improvements in both solution quality and runtime.
Specifically, the probabilistic strategy achieves an average improvement of 16.2% com-
pared with CPLEX and a 35.3% decrease of average runtime compared with the classic
approach. To reach consensus efficiently, our PH metaheuristic benefits from including
alternative solutions for each scenario subproblem. This approach increases the number
of complementary first-stage decisions that are used to define the aggregation at each
iteration. Notwithstanding the general improvements made by PH utilising the proba-
bilistic strategy, the social and cluster strategies are able of leveraging more efficiently the
existing alternative solutions to further improve the overall performance of the algorithm.

The social strategy consistently yields reduced runtimes, with the largest average
decrease of 68.3% compared to the classic approach. The consensus-driven approach,
which ranks the global population, is also able to help PH metaheuristic reaching con-
sensus faster and cut down on computation time. However, reaching general consensus
faster does not necessarily guarantee good-quality solutions. An illustration of this can
be seen when comparing the results obtained with the decision-based clustering strategy
to those obtained with the social strategy. Although the runs of the PH using the social
strategy produces results, on average, 40% faster, the use of the decision-based clustering
strategy results in consensus solutions of higher quality. On average, the optimality gap
achieved by the PH metaheuristic with the decision-based clustering strategy is 2.6%,
compared to 6.8% when using the social strategy.

Computational tests on instances with demand correlation are reported in Table 4.
Similar to the results obtained on instances with no demand correlation, solving the
complete two-stage formulation with CPLEX leads to the worst optimality gap while
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Instance
type

CPLEX
PH

CL PS SS DCS
OG (%) time (s) diff. ub OG (%) time (s) diff. ub OG (%) time (s) diff. ub OG (%) time (s) diff. ub OG (%) time (s)

CA 30.91 7200 -7.02 28.24 4458.16 -13.54 23.71 1323.66 -38.65 8.09 884.99 -44.98 3.76 2295.22
CB 23.66 7200 -32.54 1.54 3568.78 -32.54 1.54 1350.34 -32.62 1.47 1081.83 -32.66 1.44 1239.97
CC 17.42 7200 -9.07 10.07 4651.69 -9.30 9.87 4243.97 -9.04 10.21 2326.02 -19.35 1.95 2442.96
CD 15.79 7200 -9.19 8.11 4520.49 -9.32 8.01 4210.59 -10.11 7.38 1151.61 -14.92 3.47 2200.99

Averages 21.94 7200 -14.46 11.99 4299.78 -16.17 10.78 2782.14 -22.61 6.79 1361.11 -27.98 2.65 2044.79

Table 3: Summarized results on instances with no demand correlation.

Instance
type

CPLEX
PH

CL PS SS DCS
OG (%) time (s) diff. ub OG (%) time (s) diff. ub OG (%) time (s) diff. ub OG (%) time (s) diff. ub OG (%) time (s)

CA 28.70 7200 1.49 29.77 7200.00 -29.94 10.14 2393.54 -38.05 4.71 2178.57 -42.06 2.35 1663.38
CB 24.35 7200 -33.52 0.86 4071.12 -33.76 0.67 1384.67 -33.76 0.67 1989.33 -33.88 0.58 1920.12
CC 13.03 7200 -11.17 3.57 4622.19 -12.50 2.47 2095.32 -12.71 2.29 2167.33 -13.64 1.48 2091.91
CD 11.77 7200 -7.76 5.10 4809.67 -10.45 2.84 1609.31 -11.35 2.02 2061.57 -11.87 1.56 1781.87

Averages 19.46 7200 -12.74 9.82 5175.74 -21.66 4.03 1870.71 -23.97 2.42 2099.20 -25.36 1.49 1864.32

Table 4: Summarized results on instances with demand correlation.

reaching the maximum time limit on all instances. On the other hand, the classic ap-
proach presents a significant performance improvement, where consensus is reached for
40 out of the 60 instances within the given time limit. The probabilistic and social strate-
gies both show considerably improved performances in solution quality when compared
to CPLEX, with an optimality gap of 4% and 2.4%, respectively. That being said, the
decision-based clustering strategy outperforms all selection strategies in terms of both
time and solution quality. It obtains the best solutions for 50 out of the 60 instances
with an average runtime reduction of 64% when compared to the classic approach.

The performance of the PH metaheuristic with each proposed aggregation strategy
shows significant variations when tested on instances with and without demand corre-
lation. Scenario trees generated assuming that demands are entirely uncorrelated often
result in scenarios with a large number of high demand values. These scenarios have
more predominant solution structures, as the first-stage decisions defined under high de-
mand values are more likely to fit scenarios with lower demand values. This effect is
less likely to occur for instances where negative demand correlation is considered. The
likelihood of producing scenarios with high demand values decreases as the degree of
negative correlation between demands increases. As a result, there is increased diversity
in demand values for the complete set of scenarios. This diversity leads to a more varied
set of first-stage decisions, which, in turn, poses challenges for the PH metaheuristic to
reach consensus. This general effect explains the improved performance of the proposed
acceleration strategies when demand correlation is considered.

6.4 Correlation impact

Our experiments involve three sets of instances, each considering a different correla-
tion level. Scenarios are generated for instances involving 15 OD demands, with weak,
moderate, and strong correlation levels. These levels are defined by a rescaled normal
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distribution presented in Table 5. Figure 5 illustrates different correlations in the same
instance.

Computational studies are conducted using the proposed PH framework with the
decision-based clustering strategy, which is selected due to its superior overall perfor-
mance. We compare the results of weak and strong correlations to those of the moderate
case. Table 6 displays the average relative differences in upper bound value (UB dif.),
the standard deviation (STD dif.), and run time (Time dif.). The standard deviation is
used as a measure to illustrate how dispersed the demand values are within the scenarios
generated with different levels of correlation. A negative value in the UB dif. or the
Time dif. column indicates a reduction in the measure for instances with either weak or
strong levels of correlation. Similarly, a negative value in the STD dif. column indicates
that scenarios generated with a moderate level of correlation are more dispersed than the
other two correlation levels.

The reported results in Table 6 show changes in different instance categories. For
instance types CA and CB, characterized by lower demand values, there is an average
4% increase in the upper bound value. In contrast, instance types CC and CD, charac-
terized by greater demand values, show an average decrease in the upper bound value of
14%. Several factors contribute to this behavior. One is the dispersion of the scenarios.
Achieving consensus over a more diverse set of scenarios often results in solutions with
larger numbers of routes or more intricate route compositions to accommodate the de-
mands of the complete scenario set without extensive use of recourse actions. Another
factor is the ratio of positive and negative demand correlations. A higher ratio of positive
correlation leads to scenarios with a higher number of large demand values compared to
those with lower levels of correlation. It is worth mentioning that while the probabil-
ity distribution for each category type remains constant for the three correlation types,
some correlation matrices lead to more dispersed scenarios or to scenarios with higher
demand values than the other two correlation types, greatly influencing the solution of
each instance when determining consensus.

In instances of type CA and CB, moderate correlations display a lower ratio of positive
correlations in 19 and 13 out of the 30 instances compared to those with weak and strong
correlations, respectively. This, combined with the lower standard deviation observed in
scenarios using moderate correlation, leads to an overall decrease in the objective function
by at least 3% compared to the other two correlation levels. In contrast, instances of
type CC and CD, using moderate correlations, exhibit scenarios with higher dispersion,
resulting in a notable increase in the objective function, by at least 13%, compared to
scenarios with weak and strong correlations. This high objective function is influenced
by the necessity for a greater number of routes or the implementation of more complex
route compositions to fulfill all OD demands and reduce outsourced deliveries. In terms
of computational time, it is evident that the PH method generally requires more time
to address instances with weak and strong correlations, particularly in cases with lower
variability, due to the need for a more extensive application of the reset procedure to
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Correlation
type

Distribution Range

Weak standard normal [-0.3, 0.3]
Moderate standard normal [-0.6, 0.6]
Strong standard normal [-1.0, 1.0]

Table 5: Parameters for each correlation type.
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Figure 5: Correlation types for instance Cd5-6,4,15.

avoid local optima.

Overall, it appears that the level of correlation significantly affects solution quality and
runtime. Negative correlation provides opportunities to consolidate negatively correlated
demands, often leading to a reduced variance in the total demand within the routes in the
solution. This facilitates cost-effective routes that serve more OD demands. However,
greater variability in demand values often results in more intricate route structures to
accommodate the demands of all scenarios, potentially leading to higher operational costs.
It can be concluded that this variability is not exclusively attributable to the correlation
levels, but rather to the interplay between the demand distribution used by the copula-
based method and the correlation. This highlights the importance of accurately capturing
any dependence between OD demands.

Instance
type

Weak correlation Strong correlation
UB dif. STD dif. Time dif. UB dif. STD dif. Time dif.

CA 5.17 1.82 2.81 6.99 2.63 18.50
CB 1.83 -24.12 7.84 2.43 -21.31 5.03
CC -1.21 5.52 -14.41 -1.74 4.56 -7.50
CD -26.46 -355.18 5.08 -27.07 -345.28 17.53

Table 6: Summarized results with different type of correlation types.
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6.5 Value of the stochastic solution

This section reports on the value of the stochastic solution (VSS), which is a bound to
assess the added value of using the stochastic model compared to the deterministic formu-
lation problem for the 2E-MLRPSCD. Experiments are performed using both instances
with and without demand correlation. Following the general trend in the literature, we
use the deterministic formulation (DF) with the mean approximation of the demand,
where the stochastic demands are estimated as their mean values obtained from the
scenario sets that are considered. The integrated design and routing decisions are then
determined based on the average value of demands. Results for the deterministic formu-
lation of the 2E-MLRPSCD are obtained by solving each instance using CPLEX under
a 2-hour time limit. The computational tests conducted using the DF are then com-
pared to the solutions obtained by solving the 2E-MLRPSCD (i.e., the results reported
in Section 6.3.

Feasible solutions for all instances can be obtained by using the PH metaheuristic and
the DF. Therefore, we conduct experiments by comparing the results obtained from the
DF approach against the stochastic approach with respect to the general cost increase
percentages. Figures 6 and 7 present the results of these experiments by illustrating the
increasing percentage of the objective function (Cost Diff.) and the use of outsourced
services (Out Diff.) for the instances with and without demand correlation, respectively.
The results are organized to depict the minimum, average, and maximum cost increase
associated with the solutions of the deterministic formulation, using the stochastic ap-
proach as the baseline. Tables 7 and 8 present the density of location and allocation
decisions on satellite facilities for each approach and each instance type for instances
with and without demand correlation, respectively. Each table shows the number of
satellites (|Z|) for each instance type, and the average value of increased percentages of
the objective function (Cost Diff.) of the DF against the PH metaheuristic. Moreover,
two additional measures are presented at each table to quantify the spatial homogeneity
of the distribution of located satellite facilities and customer allocation to them. These
measures correspond to: 1) the satellite location density (SLD), which represents the av-
erage number of open satellites for each instance type, and 2) the maximum and minimum
customer allocation density (CAD), which represents the average number of customers
assigned to each open satellite.

The results presented in Figure 6 and Figure 7 indicate that the stochastic formula-
tion consistently outperforms the deterministic formulation in terms of overall solution
quality. The deterministic formulation incurs significantly higher design costs and out-
sourced services. This discrepancy can be attributed to the fact that the deterministic
formulation, fails to capture important demand variations, resulting in higher expected
costs. This is particularly evident in design planning decisions, where the deterministic
formulation produces facility configurations that are insufficient to conduct the necessary
vehicle operations during the second stage for all scenarios. This issue is evident in both
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Figure 6: Comparison of the deterministic versus the stochastic formulation of the 2E-
MLRPSCD on instance with demand correlation.

Figure 7: Comparison of the deterministic versus the stochastic formulation of the 2E-
MLRPSCD on instance with no demand correlation.

instance sets, where the deterministic formulation used on average 17% and 6% more
outsourced services for instances with and without demand correlation, respectively.

Distributions covering a wide range of low demand values, exemplified by instance
type CA, demonstrate a clear distinction between instances with and without demand
correlation. When demand correlation is considered for instance type CA, there is a
tendency to employ more satellite facilities to accommodate the greater diversity of sce-
narios. In contrast, instances without demand correlation tend to utilize fewer satellite
facilities, focusing on addressing scenarios with high demand values within the scenario
set, which are typically low when compared to other instance types. For instance types
CC and CD, where distributions yield higher demand values, the results usually show
a high number of open satellite facilities with a more homogeneous set of customer al-
locations. Regardless of demand correlation, high demand values force both approaches
to lean towards higher satellite usage to handle the high-value demand variations. In-
terestingly, a very narrow and low-value demand distribution, as in instance type CB,
allowed the deterministic (based on the use of the average demands) approach to better
approximate the demand distribution, which in turn lead to the deterministic approach
to produce results comparable to those of the stochastic approach. These observations
hold even when demand correlation is not considered, with a general increase in customer
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Instance
type

|Z| cost diff.
PH DF

SLD
CAD

SLD
CAD

max min max min

CA
3 14.43 2.60 10.40 2.00 1.60 13.40 1.60
5 47.46 2.60 5.60 3.80 1.20 12.00 3.00
4 39.34 2.60 9.00 0.20 1.00 15.00 0.00

CB
3 0.00 1.20 12.00 3.00 1.20 12.00 3.00
5 0.28 1.20 12.00 3.00 1.20 12.00 3.00
4 0.00 1.00 15.00 0.00 1.00 15.00 0.00

CC
3 0.75 3.00 6.40 3.00 3.00 5.00 5.00
5 2.07 3.60 5.40 0.40 3.20 5.00 0.40
4 4.93 3.80 6.20 1.60 4.00 5.00 2.20

CD
3 3.53 3.00 6.20 4.00 3.00 5.00 5.00
5 1.97 3.60 5.60 1.40 3.60 4.80 1.40
4 4.43 3.40 6.20 1.20 4.00 5.00 2.40

Averages 9.93 2.60 8.33 1.97 2.33 9.10 2.25

Table 7: Location/allocation density by instance-types with demand correlation

Instance
type

|Z| Dif. UB
PH DF

SLD
CAD

SLD
CAD

MAX MIN MAX MIN

CA
3 16.64 1.20 12.40 2.00 1.60 13.40 1.60
5 37.24 1.20 13.20 1.80 1.20 12.00 3.00
4 35.09 2.60 9.60 0.20 1.00 15.00 0.00

CB
3 0.06 1.20 13.20 3.00 1.20 13.20 3.00
5 0.00 1.20 13.20 3.00 1.00 13.20 3.00
4 0.05 1.00 15.00 0.00 1.00 15.00 0.00

CC
3 7.15 3.00 7.80 3.00 3.00 5.00 5.00
5 5.42 2.8 8.60 2.20 3.20 5.00 0.40
4 9.32 2.80 6.80 2.60 4.00 5.00 2.20

CD
3 0.39 3.00 8.60 3.00 3.00 5.00 5.00
5 4.46 3.20 6.40 3.20 3.60 4.80 1.40
4 7.48 3.20 7.00 2.00 4.00 5.00 2.40

Averages 10.27 2.20 10.15 2.17 2.32 9.30 2.25

Table 8: Location/allocation density by instance-types with no demand correlation

allocation density across each instance set due to reduced demand variability within each
scenario set.

One can conclude that the stochastic approach addressed by the proposed PH meta-
heuristic is generally more cost-effective for both design and routing decisions. The
deterministic formulation approach produces solutions that lack operational efficiency,
especially for the second stage, since it does not sufficiently account for uncertainty at
the design planning stage. Unless the demand distribution is narrow and low enough, the
deterministic formulation approach proves unsuitable for designing distribution networks
with uncertain demands, with or without correlation. Therefore, a stochastic approach
should be used to warrant an effective distribution system design involving location rout-
ing decisions under uncertainty.
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7 Conclusions

We introduced the two-Echelon multicommodity location-routing problem with stochas-
tic and correlated Demands (2E-MLRPSCD). The problem is formulated as a two-stage
stochastic program where, the location of satellite facilities and the customer-to-satellite
allocation decisions are made in the first stage, while the vehicle routes for both eche-
lons are decided in the second stage, when customers demands are observed. To address
the proposed two-stage model, we present a specialized PH-based metaheuristic with a
series of novel enhancements. These include: 1) population structures of alternative and
diverse solutions for the scenario subproblems; 2) strategies to define the reference solu-
tions, which are used to guide the overall search; and 3) a reset procedure that reduces
the risk of the method becoming trapped in local optima.

A series of numerical experiments were performed, involving a set of instances with
varying characteristics, which computationally showed that the proposed enhancements
significantly improved the overall performance of the PH method built for the 2E-
MLRPSCD. Moreover, the numerical results also clearly showed the added value of
explicitly considering the uncertainty in demand and its interrelations. The solutions
obtained by solving the stochastic problem outperformed the ones obtained by applying
a deterministic approximation approach.

Several interesting avenues for future research may be identified. There is a need to
design novel heuristic and exact methods to more efficiently address the set of scenario
subproblems that must be solved at each iteration of the PH metaheuristic. There are
also interesting extensions to the considered problem that could be studied. Specifically,
solving the problem with additional sources of uncertainty (e.g., travel times uncertainty)
would certainly be worthwhile for a wide gamut of applications.
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Québec through their Teams and CIRRELT infrastructure grants. The author wishes to
express his gratitude toward the unknown referees and the colleagues and friends who
offered many very constructive comments.

36

The Two-Echelon Multicommodity Location-Routing Problem with Stochastic and Correlated Demands

CIRRELT-2023-38



References

Albareda-Sambola, M., Fernandez, E., and Laporte, G. (2007). Heuristic and lower bound
for a stochastic location-routing problem. European Journal of Operational Research,
179(3):940 – 955.

Alvarez, A., Cordeau, J.-F., Jans, R., Munari, P., and Morabito, R. (2021). Inventory
routing under stochastic supply and demand. Omega, 102:102304.

Atakan, S. and Sen, S. (2018). A progressive hedging based branch-and-bound algo-
rithm for mixed-integer stochastic programs. Computational Management Science,
15(3):501–540.

Bucci, M. J., Warsing, D. P., Kay, M. G., Uzsoy, R., and Wilson, J. R. (2006). Modeling
the Effects of Demand Correlation in Location Problems that account for Inventory
Pooling.

Crainic, T. G., Fu, X., Gendreau, M., Rei, W., and Wallace, S. W. (2011). Progressive
hedging-based metaheuristics for stochastic network design. Networks, 58(2):114–124.

Crainic, T. G., Ricciardi, N., and Storchi, G. (2009). Models for Evaluating and Planning
City Logistics Systems. Transportation Science, 43(March):432–454.

Cuda, R., Guastaroba, G., and Speranza, M. G. (2015). A survey on two-echelon routing
problems. Computers and Operations Research, 55:185–199.

Dellaert, N., Dashty Saridarq, F., Van Woensel, T., and Crainic, T. G. (2019). Branch-
and-price–based algorithms for the two-echelon vehicle routing problem with time win-
dows. Transportation Science, 53(2):463–479.

Escobar-Vargas, D. and Crainic, T. G. (2022). Multi-attribute Two-echelon Location
Routing: Formulation and Dynamic Discretization Discovery Approach. Technical
report. CIRRELT-2021-2.

Gendreau, M., Jabali, O., and Rei, W. (2014). Chapter 8: Stochastic Vehicle Routing
Problems, pages 213–239. Society for Industrial and Applied Mathematics.

Guo, Z., Wallace, S. W., and Kaut, M. (2019). Vehicle routing with space- and time-
correlated stochastic travel times: Evaluating the objective function. INFORMS Jour-
nal on Computing, 31(4):654–670.

Haugen, K. K., Løkketangen, A., and Woodruff, D. L. (2001). Progressive hedging
as a meta-heuristic applied to stochastic lot-sizing. European Journal of Operational
Research, 132(1):116–122.

Heath, D. C. and Jackson, P. L. (1994). Modeling the evolution of demand forecast with
application to safety stock analysis in production/distribution systems. IIE Transac-
tions, 26(3):17–30.

37

The Two-Echelon Multicommodity Location-Routing Problem with Stochastic and Correlated Demands

CIRRELT-2023-38



Hewitt, M., Ortmann, J., and Rei, W. (2022). Decision-based scenario clustering for
decision-making under uncertainty. Annals of Operations Research, 315(2):747–771.

Huang, S.-H. (2015). Solving the multi-compartment capacitated location routing prob-
lem with pickup–delivery routes and stochastic demands. Computers & Industrial
Engineering, 87:104 – 113.

Kaut, M. (2014). A copula-based heuristic for scenario generation. Computational Man-
agement Science, 11(4):503–516.

Kaut, M. and Wallace, S. W. (2007). Evaluation of scenario-generation methods for
stochastic programming. Pacific Journal of Optimization, 3(2):257–271.

King, A. and Wallace, S. (2012). Modeling with Stochastic Programming. Springer New
York, NY.

Lamghari, A. and Dimitrakopoulos, R. (2016). Progressive hedging applied as a meta-
heuristic to schedule production in open-pit mines accounting for reserve uncertainty.
European Journal of Operational Research, 253(3):843–855.

Lium, A.-G., Crainic, T. G., and Wallace, S. W. (2009). A study of demand stochasticity
in service network design. Transportation Science, 43(2):144–157.

Løkketangen, A. and Woodruff, D. L. (1996). Progressive hedging and tabu search ap-
plied to mixed integer (0,1) multistage stochastic programming. Journal of Heuristics,
2(2):111–128.

Mara, S. T. W., Kuo, R., and Asih, A. M. S. (2021). Location-routing problem: a
classification of recent research. International Transactions in Operational Research,
28(6):2941–2983.

Maranzana, F. E. (1964). On the location of supply points to minimize transport costs.
OR, 15(3):261–270. Full publication date: Sep., 1964.

Marinakis, Y. (2015). An improved particle swarm optimization algorithm for the capac-
itated location routing problem and for the location routing problem with stochastic
demands. Applied Soft Computing Journal, 37:680–701.

Marinakis, Y., Marinaki, M., and Migdalas, A. (2016). A hybrid clonal selection algorithm
for the location routing problem with stochastic demands. Annals of Mathematics and
Artificial Intelligence, 76(1):121–142.

Mirhedayatian, S. M., Crainic, T. G., Guajardo, M., and Wallace, S. W. (2019). A two-
echelon location-routing problem with synchronisation. Journal of the Operational
Research Society, 72(1):145–160.

38

The Two-Echelon Multicommodity Location-Routing Problem with Stochastic and Correlated Demands

CIRRELT-2023-38



Quintero-araujo, C. L., Guimarans, D., Juan, A. A., Guimarans, D., A, A. A. J.,
Guimarans, D., and Juan, A. A. (2019). A simheuristic algorithm for the capaci-
tated location routing problem with stochastic demands stochastic demands. Journal
of Simulation, 15(3):1–18.

Rockafellar, R. T. and Wets, R. J.-B. (1991). Scenarios and policy aggregation in opti-
mization under uncertainty. Mathematics of Operations Research, 16(1):119–147.

Schiffer, M., Schneider, M., Walther, G., and Laporte, G. (2019). Vehicle routing and
location routing with intermediate stops: A review. Transportation Science, 53(2):319–
343.

Snoeck, A., Winkenbach, M., and Mascarino, E. E. (2018). Establishing a Robust Urban
Logistics Network at FEMSA through Stochastic Multi-Echelon Location Routing. In
Taniguchi, E. and Thompson, R., editors, City Logistics 2. John Wiley & Sons, Ltd.

Thapalia, B. K., Wallace, S. W., Kaut, M., and Crainic, T. G. (2012). Single source single-
commodity stochastic network design. Computational Management Science, 9(1):139–
160.

Verma, A. and Campbell, A. M. (2019). Strategic placement of telemetry units con-
sidering customer usage correlation. EURO Journal on Transportation and Logistics,
8(1):35–64.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and Rei, W. (2012). A hybrid
genetic algorithm for multidepot and periodic vehicle routing problems. Operations
Research, 60(3):611–624.

Xu, K. and Evers, P. T. (2003). Managing single echelon inventories through demand
aggregation and the feasibility of a correlation matrix. Computers & Operations Re-
search, 30(2):297 – 308.

Zhang, D., Wallace, S. W., Guo, Z., Dong, Y., and Kaut, M. (2021). On scenario con-
struction for stochastic shortest path problems in real road networks. Transportation
Research Part E: Logistics and Transportation Review, 152:102410.

Zhang, S., Chen, M., and Zhang, W. (2019). A novel location-routing problem in elec-
tric vehicle transportation with stochastic demands. Journal of Cleaner Production,
221:567–581.

39

The Two-Echelon Multicommodity Location-Routing Problem with Stochastic and Correlated Demands

CIRRELT-2023-38



Appendix 1 - Decomposition strategy for the two-

stage stochastic formulation

This section presents the complete steps used to perform the decomposition approach
that is applied to the stochastic 2E-MLRPSCD formulation introduced in Section 4.2.
This decomposition approach utilizes an augmented Lagrangean strategy.

The decomposition strategy applied on the scenario-based formulation, along the
scenarios included in S, requires the first-stage decisions to be reformulated. Specifically,
these decisions need to be defined as scenario-dependent. In doing so, constraints (7), (18)
and (19) are then reexpressed according to the scenario-specific location and allocation
first-stage decisions. Therefore, one starts with the following alternative, but equivalent,
formulation:

min
∑
s∈S

ρs

Ñ∑
h∈H

∑
(i,j)∈A

ζijx
s
ijh +

∑
k∈K

Rosk +
∑
i∈Z

Fiy
s
i +

∑
i∈P

∑
j∈Z

∑
k∈K

∆ijkf
s
ijk

é
(59)

Subject to

(2)− (6)

(8)− (17)

∑
h∈H2

∑
j∈C

xsijh ≤ |H2|ysi ∀i ∈ Z, s ∈ S (60)∑
h∈H1

usijkh = f s
ijk ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S (61)∑

h∈H2

vszD(k)h =
∑
p∈P

f s
pzk ∀z ∈ Z, k ∈ K, s ∈ S (62)

ysi = ȳi ∀i ∈ Z, s ∈ S (63)

f s
ijk = f̄ijk ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S (64)

ysi ∈ {0, 1} ∀i ∈ Z, s ∈ S (65)

f s
ijk ∈ {0, 1} ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S (66)

ȳi ∈ {0, 1} ∀i ∈ Z (67)

f̄ijk ∈ {0, 1} ∀i ∈ P, j ∈ Z, k ∈ K (68)

This reformulation now explicitly includes the set of non-anticipativity constraints
which prevent the first-stage decision variables to be set to different scenario-specific
values (i.e., the first-stage decisions must be implementable). Constraints (60)-(62) link
the facility allocation variables with the vehicle allocation variables. Constraints (63)
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and (64) ensure that the first-stage solutions will be the same for all the scenarios (also
known as the non-anticipativity constraints), where variables ȳi and f̄ijk serve as the
reference first-stage variables. The latter ensure that a single set of facility location and
allocation decisions are made for all the scenarios (thus preventing tailored scenario-
specific decisions to be made). Then, following the decomposition scheme, originally
proposed by Rockafellar and Wets (1991), constraints (63) and (64) are relaxed using an
augmented Lagrangean method, which results in the following objective function:

min
∑
s∈S

ρs

Å∑
h∈H1

∑
(i,j)∈A1

ζijx
s
ijh +

∑
h∈H2

∑
(i,j)∈A2

ζijx
s
ijh +

∑
k∈K

Rosk +
∑
i∈Z

Fiy
s
i

+
∑
i∈Z

λsi (y
s
i − ȳi) +

1

2

∑
i∈Z

γ(ysi − ȳi)
2 +

∑
i∈P

∑
j∈Z

∑
k∈K

∆ijkf
s
ijk

+
∑
i∈P

∑
j∈Z

∑
k∈K

µs
ijk(f

s
ijk − f̄ijk) +

1

2

∑
i∈P

∑
j∈Z

∑
k∈K

γ(f s
ijk − f̄ijk)

2

ã (69)

The objective function now involves the lagrangean multipliers λsi and µs
ijk for the

relaxed constraints (63) and (64), respectively, and a penalty term γ. Given the bi-
nary requirements of the location and allocation variables, the objective function can be
reduced as follows:

min
∑
s∈S

ρs

Å∑
h∈H

∑
(i,j)∈A

ζijx
s
ijh +

∑
k∈K

Rosk +
∑
i∈Z

Å
Fi + λsi +

1

2
γ + γȳi

ã
ysi

+
∑
i∈P

∑
j∈Z

∑
k∈K

Å
∆ijk + µs

ijk +
1

2
γ + γf̄ijk

ã
f s
ijk +

1

2

∑
i∈Z

γȳi −
∑
i∈Z

λsi ȳi

+
1

2

∑
i∈P

∑
j∈Z

∑
k∈K

γf̄ijk +
∑
i∈P

∑
j∈Z

∑
k∈K

µs
ijkf̄ijk

ã (70)

Given the objective (70) and the constraint set: (2)-(6), (8)-(17), (60)-(62) and (65)-
(68), if the reference point (or solution) ȳi and f̄ijk is fixed, then the relaxed formulation
is decomposed by scenario. Specifically, for each s ∈ S, a deterministic 2E-MLRPSCD
subproblem with modified fixed costs is obtained:

min
∑
s∈S

ρs

Å∑
h∈H

∑
(i,j)∈A

ζijx
s
ijh +

∑
k∈K

Rosk +
∑
i∈Z

Å
Fi + λsi +

1

2
γ + γȳi

ã
ysi

+
∑
i∈P

∑
j∈Z

∑
k∈K

Å
∆ijk + µs

ijk +
1

2
γ + γf̄ijk

ã
f s
ijk

ã (71)

Subject to

(2)− (6), (8)− (17), (60)− (62) and (65)− (68) .
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As previously stated, the proposed PH algorithm then proceeds by solving the previ-
ous scenario subproblems separately, thus obtaining scenario-specific first-stage solutions.
These scenario-specific solutions are then used to compute the reference point. Using the
reference point, the objective functions (71), for all s ∈ S, are modified to incentivise
decision agreement among the subproblems (i.e., consensus). This general process in
then repeated until consensus first-stage solution can be found.
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Appendix 2 - Complete Result Tables

Instance
|S| = 10 |S| = 20 |S| = 30

RD VAR RD VAR RD VAR
Ca1-2,3,15 1.52 121.57 0.85 35.95 0.70 24.46
Ca1-3,5,15 2.39 297.35 1.40 101.77 0.94 42.26
Ca1-6,4,15 2.38 216.61 1.02 38.49 0.87 29.87
Ca2-2,3,15 1.04 68.28 0.61 27.66 0.78 30.22
Ca2-3,5,15 1.12 41.96 0.75 20.36 0.61 14.39
Ca2-6,4,15 2.97 466.96 1.11 68.72 0.81 37.49
Ca3-2,3,15 4.37 1447.25 2.05 303.71 1.60 144.58
Ca3-3,5,15 5.37 1406.21 5.93 3351.09 3.55 993.23
Ca3-6,4,15 1.61 200.43 0.67 41.05 0.48 20.11
Ca4-2,3,15 0.62 20.00 2.43 9.75 1.50 17.16
Ca4-3,5,15 0.88 37.02 1.42 120.58 2.22 252.29
Ca4-6,4,15 3.22 547.49 1.59 142.76 0.94 44.33
Ca5-2,3,15 0.62 23.44 0.84 44.53 0.60 23.96
Ca5-3,5,15 4.35 1008.95 3.47 735.45 2.06 243.41
Ca5-6,4,15 2.03 236.19 1.22 89.12 0.73 26.19
Cb1-2,3,15 0.40 15.57 0.20 4.39 0.13 2.05
Cb1-3,5,15 0.09 0.37 0.06 0.15 0.08 0.25
Cb1-6,4,15 0.14 1.16 0.10 0.53 0.03 0.05
Cb2-2,3,15 0.41 10.15 0.22 3.21 0.17 1.83
Cb2-3,5,15 0.00 0.00 0.00 0.00 0.00 0.00
Cb2-6,4,15 0.64 12.51 0.28 2.92 0.16 0.81
Cb3-2,3,15 0.08 0.58 0.04 0.10 0.03 0.04
Cb3-3,5,15 0.18 1.12 0.12 0.47 0.05 0.09
Cb3-6,4,15 0.58 17.82 0.36 7.65 0.11 0.46
Cb4-2,3,15 0.78 28.85 0.48 12.22 0.34 6.38
Cb4-3,5,15 0.00 0.00 0.02 0.01 0.01 0.00
Cb4-6,4,15 0.11 0.54 0.02 0.03 0.01 0.01
Cb5-2,3,15 1.17 95.45 0.64 40.17 0.43 16.60
Cb5-3,5,15 0.00 0.00 0.18 1.73 0.08 0.33
Cb5-6,4,15 0.00 0.00 0.19 2.65 0.08 0.49
Cc1-2,3,15 4.45 3469.30 2.66 1206.38 1.65 467.20
Cc1-3,5,15 1.43 244.96 1.41 317.74 1.01 180.20
Cc1-6,4,15 4.38 4084.98 2.15 1037.43 1.71 657.59
Cc2-2,3,15 2.12 776.30 1.33 372.10 1.95 755.08
Cc2-3,5,15 4.22 2998.10 4.83 2131.22 2.09 869.33
Cc2-6,4,15 4.92 6358.39 1.94 833.12 1.28 362.06
Cc3-2,3,15 4.84 5836.54 2.64 1756.38 1.36 472.44
Cc3-3,5,15 7.12 5331.21 3.62 1524.46 1.82 394.82
Cc3-6,4,15 2.54 944.92 2.35 255.76 1.75 85.37
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Instance
|S| = 10 |S| = 20 |S| = 30

RD VAR RD VAR RD VAR
Cc4-2,3,15 3.48 2034.46 1.50 380.47 2.00 604.30
Cc4-3,5,15 8.58 15222.89 3.14 1245.38 1.90 393.44
Cc4-6,4,15 3.73 2509.57 1.41 327.63 1.40 573.11
Cc5-2,3,15 3.24 2604.01 2.75 1834.62 2.48 1944.30
Cc5-3,5,15 1.89 752.12 0.84 166.96 0.83 97.15
Cc5-6,4,15 4.24 2797.43 3.15 1473.54 3.52 1547.38
Cd1-2,3,15 0.90 57.21 0.00 8.58 0.38 12.02
Cd1-3,5,15 0.41 7.93 0.08 0.27 0.12 0.83
Cd1-6,4,15 2.22 3.04 1.58 13.41 0.75 0.42
Cd2-2,3,15 0.00 0.00 0.03 0.04 0.09 0.31
Cd2-3,5,15 0.00 0.00 0.00 0.00 0.00 0.00
Cd2-6,4,15 0.46 13.54 0.15 0.91 0.13 0.64
Cd3-2,3,15 0.00 0.00 0.00 0.00 0.00 0.00
Cd3-3,5,15 0.13 0.72 0.21 2.23 0.04 0.05
Cd3-6,4,15 0.31 4.59 0.36 5.77 0.01 0.00
Cd4-2,3,15 0.94 47.77 0.01 0.01 0.35 5.79
Cd4-3,5,15 0.01 0.00 0.06 0.24 0.01 0.00
Cd4-6,4,15 0.54 13.37 0.00 0.00 0.15 1.16
Cd5-2,3,15 0.50 22.22 0.32 7.09 0.19 3.02
Cd5-3,5,15 0.01 0.00 0.30 7.66 0.03 0.06
Cd5-6,4,15 0.82 53.81 0.46 20.86 0.11 0.78
Max. 8.58 15222.89 5.93 3351.09 3.55 5457.38

Averages 1.79 1041.89 1.13 335.62 0.82 265.20

Table 9: Stability tests. Relative difference and variance for each instance and scenario
set with 10, 20 and 30 scenarios.

Instance
|S| = 40 |S| = 50 |S| = 100

RD VAR RD VAR RD VAR
Ca1-2,3,15 0.69 37.87 0.98 77.01 0.59 23.07
Ca1-3,5,15 0.22 2.13 0.12 0.70 0.08 0.35
Ca1-6,4,15 0.95 41.30 0.97 34.73 0.66 19.61
Ca2-2,3,15 0.23 5.28 0.09 0.71 0.07 0.33
Ca2-3,5,15 0.25 3.19 0.26 2.62 0.15 1.47
Ca2-6,4,15 1.04 58.61 0.49 18.64 0.32 5.33
Ca3-2,3,15 0.76 35.98 1.08 82.10 0.80 59.33
Ca3-3,5,15 1.75 127.10 1.07 45.46 0.88 33.46
Ca3-6,4,15 0.10 0.73 0.16 2.07 0.06 0.22
Ca4-2,3,15 1.1 50.22 0.82 10.88 0.4 9.54
Ca4-3,5,15 1.86 120.55 1.3 95.5 0.78 80.12
Ca4-6,4,15 0.7 78.45 0.35 35.44 0.11 22.1
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Instance
|S| = 40 |S| = 50 |S| = 100

RD VAR RD VAR RD VAR
Ca5-2,3,15 0.47 12.99 0.22 8.31 0.09 5.5
Ca5-3,5,15 1.95 122.28 1.05 99.75 0.83 70.47
Ca5-6,4,15 0.66 11.96 0.44 20.56 0.21 5.1
Cb1-2,3,15 0.27 6.17 0.22 4.07 0.12 1.23
Cb1-3,5,15 0.08 0.38 0.07 0.24 0.03 0.06
Cb1-6,4,15 0.05 0.18 0.03 0.06 0.02 0.02
Cb2-2,3,15 0.05 0.10 0.04 0.06 0.03 0.03
Cb2-3,5,15 0.00 0.00 0.00 0.00 0.00 0.00
Cb2-6,4,15 0.10 0.44 0.08 0.33 0.04 0.07
Cb3-2,3,15 0.00 0.00 0.00 0.00 0.00 0.00
Cb3-3,5,15 0.02 0.02 0.02 0.02 0.02 0.01
Cb3-6,4,15 0.05 0.12 0.05 0.09 0.03 0.05
Cb4-2,3,15 0.23 2.82 0.19 1.82 0.12 0.65
Cb4-3,5,15 0.05 0.12 0.04 0.05 0.01 0.00
Cb4-6,4,15 0.12 0.72 0.09 0.49 0.05 0.13
Cb5-2,3,15 0.15 1.87 0.12 1.27 0.06 0.32
Cb5-3,5,15 0.02 0.02 0.03 0.05 0.02 0.02
Cb5-6,4,15 0.07 0.35 0.05 0.17 0.02 0.04
Cc1-2,3,15 0.85 137.51 0.92 163.63 0.56 59.25
Cc1-3,5,15 1.88 575.19 1.28 252.90 0.79 96.69
Cc1-6,4,15 1.11 258.47 0.94 192.33 0.5 55.07
Cc2-2,3,15 1.31 345.14 1.07 228.73 0.58 65.14
Cc2-3,5,15 1.58 510.21 1.17 281.18 0.69 98.23
Cc2-6,4,15 2.25 1142.38 2.01 933.34 1.44 525.93
Cc3-2,3,15 1.39 346.35 1.15 236.46 0.74 94.22
Cc3-3,5,15 1.77 428.80 1.42 269.09 0.9 121.36
Cc3-6,4,15 1.37 500.51 1.07 319.98 0.6 102.52
Cc4-2,3,15 1.54 579.72 1.12 355.86 0.76 140.25
Cc4-3,5,15 0.83 81.46 0.90 172.08 0.23 11.19
Cc4-6,4,15 0.87 173.46 0.35 30.19 0.20 10.51
Cc5-2,3,15 1.18 417.88 0.49 90.28 0.47 88.57
Cc5-3,5,15 0.88 155.78 0.96 272.79 0.58 76.07
Cc5-6,4,15 0.63 95.11 0.83 126.08 0.61 64.69
Cd1-2,3,15 0.27 6.17 0.22 4.07 0.12 1.23
Cd1-3,5,15 0.08 0.38 0.07 0.24 0.03 0.06
Cd1-6,4,15 0.05 0.18 0.03 0.06 0.02 0.02
Cd2-2,3,15 0.05 0.10 0.04 0.06 0.03 0.03
Cd2-3,5,15 0.00 0.00 0.00 0.00 0.00 0.00
Cd2-6,4,15 0.10 0.44 0.08 0.33 0.04 0.07
Cd3-2,3,15 0.00 0.00 0.00 0.00 0.00 0.00
Cd3-3,5,15 0.02 0.02 0.02 0.02 0.02 0.01
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Instance
|S| = 40 |S| = 50 |S| = 100

RD VAR RD VAR RD VAR
Cd3-6,4,15 0.05 0.12 0.05 0.09 0.03 0.05
Cd4-2,3,15 0.23 2.82 0.19 1.82 0.12 0.65
Cd4-3,5,15 0.05 0.12 0.04 0.05 0.01 0.00
Cd4-6,4,15 0.12 0.72 0.09 0.49 0.05 0.13
Cd5-2,3,15 0.15 1.87 0.12 1.27 0.06 0.32
Cd5-3,5,15 0.02 0.02 0.03 0.05 0.02 0.02
Cd5-6,4,15 0.07 0.35 0.05 0.17 0.02 0.04
Max. 2.25 1142.38 2.01 933.34 1.44 525.93

Averages 0.58 108.05 0.45 74.61 0.28 32.56

Table 10: Stability tests. Relative difference and variance for each instance and scenario
set with 40, 50 and 100 scenarios.
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Instance
CPLEX PH

ub time (s) OSU best ub dif. ub OSU
Ca1-2,3,15 2445.13 7.90 0 2424.70 0.84 0
Ca1-3,5,15 3081.47 30.41 144 2062.03 33.08 0
Ca1-6,4,15 3246.93 25.16 124 2034.00 37.36 0
Ca2-2,3,15 2287.67 9.71 0 2110.00 7.77 0
Ca2-3,5,15 3435.97 9.32 171 1870.10 45.57 0
Ca2-6,4,15 3657.30 1.01 151 2388.40 34.69 0
Ca3-2,3,15 3506.63 1.41 133 2485.50 29.12 0
Ca3-3,5,15 5027.43 12.93 372 1629.00 67.60 0
Ca3-6,4,15 5165.10 5.13 334 2546.53 50.70 0
Ca4-2,3,15 2456.93 7.64 0 2377.38 3.24 0
Ca4-3,5,15 3314.70 21.64 169 2133.22 35.64 0
Ca4-6,4,15 2900.53 6.92 116 2108.10 27.32 0
Ca5-2,3,15 3214.30 7.99 110 2212.03 31.18 0
Ca5-3,5,15 4952.87 11.26 224 2209.03 55.40 0
Ca5-6,4,15 3767.30 8.77 195 2011.00 46.62 0
Cb1-2,3,15 2214.00 11.46 0 2214.00 0.00 0
Cb1-3,5,15 1914.40 15.62 0 1914.40 0.00 0
Cb1-6,4,15 2107.73 8.33 0 2107.73 0.00 0
Cb2-2,3,15 1834.70 50.00 0 1834.70 0.00 0
Cb2-3,5,15 1871.00 14.76 0 1871.00 0.00 0
Cb2-6,4,15 1922.37 3.92 0 1922.37 0.00 0
Cb3-2,3,15 2176.20 35.62 0 2176.20 0.00 0
Cb3-3,5,15 1741.23 26.19 0 1717.23 1.38 0
Cb3-6,4,15 1958.00 6.72 0 1958.00 0.00 0
Cb4-2,3,15 2297.60 16.06 0 2297.60 0.00 0
Cb4-3,5,15 1848.53 25.20 0 1848.53 0.00 0
Cb4-6,4,15 2043.77 8.72 0 2043.77 0.00 0
Cb5-2,3,15 2229.60 3.60 0 2229.60 0.00 0
Cb5-3,5,15 2166.17 27.23 0 2166.17 0.00 0
Cb5-6,4,15 2488.53 9.18 0 2488.53 0.00 0
Cc1-2,3,15 4989.93 6.14 161 4852.63 2.75 140
Cc1-3,5,15 4102.73 2.15 54 4062.17 0.99 50
Cc1-6,4,15 5278.93 12.45 128 4771.87 9.61 138
Cc2-2,3,15 4939.33 7.90 115 4939.33 0.00 115
Cc2-3,5,15 4627.83 1.40 120 4394.47 5.04 119
Cc2-6,4,15 5468.07 6.05 123 4790.83 12.39 161
Cc3-2,3,15 5335.10 11.25 114 5311.03 0.45 114
Cc3-3,5,15 4663.03 4.46 147 4510.87 3.26 201
Cc3-6,4,15 5532.70 3.85 232 5457.60 1.36 232
Cc4-2,3,15 4640.63 5.04 129 4616.20 0.53 202
Cc4-3,5,15 5554.83 2.36 306 5554.13 0.01 313
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Table 13 continued from previous page
Cc4-6,4,15 6168.00 2.28 175 6109.70 0.95 272
Cc5-2,3,15 5755.40 17.99 127 5753.67 0.03 127
Cc5-3,5,15 5238.67 6.54 151 5184.57 1.03 178
Cc5-6,4,15 5548.50 6.55 253 5530.21 0.33 263
Cd1-2,3,15 4641.17 7.76 171 4640.20 0.02 171
Cd1-3,5,15 5048.30 4.73 171 5019.83 0.56 196
Cd1-6,4,15 5356.30 6.10 215 4985.60 6.92 218
Cd2-2,3,15 4127.40 3.96 136 4126.57 0.02 135
Cd2-3,5,15 4048.03 3.77 172 3982.87 1.61 180
Cd2-6,4,15 5205.17 3.37 174 5100.00 2.02 181
Cd3-2,3,15 5962.50 2.60 262 4962.37 16.77 173
Cd3-3,5,15 3777.47 7.15 108 3509.07 7.11 116
Cd3-6,4,15 4879.17 3.45 204 4605.23 5.61 215
Cd4-2,3,15 5152.50 2.67 315 5135.57 0.33 313
Cd4-3,5,15 4446.83 1.89 189 4423.23 0.53 181
Cd4-6,4,15 5941.80 10.41 231 5489.63 7.61 229
Cd5-2,3,15 4467.23 2.29 151 4444.10 0.52 147
Cd5-3,5,15 5203.53 5.15 184 5201.83 0.03 180
Cd5-6,4,15 5173.13 6.50 173 5172.83 0.01 173
Averages 9.97 123.90 9.93 90.55

Table 13: Complete results stochastic vs deterministic problem on instances with demand
correlation

Instance
CPLEX PH

ub time (s) outsourced Best UB dif. Ub outsourPH
Ca1-2,3,15 2450.9 15.34 0 2450.03 0.04 0
Ca1-3,5,15 3239.7 86.33 159 2081.47 35.75 0
Ca1-6,4,15 3883.57 85.67 266 2362.37 39.17 0
Ca2-2,3,15 2288.97 18.03 0 2288.97 0.00 0
Ca2-3,5,15 3731.47 17.23 201 1937.6 48.07 0
Ca2-6,4,15 3532.57 2.58 172 2398.77 32.10 0
Ca3-2,3,15 3378.13 9.1 124 2568.27 23.97 0
Ca3-3,5,15 2768.27 29.68 132 1703.87 38.45 0
Ca3-6,4,15 3311.83 12.78 122 2535.1 23.45 0
Ca4-2,3,15 2451.23 11.01 0 2395.37 2.28 0
Ca4-3,5,15 2066.7 85.67 0 1911.3 7.52 0
Ca4-6,4,15 3569.27 12.84 236 2061.13 42.25 0
Ca5-2,3,15 5149.63 41.29 402 2220.2 56.89 0
Ca5-3,5,15 5368.9 13.69 401 2341.2 56.39 0
Ca5-6,4,15 3428.33 15.95 198 2108.87 38.49 0
Cb1-2,3,15 2220.17 27.38 0 2214 0.28 0
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Table 14 continued from previous page
Cb1-3,5,15 1911.77 85.62 0 1911.77 0.00 0
Cb1-6,4,15 2104.97 21.01 0 2104.97 0.00 0
Cb2-2,3,15 1838.9 36.11 0 1838.9 0.00 0
Cb2-3,5,15 1875.53 85.63 0 1875.53 0.00 0
Cb2-6,4,15 1918.8 10.2 0 1918.8 0.00 0
Cb3-2,3,15 2176.73 85.62 0 2176.73 0.00 0
Cb3-3,5,15 1743.07 63.37 0 1743.07 0.00 0
Cb3-6,4,15 1948.83 24.48 0 1948.83 0.00 0
Cb4-2,3,15 2305 32.37 0 2305 0.00 0
Cb4-3,5,15 1852.5 85.63 0 1852.5 0.00 0
Cb4-6,4,15 2048.6 17.1 0 2043.77 0.24 0
Cb5-2,3,15 2224.17 8.27 0 2224.17 0.00 0
Cb5-3,5,15 2165 51.73 0 2165 0.00 0
Cb5-6,4,15 2491.7 16.19 0 2491.7 0.00 0
Cc1-2,3,15 5861.53 28.63 375 4853.07 17.20 350
Cc1-3,5,15 4329.97 4.44 199 4197.03 3.07 227
Cc1-6,4,15 6052.33 31.72 298 4844.63 19.95 375
Cc2-2,3,15 5380.2 25.48 326 5021.93 6.66 296
Cc2-3,5,15 4958.03 7.9 260 4394.47 11.37 200
Cc2-6,4,15 5737.77 8.97 210 4790.83 16.50 190
Cc3-2,3,15 4897.57 25.42 205 4888.47 0.19 170
Cc3-3,5,15 4347.07 11.99 122 4178.3 3.88 172
Cc3-6,4,15 4923.67 9.05 131 4763.67 3.25 176
Cc4-2,3,15 4359.77 9.35 128 4358.07 0.04 118
Cc4-3,5,15 4531.3 4.88 209 4516.53 0.33 129
Cc4-6,4,15 6085.07 5.88 193 5819.23 4.37 256
Cc5-2,3,15 6514.1 34.44 315 5753.67 11.67 288
Cc5-3,5,15 5672.73 11.12 284 5193.97 8.44 236
Cc5-6,4,15 5185.87 13.11 207 5055.53 2.51 222
Cd1-2,3,15 4434.77 16.01 245 4430.83 0.09 224
Cd1-3,5,15 4893.4 14.17 165 4861.43 0.65 162
Cd1-6,4,15 4877.63 13.84 222 4538.73 6.95 200
Cd2-2,3,15 4152.9 9.18 165 4128.23 0.59 223
Cd2-3,5,15 3741.43 5.23 132 3677.03 1.72 147
Cd2-6,4,15 4892.3 6.69 291 4777.1 2.35 147
Cd3-2,3,15 5022.37 8.3 238 4962.37 1.19 342
Cd3-3,5,15 4389.13 9.91 256 3758.07 14.38 260
Cd3-6,4,15 4636.83 7.91 239 4325.8 6.71 234
Cd4-2,3,15 4722.3 5.71 273 4720.3 0.04 234
Cd4-3,5,15 4682.87 4.59 85 4467.63 4.60 239
Cd4-6,4,15 5017.27 26.39 145 4638.17 7.56 230
Cd5-2,3,15 3972 5.92 193 3970.97 0.03 228
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Table 14 continued from previous page
Cd5-3,5,15 4754.73 18 285 4708.97 0.96 141
Cd5-6,4,15 6002.07 13.2 51 5172.83 13.82 300
Averages 25.09 147.67 10.27 111.93

Table 14: Complete results stochastic vs deterministic problem on instances with no
demand correlation
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