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Abstract. In this paper, we study the stochastic casualty response planning problem (CRP) 
in the context of providing treatments to multiple classes of patients with different types of 
injuries. In this general setting, both patients’ demands and hospitals’ bed capacity are 
considered uncertain. To the best of our knowledge, this is the first time that this problem is 
solved. We propose a novel two-stage stochastic mixed-integer programming model which, 
in the first stage, determines the location of the Alternative Care Facilities (ACFs) and 
allocates different resources, such as rescue vehicles, medical equipment, and physicians, 
to them. In the second stage, this model helps decide how to allocate patients with multiple 
injuries to either ACFs or hospitals, considering their care itineraries and available 
resources. Moreover, it recommends potential patient transfers between ACFs and hospitals 
when required. Furthermore, we introduce an alternative two-stage stochastic model that is 
more compact than the first. This formulation significantly reduces solution times. We also 
provide an equivalency proof between the two formulations. As the solution method, we 
develop both the L-shaped algorithm, a pure cutting-plane method tailored to our stochastic 
mathematical model, and the Benders Branch-and-Cut (B&C) algorithm. To further enhance 
the efficiency of these algorithms, we develop a wide range of acceleration techniques, 
including Benders dual decomposition, Lagrangian dual decomposition, a multi-cut 
reformulation, Pareto-optimal (PO) cuts, and the inclusion of lower bounding functional valid 
inequalities. We carry out extensive computational experiments demonstrating that these 
algorithmic enhancements dramatically improve the performance of the B&C algorithm. The 
average optimality gap reduces from 7898% in the simple B&C algorithm to 0.92% in the 
enhanced algorithm. We also present a case study from the 2011 Van earthquake in Turkey 
to demonstrate the applicability and efficiency of our optimization methods. 
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1. Introduction
Catastrophic health events (CHEs) are natural or man-made disasters that result in large num-
bers of injured individuals and put healthcare systems under pressure to take emergency actions.
After CHEs, injured people require immediate medical attention, and their life often depends on
a quick reaction from emergency healthcare providers. As a result, efficient resource management
in the initial few hours following a disaster is crucial to enhance the casualty survival rate. Casu-
alty response planning refers to the process of collaboration between organizations to efficiently
manage limited resources to help survivors in affected areas and transfer them to hospitals. There
have been numerous devastating natural disasters in the past few decades, which have motivated
many researchers to work on casualty response planning problems. Notably, Turkey’s 2023 earth-
quake claimed 59,259 lives, Haiti’s 2010 earthquake resulted in a staggering 250,000 deaths, and
the 2004 South Asia tsunami took 227,898 lives, marking these events as some of history’s most
devastating natural disasters.

In the context of CRP, using Alternative Care Facilities (ACFs) is one of the most common ways
to diagnose an overwhelming number of casualties and treat them after a disaster. ACFs are set
up as temporary healthcare facilities with the primary objective of delivering essential care during
times of heightened demand, such as in the aftermath of a natural disaster. Stadiums, parks,
universities, and schools are some instances of locations where ACFs can be established (Caunhye
and Nie 2018). The advantages of using ACFs will not realize without a suitable location-allocation
plan. For example, during the 1995 Oklahoma City bombing, emergency medical personnel set up
an ACF in the form of a triage center. However, they could not assess almost half of the victims
because the triage center was initially located too far from the assault site (Larson, Metzger, and
Cahn 2006).

The literature on CRP can be categorized into three main groups, scientific papers that have
proposed either deterministic, stochastic, or robust optimization methods to solve this type of
problem. Deterministic models, while straightforward, have a notable drawback. They may yield
infeasible plans or lead to unexpected shortage costs in practice due to ignoring the uncertainty
of demands and hospitals’ capacity. In contrast, papers in the second category offer more prac-
tical reliability by addressing uncertainty through scenarios. In the context of the CRP problem
under consideration, the uncertain parameters’ actual values become known gradually over time.
Nevertheless, healthcare organizations cannot afford to wait until they have gathered all the rele-
vant information before developing an effective plan for responding to casualties. This is because
resources, whether renewable or not, may no longer be accessible if they are not procured in
advance. Additionally, delaying the acquisition of these resources could lead to increased costs.
On the other hand, postponing the operational decision-making process will result in better deci-
sions, considering there will be less uncertainty regarding the parameter values. Consequently, we
use a two-stage stochastic model.
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A key advantage of robust models is their ability to produce solutions that are robust to worst-
case scenarios. Nevertheless, they tend to be overly risk-averse and may not perform well in
practical applications. This is because they do not take into account probability distributions and
optimization of the expected objective function, which are critical factors for effective response
planning in dynamic healthcare scenarios. While we shortly review major works in the area, we
refer interested readers to the survey by Farahani et al. (2020) for a more comprehensive literature
review.

In the first category, many researchers assumed that all parameters are deterministic and given
(e.g., see Apte, Heidtke, and Salmerón (2015), Caunhye, Li, and Nie (2015), Liu, Cui, and Zhang
(2019), Setiawan, Liu, and French (2019)). Apte, Heidtke, and Salmerón (2015) developed a
mixed-integer programming model to identify the best locations for casualty collection points and
to allocate vehicles, resources, and injured people to them, in order to maximize the number of
survivors. Caunhye, Li, and Nie (2015) offered a location-allocation optimization model to mini-
mize the total transportation time, which simultaneously locates ACFs, prioritizes casualties, and
considers self-evacuees effects. Setiawan, Liu, and French (2019) formulated three mathematical
programming models to take into account different levels of coordination for the distribution of
relief resources and the allocation of vehicles to minimize the number of victims. Liu, Cui, and
Zhang (2019) considered ambulances and helicopters to move casualties. Their model determines
the optimal locations for temporary healthcare services and recommends the allocation of medical
services to injured people.

Although all the above models have remarkably contributed to the area of CRP, the effect of
uncertainty in catastrophic health events cannot be ignored since it significantly increases the
complexity of CRPs. Therefore, many researchers in the literature have proposed stochastic opti-
mization (Caunhye and Nie 2018, Alizadeh et al. 2019, Oksuz and Satoglu 2020, Chang et al.
2023) and robust optimization models (Hu et al. 2019, Li, Zhang, and Yu 2020, Sun, Wang, and
Xue 2021, Yin et al. 2023). Caunhye and Nie (2018) proposed a three-stage stochastic program-
ming model which determines the location of ACFs in the first stage by considering self-evacuees’
movement. Then, in the second and third stages, the model addresses the assignment of casu-
alties to triage and treatment, respectively. Alizadeh et al. (2019) proposed a two-stage robust
stochastic optimization model with uncertain levels of injuries. They demonstrated that incor-
porating uncertainty into strategic-level decision-making leads to better design outcomes for the
casualty collection points. Oksuz and Satoglu (2020) developed a two-stage stochastic program-
ming model for locating ACFs in the event of an earthquake. Their stochastic model aimed to
minimize establishing ACFs and casualties’ transportation costs. They incorporated innovative
elements into their model by accounting for triage and α-reliability constraints. α-reliability con-
straints are employed to guarantee a predefined level of reliability (α) within the solutions. The
reliability concept ensures that the solution meets all demands in scenarios that encompass at
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least 100α percent of all possible outcomes. Most recently, Chang et al. (2023) developed a strat-
egy to determine the locations of ACFs and efficiently allocate the limited resources of emergency
medical services (EMS) for quick casualty transportation to suitable hospitals, thereby enhanc-
ing casualty survival rates. They introduced a novel tow-stage simulation-optimization algorithm
to tackle the ACF location and EMS resource allocation problem, which combines binary and
integer variables. The primary objective was to minimize the expected time for complete casualty
delivery from the disaster area to hospitals.

In the context of robust optimization, Hu et al. (2019) paid attention to diurnal population
shifts in urban areas and developed a multi-objective robust optimization model. They proposed
an accelerated Benders decomposition (BD) algorithm to solve large-size problems. While all
previous works covered only the primary disaster, Li, Zhang, and Yu (2020) took secondary shocks
into account by offering a scenario-based robust programming model. It is worth mentioning that
they assumed that all patients have the same medical needs and belong to the same category.
However, CRPs are significantly more complex since patients have multiple types of injuries
resulting in different categories of patients with needs for different surgical specialties.Sun, Wang,
and Xue (2021) introduced a bi-objective robust optimization model for strategic and operational
response within a three-level rescue chain comprising casualty clusters, temporary facilities, and
general hospitals. Their approach incorporated uncertainties related to relief supply distribution,
demands, and transportation times. To address this model, they used Lagrangian relaxation and
e-constraint techniques. Yin et al. (2023) presented a distributionally robust model for complex
disaster response, involving facility location, supply inventory, and evacuation planning. Their
solution utilized a branch-and-benders-cut algorithm.

Various injuries after CHEs can significantly impact the health and survival of individuals
affected by the disaster. For example, earthquakes can cause a variety of injuries, including
fractures, lacerations, nerve injuries, and burns (Del Papa et al. 2019). These injuries can be
life-threatening and may require immediate medical attention. Additionally, the combination of
different injuries can increase the risk of infection, blood loss, and other complications. Lu-Ping
et al. (2012) reported that after the Wenchaun earthquake in 2008, 45.8%, 9%, and 1.5% of injured
people had two, three, and more than four injuries, respectively. Del Papa et al. (2019) found
that 52% of people injured in the 2009 L’Aquila earthquake had multiple injuries. In the 2013
Lushan earthquake in China, this number was 55.7% (Kang et al. 2015). While it is common for
patients to have multiple injuries after disasters, none of the studies reviewed earlier have taken
this into account. This is an important point to consider in casualty response planning since it
can significantly affect the allocation of medical resources and patients to ACFs. Ignoring the
variety of injuries and classifying patients only as a high or low priority can result in sending
them to ACFs that are not appropriately equipped for any of their specific injuries.

In addition to multiple injuries, there are several important operational details that have yet to
be addressed in the literature. For example, different patients have different needs for renewable
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and non-renewable resources. Therefore, we have to plan ahead for assigning physicians to ACFs
accordingly. For instance, we cannot send a patient with a fracture injury to an ACF that does
not have an orthopedic doctor. On the other hand, non-renewable resources such as medical
supplies and drugs also play an important role in the functioning of hospitals and ACFs. For
example, Kirschner wires (K-wires) are small, thin, metal pins commonly used in orthopedic
surgeries. However, their demand may spike during an emergency, and it is impossible to perform
orthopedic surgery without them. This highlights the importance of proper resource allocation in
CRPs. Additionally, rescue vehicles are crucial for evacuating people from hazardous locations and
transporting emergency personnel and supplies. A suitable vehicle allocation after a disaster helps
to ensure that emergency medical services personnel and supplies reach the affected population as
quickly and efficiently as possible. It can also improve the effectiveness of the emergency response
and help save more lives. Although there is a rich literature on CRPs, to the best of our knowledge,
no paper has addressed patients with multiple types of injuries and the above mentioned features
simultaneously. The main contributions of this research are as follows.

• For the first time, we investigate the stochastic casualty response planning problem concern-
ing treating multiple patient classes with varying injury types. Our approach also involves
assigning the appropriate type of physicians, non-renewable resources, and rescue vehicles
to ACFs based on each patient’s specific injuries.

• We propose a primary two-stage stochastic integer programming model to formulate this
problem. Then, we offer an alternative two-stage stochastic formulation, which is more com-
pact than the first. As a result, the second model is significantly more efficient. We also
present a proof establishing the equivalence between the two formulations.

• We develop an L-shaped algorithm and a B&C algorithm to solve our most efficient stochas-
tic programming model. We significantly improve the algorithms by using the Benders
dual decomposition (BDD), Lagrangian dual decomposition (LDD), a multi-cut reformu-
lation, Pareto-optimal (PO) cuts, and the inclusion of lower bounding functional (LBF)
valid inequalities. These enhancements improve the overall performance of the proposed
algorithms.

• We present extensive computational results for the CRP when dealing with multiple injuries
for each patient. In our computational experiments, we compare the proposed two-stage
stochastic programming models and evaluate the performance of the proposed decomposition
algorithms and the effect of the developed enhancements.

• We also evaluate the efficiency of our best model and algorithm in an earthquake case study
from Turkey.

The structure of this paper is organized as follows. In Section 2, we describe the problem
setting. Then, we present the original and improved two-stage stochastic programming models in
Sections 3 and 4, respectively. Section 5 details the proposed L-shaped algorithm and explains the
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various enhancement techniques we use to improve the algorithm’s performance. Our extensive
computational results on the CRP are presented in Section 6. We also include a case study in
Section 7. Finally, we draw conclusions and discuss future directions in Section 8.

2. Problem Description
Generally, disaster management includes four main phases: mitigation, preparedness, response,
and recovery. Mitigation involves understanding vulnerabilities to potential hazards and imple-
menting protective measures to reduce risk and increase resilience. Preparedness involves evalu-
ating plans to save lives and coordinate response efforts before a disaster strikes. The primary
goal is to achieve an adequate state of preparedness for emergency response through initiatives
that strengthen the technical and managerial capabilities of governments, organizations, and com-
munities. The response phase aims to provide immediate assistance to victims, distribute relief
supplies, and evacuate affected populations to safe areas. The recovery phase occurs after the
emergency and focuses primarily on activities such as debris removal, rebuilding damaged struc-
tures, and restoring critical infrastructure. Mitigation and preparedness occur before a tragedy,
while response and recovery occur thereafter (Farahani et al. 2020).

The problem that we study in this paper deals with the response phase, which occurs immedi-
ately post-disaster. In our proposed models, we focus on solving a static version of the problem,
where decisions are aggregated over a fixed time horizon (Caunhye and Nie 2018). The time hori-
zon for the decision-making environment begins once the CHEs commence and continues until
all affected individuals have been successfully evacuated. The nature of the disaster determines
the duration of this time frame. Our study assumes that the critical period, which includes the
time during which victims are transported to hospitals or ACFs, is constrained within this pre-
determined time horizon, which is set at 7 days. Therefore, our primary objective is to design the
appropriate medical care supply to meet the overall demand observed during the post-disaster
response phase. In this problem, we make three important decisions after a CHE that includes:

1. Determining the location of ACFs,
2. Allocating renewable and non-renewable medical resources such as physicians, rescue vehi-

cles, medications, and medical equipment to ACFs, and
3. Transporting casualties to ACFs and hospitals.
The first two sets of decisions are made immediately after the disaster based on the initial

information received about the intensity and geographical dispersion of the disaster. Therefore, we
have considered these two sets of decisions in the first stage of our proposed two-stage stochastic
programming models. However, the third set of decisions is made after having more information
about uncertain parameters, including 1) the number of casualties with different injuries in various
areas and 2) the active capacities of hospitals that might be different from their nominal values
because of damages to the infrastructure and the normal functioning of hospitals. Therefore, we
consider the transportation of casualties to ACFs and hospitals as second-stage decision variables.
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We assume that emergency responders will perform a triage and primary survey in the disas-
ter field. This primary survey follows a well-established protocol, represented by the mnemonic
A.B.C.D.E., which stands for Airway, Breathing, Circulation, Disability, and Environment. The
survey is designed to swiftly identify and address life-threatening conditions while determining
the necessary type and extent of medical interventions. For instance, consider a scenario where
a victim is alert, able to speak, oriented, and demonstrating movement in all extremities. In
such cases, we can confidently conclude that their airway is clear, oxygen is reaching the brain
adequately, and there is no significant central neurological injury (Sever, Vanholder, and of ISN
Work Group on Recommendations for the Management of Crush Victims in Mass Disasters 2012).
Please note that while we briefly discuss the triage and primary survey here, a detailed examina-
tion of this process is outside the scope of this article. Our primary focus is on outlining the care
itinerary for high-priority and low-priority casualties within the healthcare network.

We categorize patients into two distinct groups: high-priority and low-priority casualties. Each
patient group follows a different care itinerary within the healthcare network. High-priority
patients are those with breathing problems, significant bleeding, or mental issues that prevent
them from following commands. They are prioritized for immediate transportation to hospitals,
where they are considered fully treated upon arrival. We assume that hospitals have limited vehi-
cles and bed capacities but are fully equipped with the necessary renewable and non-renewable
resources to treat patients with diverse injuries.

Low-priority patients, however, have a different itinerary. They may need to go through more
than one ACF before reaching the status of “fully treated.” Although Caunhye and Nie (2018)
assumed that low-priority patients are only treatable at ACFs, we recognize the need for a more
adaptable and flexible approach to disaster response. As such, we have considered a refinement
to their model, allowing for low-priority patients to initially receive care at ACFs while retaining
the option to refer them to either another ACF or a hospital if their condition necessitates further
treatment that cannot be provided at the initial ACF. This adjustment addresses the critical
issue of hospital over-occupation, particularly in the immediate aftermath of a catastrophic event,
which becomes even more pronounced when accounting for casualties who independently seek
treatment at hospitals without assistance from emergency responders. Their actions can disrupt
response planning and strain valuable resources that could have been allocated to more severe
cases (Runge and Buddemeier 2009). To implement this, first, we transfer low-priority patients to
ACFs for the appropriate care and stabilization of their conditions. Their status as fully treated
is granted only when the necessary physicians and resources have addressed all of their injuries.
This assumption introduces complexity, as ACFs may not always have the essential physicians
and medical resources available. In such cases, patients may receive partial treatment at one ACF
before being transferred to another ACF or hospital for further care.

Effective management of casualty flows throughout the network is a central aspect of our
problem. This includes making decisions about the assignment of patients to specific facilities
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based on their facility care itinerary. This intricate process involves coordinating the movement
of patients to ensure timely access to the necessary care and resources, even when ACFs may lack
certain required physicians and medical supplies. Our research focuses on optimizing these facility
care itineraries, addressing the diverse nature of patient conditions and resource availability.

In addition to the previously defined patient classification, we may have patients with multiple
injuries, further underscoring the need for a flexible approach to care. Therefore, we may need
more than one type of physician. Regarding the allocation of physicians to ACFs in the second
decision set, we mainly need four types of physicians in order to cover all common injuries after
disasters: (i) Orthopedic physicians for fractures, crushes, and other similar injuries, (ii) Wound
specialists for lacerations, contusions, and open wounds; (iii) Neurologists for nerve injuries,
and (iv) Plastic physicians or dermatologists for burns (Tanaka et al. 1999, Doocy et al. 2013).
Physicians require a certain amount of resources to be operational, such as their medical kit and
other essential equipment. An injured person may have any combination of the aforementioned
injuries. Regarding the allocation of non-renewable resources to ACFs in the second decision set,
we consider four classes of them, including drugs, general surgery instruments, orthopedic surgery
instruments, and specialized surgery instruments, to treat all mentioned injuries (World Health
Organization 2019). These resources must be supplied by hospitals to ACFs using their limited
supply capacities.

The first-stage objective function minimizes the total operational cost of the system, including
the establishment cost of ACFs and the transportation cost of non-renewable medical resources
from hospitals to ACFs. Moreover, the second-stage objective function minimizes the transporta-
tion time of patients and the penalty corresponding to patients that are not fully recovered due
to limited resources in ACFs and hospitals and also the limited number of vehicles.

3. Primary Two-Stage Stochastic Integer Programming Model (P1)
We propose a two-stage stochastic integer programming model for the CRP defined in Section
2. As explained earlier in Section 2, first-stage decisions involve the deployment of the main
resources that will be used to provide the medical response for the considered horizon. These
crucial decisions encompass:

• Opening ACFs in potential locations.
• Assigning non-renewable medical resources from hospitals to ACFs.
• Allocating vehicles of different types and physicians with various specialties to ACFs.
Then, after the realization of uncertain demands and hospital bed capacities, in the second-

stage model, we determine the transportation of casualties with varying injuries from different
demand points to ACFs and hospitals based on their respective itineraries. High-priority patients
receive top priority, ensuring immediate transportation to hospitals, where they are promptly
deemed “fully treated” upon arrival. On the other hand, low-priority patients follow a distinct
itinerary, which may involve visits to more than one ACF before achieving the “fully treated”
status. In the following, we present the first- and second-stage models separately.
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3.1. First-Stage Model

We use the following notation to formulate the first-stage model:
Sets:
I : The set of potential locations i ∈ I for opening ACFs.
H : The set of existing hospitals h ∈H.
M : The set of vehicle types m ∈M.
J : The set of possible injuries j ∈ J.
Ji : The subset of injuries that can be treated at ACF i ∈ I, where Ji ⊆ J.
K : The set of non-renewable resources k ∈K such as medications.

Parameters:
fi : Fixed cost of opening an ACF at location i.
nACF

m : The available number of vehicles of type m that can be assigned to ACFs.
nspec

j : The available number of physicians with specialty j.
cInv

ik : The inventory capacity for the non-renewable resource k for an ACF located in
i ∈ I.

cSupply
hk : The maximum supply capacity of non-renewable resource k from hospital h.

ϱk : Procurement cost of non-renewable medical resource k to be purchased in advance
for supplying ACFs by hospitals for the emergency response horizon.

First stage variables:
xi : 1 if an ACF is opened at location i; 0 otherwise.
ϑmi : The number of vehicles of type m assigned to ACF at location i.
υij : The number of physicians with specialty j assigned to ACF at location i (Note

that ACF at location i ∈ I should be able to treat injury type j, i.e., j ∈ Ji).
rihk : The number of non-renewable resources k assigned to ACF at location i from

hospital h.
Using the above notation, we formulate the first-stage model as follows:

min
x,ϑ,υ,r

(∑
i∈I

fixi +
∑
i∈I

∑
h∈H

∑
k∈K

ϱkrihk + Q(x,ϑ,υ,r)
)

(1)

Subject to:
∑
i∈I|
j∈Ji

υij ≤ nspec
j j ∈ J (2)

∑
i∈I

ϑmi ≤ nACF
m m ∈M (3)∑

h∈H

rihk ≤ cInv
ik xi i ∈ I, k ∈K (4)∑

i∈I

rihk ≤ cSupply
hk h ∈H, k ∈K (5)

ϑmi ≤ nACF
m xi i ∈ I,m ∈M (6)

υij ≤ nspec
j xi i ∈ I, j ∈ Ji (7)

xi ∈ {0,1} i ∈ I (8)

ϑmi,rihk, υij ∈Z+ i ∈ I, h ∈H,m ∈M, k ∈K, j ∈ Ji (9)

Objective function (1) includes the total fixed cost of opening ACFs, the procurement cost of
non-renewable medical resources, and the second-stage cost Q(x,ϑ,υ,r). Here, Q(x,ϑ,υ,r) is
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the expected second-stage cost that is evaluated in the second-stage problem presented in Section
3.2. We have Q(x,ϑ,υ,r) = Eω∈Ω[Q(x,ϑ,υ,r, ξ(ω))] where Eω∈Ω[.] calculates the expected value
over outcome ω ∈ Ω and ξ(ω) is the vector of uncertain parameters including demands and
hospitals’ bed capacity in outcome ω. Constraint (2) indicates that the number of physicians with
any specialty j assigned to ACFs must be less than or equal to the number of available physicians
of the same type. Constraint (3) ensures that the total number of any vehicle of type m assigned
to different ACFs cannot exceed the corresponding available number of the same type of vehicles.
Constraints (4) and (5) imply the restrictions on the inventory and supply capacity levels of ACFs
and hospitals, respectively. Also, according to constraints (6) and (7), we can allocate vehicles
and non-renewable medical resources only to ACFs that have been established. Constraints (8)
and (9) represent integrality constraints for the first-stage variables.

3.2. Second-Stage Model

To formulate the second-stage model, we use the following notation:

Sets:
L : The set of demand locations l ∈L.
P : The set of patient classes. This set is the power set of the injury set J meaning that each

member of this set is a subset of the injury set. Each member of P represents a class of
patients with different injuries. For example, {1,3,4} ∈ P represents a class of patients
that have the specific injuries 1, 3, and 4.

J′
p : The subset of injuries of patient type p ∈P.

Ω : The set of all possible outcomes (events) ω ∈ Ω.

Parameters:
cACF

i : The bed capacity of ACF at location i.
chospital

h (ω): The bed capacity of hospital h when the outcome ω is observed.
crescue

m : The capacity of the vehicle of type m, measured in terms of transportation time.
It represents the total time that a vehicle can spend transporting patients over
the considered horizon, multiplied by the number of patients they can carry each
time.

dpl(ω) : The number of patients type p realized in demand location l when the outcome ω
is observed.

αpl : The percentage of patients type p who are high-priority and must be transported
from demand location l to a hospital immediately.

dlow
pl (ω) : The number of low-priority patients type p realized in demand location l in out-

come ω; i.e., dlow
pl (ω) = ⌊((1 − αpl)dpl(ω)) + 0.5⌋ ∀p ∈P, l ∈L, ω ∈ Ω.

dhigh
pl (ω) : The number of high-priority patients type p realized in demand location l in

outcome ω; i.e., dhigh
pl (ω) = dpl(ω) − dlow

pl (ω) ∀p ∈P, l ∈L, ω ∈ Ω.
nhospital

mh : The available number of vehicles of type m in hospital h.
tj : The duration of treatment for a single injury type j.
τj : The available working time of a physician with specialty j in the considered hori-

zon.
πij : Estimated travel time (distance) between point i and point j (i, j ∈ I∪H∪L).
gjk : The amount of non-renewable medical resource k required for the treatment of a

single injury type j.
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ρlow
pl : Penalty of the unsatisfied low-priority demand type p at demand location l.

ρhigh
pl : Penalty of the unsatisfied high-priority demand type p at demand location l, where

ρlow
pl ≪ ρhigh

pl .
ξ(ω) : The vector of uncertain parameters including chospital

h (ω), dhigh
pl (ω), and dlow

pl (ω)
when the outcome ω is observed.

Second stage variables:

qplim(ω) : The number of patients type p moved by a vehicle of type m from demand location
l to ACF i when the outcome ω is observed.

upp′ihm(ω) : The number of patients type p′, which was previously classified as type p, moved
by a vehicle of type m from ACF i to hospital h when the outcome ω is observed.

ζplhm(ω) : The number of patients type p moved by a vehicle of type m from demand location
l to hospital h when the outcome ω is observed.

ηpp′ii′m(ω) : The number of patients type p′, which were previously classified as type p, moved
by a vehicle of type m from ACF i to ACF i′ when the outcome ω is observed.

µlow
pl (ω) : Quantity of unsatisfied low-priority demand type p at demand location l when the

outcome ω is observed.
µhigh

pl (ω) : Quantity of unsatisfied high-priority demand type p at demand location l when
the outcome ω is observed.

σpi(ω) : Patients type p who are fully treated at ACF i when the outcome ω is observed
(Note that patient class p should be fully treatable at ACF i).

Based on the given notation, we formulate the second-stage model for each outcome ω ∈ Ω as
follows:

Q(x,ϑ,υ,r, ξ(ω)) = min
q,u,η,ζ,

µlow,µhigh,σ

∑
p∈P

∑
m∈M

(∑
l∈L

∑
i∈I

πliqplim(ω) +
∑
p′⊂p

p′ ̸=∅

∑
i∈I

∑
h∈H

πihupp′ihm(ω)

+
∑
l∈L

∑
h∈H

πlhζplhm(ω) +
∑
p′⊂p

p′ ̸=∅

∑
i∈I

∑
i′∈I
i′ ̸=i

πii′ηpp′ii′m(ω)
)

+
∑
p∈P

∑
l∈L

(
ρlow

pl µlow
pl (ω) + ρhigh

pl µhigh
pl (ω)

)
(10)

Subject to:

∑
i∈I

∑
m∈M

qplim(ω) + µlow
pl (ω) = dlow

pl (ω) p ∈P, l ∈L (11)∑
h∈H

∑
m∈M

ζplhm(ω) + µhigh
pl (ω) = dhigh

pl (ω) p ∈P, l ∈L (12)∑
l∈L

∑
m∈M

qplim(ω) +
∑

p′∈P|
p⊂p′,p′ ̸=∅

∑
i′∈I\{i}

∑
m∈M

ηp′pi′im(ω) =

σpi(ω) +
∑

p′⊂p|
(p\p′)⊆Ji,p′ ̸=∅

∑
h∈H

∑
m∈M

upp′ihm(ω)

+
∑

p′⊂p|
(p\p′)⊆Ji,p′ ̸=∅

∑
i′∈I\{i}

∑
m∈M

ηpp′ii′m(ω) i ∈ I, p ∈P (13)

∑
p∈P

∑
l∈L

∑
m∈M

ζplhm(ω) +
∑
p∈P

∑
p′∈P|
p⊂p′

∑
i∈I

∑
m∈M

up′pihm(ω) ≤ chospital
h (ω) h ∈H (14)
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∑
p∈P

∑
l∈L

∑
m∈M

qplim(ω) +
∑
p∈P

∑
p′∈P|
p⊂p′

∑
i′∈I\{i}

∑
m∈M

ηp′pi′im(ω) ≤ cACF
i xi i ∈ I (15)

tj

(∑
p∈P|
j∈p

σpi(ω) +
∑
p∈P|
j∈p

∑
p′⊂p|
j /∈p′

∑
h∈H

∑
m∈M

upp′ihm(ω)

+
∑
p∈P|
j∈p

∑
p′⊂p|
j /∈p′

∑
i′∈I|
i′ ̸=i

∑
m∈M

ηpp′ii′m(ω)
)

≤ τjυij i ∈ I, j ∈ Ji (16)

∑
p∈P

∑
l∈L

πlhζplhm(ω) ≤ crescue
m nhospital

mh m ∈M, h ∈H (17)∑
p∈P

∑
l∈L

πliqplim(ω) +
∑
p∈P

∑
p′⊂p|
p′ ̸=∅

∑
h∈H

πihupp′ihm(ω)

+
∑
p∈P

∑
p′⊂p|
p′ ̸=∅

∑
i′∈I\{i}

πii′ηpp′ii′m(ω) ≤ crescue
m ϑmi m ∈M, i ∈ I (18)

∑
p∈P

∑
j∈{p∩Ji}

(
gjk

(
σpi(ω) +

∑
p′⊂p|
j /∈p′

∑
h∈H

∑
m∈M

upp′ihm(ω)

+
∑

p′⊂p|
j /∈p′

∑
i′∈I|
i′ ̸=i

∑
m∈M

ηpp′ii′m(ω)
)

≤
∑
h∈H

rihk i ∈ I, k ∈K (19)

qplim(ω), upp′ihm(ω), ζplhm(ω),

ηpp′ii′m(ω), µlow
pl (ω), µhigh

pl (ω), σpi(ω) ≥ 0 i ∈ I, j ∈ Ji,m ∈M,

h ∈H, k ∈K, p ∈P, l ∈L (20)

The objective function (10) represents the second-stage cost when the outcome ω is observed,
including 1) the transportation time of casualties between demand locations, ACFs, and hospitals
and 2) the penalties corresponding to not serving some patients due to limited resources. Con-
straints (11) and (12) allocate low- and high-priority patients to ACFs and hospitals, respectively.
In these constraints, unmet patient demands may occur, leading to penalties in the objective
function.

Constraint (13) indicates that the number of patients type p admitted to ACF i should match
the combined count of patients who have either fully recovered within ACF i or partially recovered
at ACF i before being transferred, with a different status p′ ⊂ p, to hospitals or other ACFs
for additional treatment. The left-hand side of this constraint computes the number of patients
type p entering ACF i from demand points (i.e.,

∑
l∈L

∑
m∈M qplim(ω)) and other ACFs (i.e.,∑

p′∈P|
p⊂p′,p′ ̸=∅

∑
i′∈I\{i}

∑
m∈M ηp′pi′im(ω)). On the other hand, the right-hand side of this constraint

computes the total number of patients that leave ACF i as fully-recovered patients (i.e., σpi(ω)),
or are transferred to hospitals (i.e.,

∑
p′⊂p|

(p\p′)⊆Ji,p′ ̸=∅

∑
h∈H

∑
m∈M upp′ihm(ω)) or other ACFs (i.e.,∑

p′⊂p|
(p\p′)⊆Ji,p′ ̸=∅

∑
i′∈I\{i}

∑
m∈M ηpp′ii′m(ω)) while having a different status p′ ⊂ p. The last two

terms on the right-hand side of this constraint ensure that those patients being transferred to
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hospitals or other ACFs are already treated for at least one of their injuries in ACF i. That is why
type-p patients that are not fully treated at ACF i are transferred to hospitals or other ACFs as
a new patient class p′ ⊂ p.

Constraints (14) and (15) ensure that the bed capacity of hospitals and ACFs is respected.
Constraint (16) guarantees that the required treatment time for injury type j at ACF i does not
exceed the available time of the corresponding physician at that ACF. Constraints on the vehicle
capacity in hospitals and ACFs are formulated by (17) and (18), respectively. On the left-hand
side of these constraints, we have computed the total transportation time of patients imposed on
the vehicles of ACFs and hospitals, while on the right-hand side, we have the available capacity.
Constraint (19) states that the total non-renewable medical resource type k used at ACF i for
treating patients must be less than or equal to the amount of this resource supplied by hospitals.
Constraint (20) sets the nonnegativity of second-stage decision variables.

Later in our computational results, we will demonstrate a crucial issue with the previously
defined second-stage model (P1). Unfortunately, it becomes computationally intractable for
realistic-size problems due to its substantial number of variables. Consequently, in the upcoming
section, we present a novel and enhanced mathematical model, named model (P2), which signif-
icantly outperforms model (P1). In support of this claim, we have established Theorem 1 in the
online Appendix EC.1, showing the equivalence between these two mathematical models.

4. Improved Two-Stage Stochastic Integer Programming Model (P2)
In this section, we present an enhanced version of the model (P1) achieved by reducing the
dimensionality of the original model, particularly by minimizing the number of decision variables
in the second stage. This reduction is accomplished through the manipulation of patient indices
within the variables upp′ihm(ω) and ηpp′ii′m(ω). Sets, parameters, first-stage variables, and a part
of second-stage variables remain unchanged. We define the new second-stage variables used in
the model (P2) as follows:
New second-stage variables:

upihm(ω) : The number of patients type p moved by a vehicle of type m from ACF i to hospital
h when the outcome ω is observed. Here, p refers to the state of the patient while
being transferred to the hospital, not its primary state at the ACF.

ηpii′m(ω) : The number of patients type p moved by a vehicle of type m from ACF i to ACF
i′ when the outcome ω is observed. Here, p refers to the state of the patient while
being transferred to ACF i′, not its primary state at ACF i.

σpji(ω) : The number of patients type p at ACF i that are first treated for their injury j
when the outcome ω is observed. These patients could be treated for other injuries
in the same ACF, too, but injury j is the first injury type that they are treated for.
This variable is the main key for formulating the improved model presented in this
section.

The first-stage model (1)-(9) remain unchanged. In the following, we only present the improved
second-stage model.
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Q(x,ϑ,υ,r, ξ(ω)) =

min
q,u,η,ζ,

µlow,µhigh

∑
p∈P

∑
m∈M

(∑
l∈L

∑
i∈I

πliqplim(ω) +
∑
i∈I

∑
h∈H

πihupihm(ω) +
∑
l∈L

∑
h∈H

πlhζplhm(ω)

+
∑
i∈I

∑
i′∈I
i′ ̸=i

πii′ηpii′m(ω)
)

+
∑
p∈P

∑
l∈L

(
ρlow

pl µlow
pl (ω) + ρhigh

pl µhigh
pl (ω)

)
(21)

Subject to:

∑
i∈I

∑
m∈M

qplim(ω) + µlow
pl (ω) = dlow

pl (ω) p ∈P, l ∈L (22)∑
h∈H

∑
m∈M

ζplhm(ω) + µhigh
pl (ω) = dhigh

pl (ω) p ∈P, l ∈L (23)∑
l∈L

∑
m∈M

qplim(ω) +
∑

i′∈I\{i}

∑
m∈M

ηpi′im(ω) +
∑
j∈Ji

∑
p′∈P|

p′\{j}=p

p′\{j}̸=∅

σp′ji(ω)

=
∑
h∈H

∑
m∈M

upihm(ω) +
∑

i′∈I\{i}

∑
m∈M

ηpii′m(ω) +
∑

j∈(Ji∩p)

σpji(ω) i ∈ I, p ∈P (24)
∑

j∈(Ji∩p)

σpji(ω) ≥
∑
l∈L

∑
m∈M

qplim(ω) +
∑

i′∈I\{i}

∑
m∈M

ηpi′im(ω) i ∈ I, p ∈P (25)
∑
p∈P

∑
l∈L

∑
m∈M

ζplhm(ω)+
∑
p∈P

∑
i∈I

∑
m∈M

upihm(ω) ≤ chospital
h (ω) h ∈H (26)∑

p∈P

∑
l∈L

∑
m∈M

qplim(ω)+
∑
p∈P

∑
i′∈I\{i}

∑
m∈M

ηpi′im(ω) ≤ cACF
i xi i ∈ I (27)

∑
p∈P|
j∈p

tjσpji(ω) ≤ τjυij i ∈ I, j ∈ Ji (28)

∑
p∈P

∑
l∈L

πlhζplhm(ω) ≤ crescue
m nhospital

mh m ∈M, h ∈H (29)∑
p∈P

∑
l∈L

πliqplim(ω)+
∑
p∈P

∑
h∈H

πihupihm(ω)

+
∑
p∈P

∑
i′∈I\{i}

πii′ηpii′m(ω) ≤ crescue
m ϑmi m ∈M, i ∈ I (30)

∑
p∈P

∑
j∈{p∩Ji}

gjkσpji(ω) ≤
∑
h∈H

rihk i ∈ I, k ∈K (31)

qplim(ω), upihm(ω),ζplhm(ω), ηpii′m(ω),

µlow
pl (ω), µhigh

pl (ω),σpji(ω) ≥ 0 p ∈P, l ∈L, i ∈ I,m ∈M, h ∈H,

k ∈K, j ∈ Ji, i
′ ∈ I, i′ ̸= i (32)

The objective function (21) minimizes transportation times and penalties corresponding to not
serving patients. Constraint (22) ensures that low-priority patients are allocated to ACFs, and
constraint (23) assigns high-priority patients to the hospitals. Constraint (24), together with vari-
ables σpji(ω), are the key components of this model that make it possible to formulate the revised
model with significantly fewer variables compared to the primary model (P1). This constraint
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works as a balance constraint in the improved model. The left-hand side of constraint (24) com-
putes the number of patients of type p in an ACF that are either received from demand locations
(i.e.,

∑
l∈L

∑
m∈M qplim(ω)) and other ACFs (i.e.,

∑
i′∈I\{i}

∑
m∈M ηpi′im(ω)), or are internally gen-

erated in the same ACF from treating the first injuries of other patients of types p′ ∈P|p′\{j}=p,
for j ∈ Ji. The other side of this constraint either transfers these type p patients to hospitals
(i.e.,

∑
h∈H

∑
m∈M upihm(ω)) and other ACFs (i.e.,

∑
i′∈I\{i}

∑
m∈M ηpii′m(ω)), or treats them for

another injury (i.e.,
∑

j∈(Ji∩p) σpji(ω)).
Constraint (25) indicates that all patients type p sent to ACF i must be treated for at least

one injury. The hospital and ACF bed capacities are respected by constraints (26) and (27),
respectively. Physicians of different specialties have limited work time during the planning horizon,
which is considered by constraint (28). Constraints (29) and (30) formulate the rescue vehicle
capacities for hospitals and ACFs, respectively. Constraint (31) indicates the restriction on the
availability of non-renewable medical resources. Constraint (32) declares the nonnegativity of
second-stage decision variables.

Theorem 1. Models (P1) and (P2) are equivalent and, when solved, produce the same first-
stage optimal solutions with the same optimal objective values.

PROOF. We have provided the proof in Appendix EC.1. The main idea of this proof is that we
show that any feasible solution of model (P1) can be projected to a feasible solution of model
(P2) with the same first-stage solution and the same objective value, and vice versa. Therefore,
both models will result in the same first-stage optimal solution and the same optimal objective
value.

5. L-shaped Algorithm and Enhancements
In this section, we propose an L-shaped algorithm (Van Slyke and Wets 1969) with various
enhancements to efficiently solve the model (P2). In the following, we first present the master
problem and subproblem of the L-shaped algorithm. We formulate the master problem (MP) as
follows:

(MP) min
x,ϑ,υ,r,θ

∑
i∈I

fixi +
∑
i∈I

∑
h∈H

∑
k∈K

ϱkrihk + θ (33)

Subject to:

(2) − (9)

θ ≥
∑
ω∈Ω

ϕωθω (34)

θω ≥ 0 ω ∈ Ω (35)

In MP, θ approximates the second-stage cost and ϕω represents the probability of outcome ω.
Optimality cuts are iteratively added after solving subproblems (SPs) as we will discuss later.
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Observe that Benders feasibility cuts are not necessary because the feasibility of the primal
subproblem is ensured by constraints (22) and (23). The subproblem (SPω) is formulated for each
outcome ω ∈ Ω as follows:

(SPω) min
q,u,η,ζ,

µlow,µhigh,σ

∑
p∈P

∑
m∈M

(∑
l∈L

∑
i∈I

πliqplim(ω) +
∑
i∈I

∑
h∈H

πihupihm(ω) +
∑
l∈L

∑
h∈H

πlhζplhm(ω)

+
∑
i∈I

∑
i′∈I
i′ ̸=i

πii′ηpii′m(ω)
)

+
∑
p∈P

∑
l∈L

(
ρlow

pl µlow
pl (ω) + ρhigh

pl µhigh
pl (ω)

)
(36)

Subject to:

(22) − (26), (29), (32)∑
p∈P

∑
l∈L

∑
m∈M

qplim(ω)+
∑
p∈P

∑
i′∈I\{i}

∑
m∈M

ηpi′im(ω) ≤ cACF
i x̂i i ∈ I (37)

∑
p∈P|
j∈p

tjσpji(ω) ≤ τj υ̂ij i ∈ I, j ∈ Ji (38)

∑
p∈P

∑
l∈L

πliqplim(ω)+
∑
p∈P

∑
h∈H

πihupihm(ω)

+
∑
p∈P

∑
i′∈I\{i}

πii′ηpii′m(ω) ≤ crescue
m ϑ̂mi m ∈M, i ∈ I (39)

∑
p∈P

∑
j∈{p∩Ji}

gjkσpji(ω) ≤
∑
h∈H

r̂ihk i ∈ I, k ∈K (40)

In the SP, x̂i, υ̂ij , ϑ̂mi, and r̂ihk are constants that are set to the values of their corresponding
variables obtained by the MP. In the remainder of this section, we propose the following eight
types of enhancements to accelerate the convergence of our L-shaped algorithm:

• Multiple cuts strategy (Martins de Sá et al. 2015)
• Warm-up strategy (McDaniel and Devine 1977)
• Lower bounding functional valid inequalities (Hashemi Doulabi, Pesant, and Rousseau 2020)
• Strong (Pareto-optimal) cuts (Sherali and Lunday 2013)
• Benders dual decomposition (Rahmaniani et al. 2020)
• Lagrangian dual decomposition (Zou, Ahmed, and Sun 2019)
• Benders B&C scheme (Martins de Sá et al. 2015)
• Strengthened cut generation strategies

5.1. Multiple Cuts and Warm-up Strategies

In this section, we discuss two enhancements used to improve our L-shaped algorithm. The first
enhancement involves incorporating multiple Benders cuts into the MP at each iteration. There
are two strategies to add optimality cuts. In the first strategy, we add the following aggregated
cut after solving all SPs:

θ ≥
∑
ω∈Ω

ϕω

(∑
p∈P

∑
l∈L

(
dlow

pl (ω)w̄(1)
ωpl + dhigh

pl (ω)w̄(2)
ωpl

)
−
∑
h∈H

chospital
h (ω)w̄(5)

ωh
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−
∑
h∈H

∑
m∈M

crescue
m nhospital

mh w̄
(9)
ωmh −

∑
i∈I

cACF
i xiw̄

(6)
ωi −

∑
i∈I

∑
j∈J

τjυijw̄
(7)
ωij

−
∑
i∈I

∑
m∈M

crescue
m ϑmiw̄

(10)
ωim −

∑
i∈I

∑
k∈K

( ∑
h∈H

rihk

)
w̄

(14)
ωik

)
(41)

In constraint (41), w̄
(1)
ωpl, w̄

(2)
ωpl, w̄

(5)
ωh , w̄

(6)
ωi , w̄

(7)
ωij , w̄

(9)
ωmh, w̄

(10)
ωim, and w̄

(14)
ωik are the optimal dual variables

of constraints (22), (23), (26), (27), (28), (29), (30), and (31). In the second strategy, after solving
each subproblem, a single optimality cut is added per outcome:

θω ≥
∑
p∈P

∑
l∈L

(
dlow

pl (ω)w̄(1)
ωpl + dhigh

pl (ω)w̄(2)
ωpl

)
−
∑
h∈H

chospital
h (ω)w̄(5)

ωh

−
∑
h∈H

∑
m∈M

crescue
m nhospital

mh w̄
(9)
ωmh −

∑
i∈I

cACF
i xiw̄

(6)
ωi −

∑
i∈I

∑
j∈J

τjυijw̄
(7)
ωij

−
∑
i∈I

∑
m∈M

crescue
m ϑmiw̄

(10)
ωim −

∑
i∈I

∑
k∈K

( ∑
h∈H

rihk

)
w̄

(14)
ωik ω ∈ Ω (42)

In this research, we apply the second strategy since, in the literature, it is computationally proven
to be more efficient (Batun et al. 2011).

The second enhancement, the warm-up strategy, involves solving the MP as a linear program
(LP) for a predefined number of iterations denoted by αwarm, or until the number of iterations
that the gap is not improved exceeds βwarm (McDaniel and Devine 1977). Then, the integrality
constraints are added to the MP and it is solved as a mixed integer linear programming (MILP).

5.2. Lower Bounding Functional Valid Inequalities

In the following, we present lower bounding functional valid inequalities that improve the lower
bound obtained by the master problem. The main idea of LBF valid inequalities is to give the
master problem a rough estimation of the second-stage cost based on the information of an average
outcome. This approach is in line with the principles of partial Benders decomposition, as shown
in the work of Crainic et al. (2021). Our lower bounding functional works based on the following
theorem:

Theorem 2. θ ≥ Q(x,ϑ,υ,r, ξ(ω̄)) is a valid inequality for the MP where ξ(ω̄) represents the
vector of average outcome, i.e., ξ(ω̄) =

∑
ω∈Ω ϕωξ(ω).

PROOF. We have provided the proof in Appendix EC.2. The validity of this theorem relies on
Jensen’s Inequality (Jensen 1906).

Based on Theorem 2, we add the following constraints to MP to impose the lower bounding
functional:

θ ≥
∑
p∈P

∑
m∈M

(∑
l∈L

∑
i∈I

πliqplim(ω̄) +
∑
i∈I

∑
h∈H

πihupihm(ω̄) +
∑
l∈L

∑
h∈H

πlhζplhm(ω̄)

+
∑
i∈I

∑
i′∈I
i′ ̸=i

πii′ηpii′m(ω̄)
)

+
∑
p∈P

∑
l∈L

(
ρlow

pl µlow
pl (ω̄) + ρhigh

pl µhigh
pl (ω̄)

)
(43)
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(22) − (32) for the average outcome, i.e., ω̄, rather than outcome ω (44)

According to the above relations, the incorporation of LBF valid inequalities requires adding
a copy of all second-stage variables and their corresponding constraints for an average outcome
to the MP. This utilization of LBF valid inequalities aligns with the principles of partial Benders
decomposition, which allows us to generate valid inequalities based on artificial scenarios. Impor-
tantly, even if only one such scenario is produced, the best bound that can be obtained is with
the average scenario, as demonstrated in Crainic et al. (2021).

5.3. Strong (Pareto-optimal) Cuts
When applying BD, it is common to find multiple optimal solutions when solving the SPs,
especially when dealing with network optimization problems such as facility location problems
(Magnanti and Wong 1981). All optimal solutions to the SPs can be used to produce valid cuts
for the master problem. However, if the strongest cuts (i.e., Pareto-optimal cuts) are used, the
number of iterations and solution time can be significantly decreased. Sherali and Lunday (2013)
suggested solving a pre-emptive priority multiple-objective program. According to this method, a
perturbed version of the dual subproblem is created to generate Pareto-optimal cuts, represented
as model (45). The modification involves incorporating a perturbation term into the dual objec-
tive function using a goal-programming weight (µ) and core points of the feasible solution set
(i.e., x0

i , υ0
ij , ϑ0

mi, and r0
ihk). When µ takes a small value, for example 10−11 in our case, solving the

perturbed model (45) yields an optimal solution that corresponds to a Pareto-optimal solution,
as stated in Proposition 1.

max
∑
p∈P

∑
l∈L

(
dlow

pl (ω)w(1)
ωpl + dhigh

pl (ω)w(2)
ωpl

)
−
∑
h∈H

chospital
h (ω)w(5)

ωh −
∑
h∈H

∑
m∈M

crescue
m nhospital

mh w
(9)
ωmh

−
∑
i∈I

cACF
i x̂iw

(6)
ωi −

∑
i∈I

∑
j∈J

τj υ̂ijw
(7)
ωij −

∑
i∈I

∑
m∈M

crescue
m ϑ̂miw

(10)
ωim −

∑
i∈I

∑
k∈K

( ∑
h∈H

r̂ihk

)
w

(14)
ωik

+µ

(∑
p∈P

∑
l∈L

(
dlow

pl (ω)w(1)
ωpl + dhigh

pl (ω)w(2)
ωpl

)
−
∑
h∈H

chospital
h (ω)w(5)

ωh −
∑
h∈H

∑
m∈M

crescue
m nhospital

mh w
(9)
ωmh

−
∑
i∈I

cACF
i x0

i w
(6)
ωi −

∑
i∈I

∑
j∈J

τjυ
0
ijw

(7)
ωij −

∑
i∈I

∑
m∈M

crescue
m ϑ0

miw
(10)
ωim −

∑
i∈I

∑
k∈K

( ∑
h∈H

r0
ihk

)
w

(14)
ωik

)
(45)

Subject to:

Constraints for the dual form of the model (21) to (32)

Proposition 1. If we define opt(x̂, ϑ̂, υ̂, r̂) and sec(x̂, ϑ̂, υ̂, r̂) as the optimal and second-
optimal values of the dual sub-problem corresponding to the solution of x̂, ϑ̂, υ̂, and r̂, and
opt(x0, ϑ0, υ0, r0) as the optimal value of the dual sub-problem associated with x0, υ0, ϑ0, and r0.
Then when the goal-programming weight µ meets the condition 0 < µ < sec(x̂,ϑ̂,υ̂,r̂)−opt(x̂,ϑ̂,υ̂,r̂)

opt(x0,ϑ0,υ0,r0) , an
optimal solution to the perturbed model (45) will also be a Pareto-optimal solution.

PROOF. We have provided the proof in Appendix EC.3.
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5.4. Benders Dual Approach

We also develop the BDD cuts proposed by Rahmaniani et al. (2020) based on Lagrangian duality.
In this method, instead of substituting the values of the first-stage solution obtained from MP in
the subproblem, we impose the solution to the subproblem as coupling constraints. This process
involves creating a new MILP model for the subproblem, where copied variables are introduced to
mirror those in the MP with equality constraints (50)-(53). Then, we price out those constraints
into the objective function using the associated dual multipliers. By applying this relaxation
step, the copied variables no longer equal the first-stage solutions. Consequently, we can enforce
integrity constraints on these variables (e.g., constraints (56) and (57)). To develop BDD for our
problem, we first replace constraints (37)-(40) in the subproblem with constraints (46)-(54).
∑
p∈P

∑
l∈L

∑
m∈M

qplim(ω) +
∑
p∈P

∑
i′∈I\{i}

∑
m∈M

ηpi′im(ω) ≤ cACF
i xCopy

i ω ∈ Ω, i ∈ I (46)
∑
p∈P|
j∈p

tjσpji(ω) ≤ τjυ
Copy
ij ω ∈ Ω, i ∈ I, j ∈ Ji (47)

∑
p∈P

∑
l∈L

πliqplim(ω) +
∑
p∈P

∑
h∈H

πihupihm(ω)

+
∑
p∈P

∑
i′∈I\{i}

πii′ηpii′m(ω) ≤ crescue
m ϑCopy

mi ω ∈ Ω,m ∈M, i ∈ I (48)
∑
p∈P

∑
j∈{p∩Ji}

gjkσpji(ω) ≤
∑
h∈H

rCopy
ihk ω ∈ Ω, i ∈ I, k ∈K (49)

xCopy
i (ω) = x̂i ω ∈ Ω, i ∈ I (50)

υCopy
ij (ω) = υ̂ij ω ∈ Ω, i ∈ I, j ∈ Ji (51)

ϑCopy
mi (ω) = ϑ̂mi ω ∈ Ω,m ∈M, i ∈ I (52)

rCopy
ihk (ω) = r̂ihk ω ∈ Ω, i ∈ I, h ∈H, k ∈K (53)

xCopy
i (ω), υCopy

ij (ω), ϑCopy
mi (ω),rCopy

ihk (ω) ∈R+ ω ∈ Ω, i ∈ I, j ∈ Ji,m ∈M, h ∈H, k ∈K (54)

Then we let λ
xCopy
iω , λ

υCopy
ijω , λ

ϑCopy
miω , and λ

rCopy

ihkω denote the dual multiplier vector corresponding to
the constraints (50)-(53), respectively, and form the corresponding Lagrangian relaxation problem
as (55)-(57).

max
λ

xCopy ,λ
υCopy ,

λ
ϑCopy ,λ

rCopy ∈Rn

min
∑
p∈P

∑
m∈M

(∑
l∈L

∑
i∈I

πliqplim(ω) +
∑
i∈I

∑
h∈H

πihupihm(ω) +
∑
l∈L

∑
h∈H

πlhζplhm(ω)

+
∑
i∈I

∑
i′∈I
i′ ̸=i

πii′ηpii′m(ω)
)

+
∑
p∈P

∑
l∈L

(
ρlow

pl µlow
pl (ω) + ρhigh

pl µhigh
pl (ω)

)
−
(

λ
xCopy
iω (xCopy

i (ω) − x̂i)

+λ
υCopy
ijω (υCopy

ij (ω) − υ̂ij) + λ
ϑCopy
miω (ϑCopy

mi (ω) − ϑ̂mi) + λ
rCopy

ihkω (rCopy
ihk (ω) − r̂ihk)

)
(55)

Subject to:
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(2) − (9), (22) − (26), (29), (32), (38) − (43)

xCopy
i (ω) ∈ {0,1} i ∈ I (56)

ϑCopy
mi (ω), υCopy

ij (ω), rCopy
ihk (ω) ∈Z+ i ∈ I,m ∈M, h ∈H, k ∈K, j ∈ Ji (57)

Note that, in the model (55)-(57), we simply apply the integrality requirements on xCopy
i , υCopy

ij ,
ϑCopy

mi , and rCopy
ihk . Then, for any values of λ

xCopy
i , λ

υCopy
ij , λ

ϑCopy
mi , and λ

rCopy

ihk , after solving the inner
minimization of the Lagrangian relaxation model (55)-(57), we can add the strengthened cut (58)
to the MP. Notably, in BDD, we do not need to optimize the Lagrangian multipliers.

θ̄ω ≥
∑
p∈P

∑
m∈M

(∑
l∈L

∑
i∈I

πliq̄plim(ω) +
∑
i∈I

∑
h∈H

πihūpihm(ω) +
∑
l∈L

∑
h∈H

πlhζ̄plhm(ω) +
∑
i∈I

∑
i′∈I
i′ ̸=i

πii′ η̄pii′m(ω)
)

+
∑
p∈P

∑
l∈L

(
ρlow

pl µ̄low
pl (ω) + ρhigh

pl µ̄high
pl (ω)

)
−
(

λ
xCopy
i (xi − x̄LR

i ) + λ
υCopy
ij (υij − ῡLR

ij )

+ λ
ϑCopy
mi (ϑmi − ϑ̄LR

mi ) + λ
rCopy

ihk (rihk − r̄LR
ihk)

)
(58)

In the strengthened cut (58), x̄LR
i , ῡLR

ij , ϑ̄LR
mi , and r̄LR

ihk are parameters that have already been
determined in the Lagrangian relaxation problem. Rahmaniani et al. (2020) showed that when
the optimal solution for the MP is an integer solution, the optimality cut (58) is at most as strong
as the general optimality cut (42). However, when dealing with fractional solutions in the MP,
the strengthened cut can outperform (42).

We also investigated the utilization of the LDD method. In the next section, we apply the
heuristic model that Rahmaniani et al. (2020) used to improve the Lagrangian multipliers’ value.
In this approach, in dealing with (55)-(57), we first optimize the Lagrangian multiplier values,
i.e., λ

xCopy
i , λ

ϑCopy
mi , λ

υCopy
ij , λ

rCopy

ihk , through the heuristic model (59)-(60) and then generate the
cut (58). We refer to the obtained cuts as Lagrangian Cut.

max
ηHeuristic∈R1,λ∈Rn

(
ηHeuristic − δ

2∥λ(t−1) − λ∥2
2

)
(59)

Subject to:

ηHeuristic ≤ SP objV + (ȳ − z̄V)λ V= 1,2, . . . , t − 1 (60)

The objective function (59) aims to increase the amount of cut lifting minus the distance value.
The distance value allows the algorithm to find a new vector λt close to the vector obtained from
the previous iteration λ(t−1). In this model, ȳ is the vector of fractional values corresponding to
the first-stage variable fixed in the MP. The parameter δ is selected as the step size. In (60),
SP objV denotes the value of the objective function (55) without the Lagrangian penalties obtained
through solving the Lagrangian relaxation model in the Vth iteration. Also, z̄V represents the
value vector of the corresponding first-stage variables. After solving the heuristic model (59)-(60),
we have the new Lagrangian multiplier values, build the inner minimization problem (55)-(57),
and obtain the relaxed first- and second-stage variables. We then add a new constraint to (60)
and solve the revised model (59)-(60) again. This process continues until either the new multiplier
values show less improvement than the prior iteration or the maximum iteration limit is reached.
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5.5. Benders Branch-and-Cut Scheme

In the classical BD, a single MILP problem is optimized in each iteration. This requires con-

structing a new branch-and-bound tree each time, leading to potential inefficiencies as previously

eliminated candidate solutions are revisited. In this article, whenever we mention “L-shaped,”

we are actually referring to the classical BD, which is a pure cutting-plane method applied to

our stochastic mathematical model. An alternative approach involves constructing a single search

tree and generating constraints for both integer and fractional solutions encountered within the

tree. This alternative approach leads to the same optimal solution and is commonly known as

the Benders branch-and-cut scheme (Rahmaniani et al. 2017). In this article, we will refer to this

alternative method as the “branch-and-cut (B&C)” algorithm. We will apply both the “L-shaped”

and “B&C” algorithms and compare the results in Sections 6.3 and EC.8.

5.6. Strengthened Cut Generation Strategies

In this section, we introduce two enhanced cut generation strategies aimed at reducing computa-

tional effort, particularly when optimizing the Lagrangian dual problem for BDD and LDD cuts,

as detailed in Section 5.4. These acceleration techniques, including the warm-up, BDD, and LDD,

are exclusively applied at the root node of the B&C tree (where at most half of the time limit,

i.e., 12 hours, is dedicated to solving the LP at the root node). However, Modifications are still

needed to reduce the computational burden of generating strengthened cuts, as solving a large

number of MIP subproblems at each iteration is time-consuming. This is because the method

introduced by Rahmaniani et al. (2020) was meant for a single-scenario problem, while we aim

to solve a stochastic problem with at least 100 outcomes. It is important to note that, apart from

the root node, we use only generalized Benders cuts (42) at all other nodes in the tree.

The first strategy, which we refer to as BCI , is inspired by the three-phase approach proposed

by Rahmaniani et al. (2020). In this strategy, we first quickly obtain valid cuts by solving the

LP relaxation of the MP. We do this because, during the early stages of the Benders algorithm,

the solutions of the MP tend to have low quality. Subsequently, we follow an iterative approach

by solving the LP relaxation of the MP and SPs while incorporating generalized Benders cuts

in each iteration. We continue this process for a specific number of iterations (αwarm = 15) or

until the number of iterations with unimproved gaps exceeds a predefined threshold (βwarm = 3).

Then, we create strengthened Benders cuts, as explained in Section 5.4 considering the modified

version. In the modified version for BDD and LDD, when we encounter a fractional solution in

the MP at the root node, we do not solve all SPs to produce strengthened cuts for every outcome.

Instead, we tackle only a subset of them in each iteration. For example, in the first iteration, we

solve the first αcluster = 10% of outcomes; in the second iteration, we solve the next αcluster = 10%,

and so on. This process is repeated for a limited number of iterations (αBDD = 10) or when the

B&C gap shows no improvement over three consecutive iterations (βBDD = 3).
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In our second strategy, known as BCII , we employ a unique approach by applying the warm-up

process, BDD, and LDD consecutively but on specific outcome clusters. This means that when

we encounter a fractional solution in the master problem at the root node, we handle one cluster

at a time. For instance, in the first iteration, we focus on the initial αcluster = 10% of outcomes,

utilizing the warm-up process along with the corresponding generalized Benders cuts. In the

subsequent iteration, we move to the next αcluster = 10% of outcomes and apply strengthened

Benders cuts tailored to this cluster, and so on. This process of addressing each cluster one at a

time is repeated until we reach a set number of iterations (αBCII = 15) or experience a failure to

reduce the gap for three consecutive iterations (βBCII = 3). So, in essence, we employ the warm-

up, BDD, and LDD techniques individually for each cluster rather than consecutively, making it

a more step-by-step or “layered” approach. In BCII , the heuristic model (59)-(60) is terminated

either if we reach the maximum number of iterations, αHeuristic = 10, or if we fail to lift the cut by

at least γHeuristic = 10−1. We have also selected the following values for the remaining parameters

in this model: δ = 105 and V= 102. We choose a large number for δ since we aim to remain close

to what we obtained as Lagrangian multiplier values after dualizing of constraints (50)-(53).

We have also developed two improvement methods, namely Partially Relaxed Subproblems

(PRS) and ϵ-optimal cuts, for both strategies (Rahmaniani et al. 2020). In the former method,

when we are applying the BDD or LDD, the integrality constraints are only imposed on a subset

of first-stage variables, i.e., xi and ϑmi. In that case, we produce a weaker optimality cut compared

to the Lagrangian cut due to relaxed integrality constraints on variables υij and rihk. However,

it still provides a stronger cut than a general Benders cut. In the latter method, we stop solving

the MIP subproblems in BDD and LDD once we reach the ϵ-optimal solutions. These solutions

have objective values that are no more than ϵ = 10−2 units higher than the lower bound.

6. Computational Results
We carried out the computational tests on a machine with two 2.40 GHz Intel Xeon Gold 6148

processors using C++ and IBM ILOG CPLEX Optimization Studio V22.1 software. One core

was used to execute each test instance. In Section 6.1, we describe the process by which the set

of CRP instances with uncertain demand and hospital bed capacity was obtained. In Section 6.2,

we compare the performance of the two proposed mathematical models, and then we assess the

computational efficiency of the different enhancements used in our algorithm in Sections 6.3 and

EC.8. The effectiveness of each accelerator is also evaluated in Section 6.4. To respect the length

limitation of the journal and given the comprehensive nature of the developed framework, we

have included additional sensitivity analysis and managerial implications in the online supplement

(please cf. attached).
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6.1. Instance Generation

In this section, we explain the details of generating CRP instances with uncertain demand and
hospital bed capacity. For generating a major part of our instances, we used the data provided
by Oksuz and Satoglu (2020) and Sun, Wang, and Xue (2021). However, since we consider some
details in CRPs for the very first time, we needed to generate the newly defined parameters
as detailed later in this section. Parameter Settings: We set the number of ACFs and demand
locations to {10,15,20,25,30} and the number of hospitals to {10}. We assume there are three
types of rescue vehicles with capacities of 1, 2, and 3 patients per trip (Rambha et al. 2021).
We uniformly generated the demand locations, ACFs, and hospitals in a square area with a side
length of 50 km. For each demand location, we generated the number of patients by a uniform
distribution of [50,200].

Regarding the injuries of patients, we considered four common categories of disaster-related
injuries, including fractures/crush (FC), laceration/contusions/open wounds (LCO), peripheral
nerve injury (PNI), and burns (BU). The occurrence probabilities of these injuries are 63%, 33%,
2%, and 2% of injuries in disasters, respectively (Tanaka et al. 1999, Doocy et al. 2013). To
determine which patient suffers from which injuries, we first determine the number of injuries
for each patient utilizing an integer uniform distribution [1,4]. Then, we generate the patients’
injuries using the above occurrence probabilities. This results in 24 − 1 categories of patients,
including all possible injury subsets except the empty set. Moreover, Sun, Wang, and Xue (2021)
supposed that 40% to 45% of patients are high-priority. In our study, we assume that patients
with 1, 2, 3, and 4 injuries are categorized as serious patients, with a uniform distribution range
of 20 − 30, 35 − 40, 45 − 50, and 55 − 60, respectively.

For the duration of treatments, we used the means and standard deviations for orthopedics, gen-
eral surgeries, neurosurgery, and plastic surgeries provided by Costa (2017). The non-renewable
resources are also classified into four general groups of drug kits and three other surgical kits
for general, orthopedic, and specialized surgeries (World Health Organization 2019). The cost
of these kits is $7.5 for drugs and $13.5 for other surgical kits (Sun, Wang, and Xue 2021). All
patients require the first group of non-renewable resources, while using the other kits depends on
the type of injury. We provide the rest of the parameters in the online Appendix EC.4.

6.2. Performance of Mathematical Models

As discussed in Section 3.2, we provided an improved model (P2) that is an enhanced version of
the basic mathematical model (P1) for the class of CRPs with multiple injuries. In Table 1, we
have compared the performance of these two mathematical models. In the instances of Table 1, we
have set the number of outcomes and hospitals to 10. Each row of this table presents the average
value for 5 different instances. The first two columns of Table 1 show instances’ information,
including the number of ACFs and the number of demand points. Under “# Vars.” and “#
Const.”, we have provided the number of variables and constraints of each model. Under the
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“Time (sec)”column, we report the time required to solve the problem optimally using CPLEX
directly. We have reported the three recent columns for both models (P1) and (P2). Finally, the
last column reports the improvement in the solution time resulting from using model (P2) instead
of model (P1), i.e., ∆time = 100 ×

(
P 1’s time−P 2’s time

P 1’s time

)
. Table 1 shows that model (P2) significantly

outperforms model (P1) in terms of solution time and is, on average, 42.56% faster. This saving in
solution time is mainly a result of the reduction in the number of variables by approximately 88%
in the model (P2) compared to (P1). Since model (P2) shows significantly stronger performance,
we present all numerical results in the following sections based on this model.

Table 1: Comparison of Mathematical Models P1 and P2.

Problem Size P1 Model P2 Model

#
ACF

#
De.Loc.

#
Vars.

#
Const.

Time
(sec)

#
Vars.

#
Const.

Time
(sec)

∆time

(%)
20 10 4,056,924 8,671 34,578 403,444 11,671 18,303 47.79

15 4,125,926 10,195 19,050 472,622 13,195 9,320 48.61
20 4,194,924 11,669 24,422 541,428 14,669 16,326 33.33
25 4,263,928 13,195 36,833 610,622 16,195 18,749 41.14
30 4,332,922 14,682 21,363 679,525 17,682 10,924 44.01

25 10 5,902,912 10,074 42,414 549,268 13,824 23,610 42.89
15 5,983,156 11,479 41,463 628,821 15,229 24,902 37.13
20 6,063,406 12,973 35,645 709,023 16,723 19,174 43.57
25 6,143,656 14,486 52,620 789,370 18,236 29,359 44.92
30 6,223,908 15,997 54,769 869,701 19,747 29,810 44.93

30 10 8,086,392 11,318 54,778 716,425 15,818 26,652 51.38
15 8,177,885 12,752 67,389 807,439 17,252 39,199 41.59
20 8,269,391 14,327 60,052 899,490 18,827 37,193 40.38
25 8,360,882 15,754 62,961 990,455 20,254 38,681 38.00
30 8,452,387 17,292 63,979 1,082,231 21,792 39,074 38.80

Average 6,175,907 12,991 44,821 716,658 16,741 25,418 42.56

6.3. Performance of Algorithms

The main goal of this subsection is to assess the performance of accelerators and compare the two
strengthened cut generation strategies explained in Section 5.6. In Table 2, we have provided the
computational results of the Benders B&C algorithm without any other acceleration techniques
explained in Section 5 (referred to as BC0) and the Benders B&C algorithm with acceleration
techniques based on the two proposed strengthened cut generation strategies (referred to as
BCI and BCII). In this table, each row presents the average values for five instances. We have
considered a time limit of 24 hours for solving instances with these three algorithms. In this table,
under “Nodes No.” and “Time (sec)”, we have respectively reported the number of explored nodes
in the branch-and-bound tree and also the total solution time. Column “Gap (%)” computes the
gap between the lower- and the upper-bound, which are presented under columns “LB” and “UB”
respectively.
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Since the BCI has resulted in the best performance, we reported more information for this
algorithm. “EC (%),” “PC (%),” “TC (%),” and “SC (%)” give the contribution percentage of
establishment cost, procurement cost, transportation cost, and penalty cost in the total cost for
the solutions by solving the stochastic model using the BCI algorithm. “VSS (%)” also computes
the value of the stochastic solution in percentage. This value is computed as follows: V SS =
100 ×

(
EEV −UB

EEV

)
, where EEV is the expected objective value of the expected value solution

computed using the outcome set. To obtain EEV, we first solve a deterministic problem using the
expected value for the stochastic parameters, also known as the “mean-value” problem. Then,
we save the optimal variables obtained in the first stage, fix them in the stochastic model, and
proceed to solve the second stage for the different outcomes.

According to Table 2, BC0, BCII , and BCI algorithms have resulted in an average optimality
gap of 563.1%, 0.4%, and 0.1%, respectively. These results show that the proposed acceleration
techniques significantly contribute to improving the performance of BCI and BCII compared to
the BC0 algorithm. For the largest instances, the average optimality gap of the BC0 algorithm
has skyrocketed to 7,900%, while we have obtained 2.4% and 1.0% gaps for BCII and BCI ,
highlighting the accelerators’ effectiveness. Both BCI and BCII algorithms performed well and
found optimal solutions in 21 instance settings. In other instances, BCI performed better than
BCII in 3 cases, whereas BCII outperformed BCI on a single instance.

The solution time analysis reveals that BCI achieved the optimal solutions faster when com-
pared to BCII in 57% of the cases. Moreover, both proposed algorithms performed better than
the BC0 approach in terms of solution time across all instances. In addition, the results show
that the VSS is approximately 95% for all instances. This highlights the importance of accounting
for stochasticity when modeling the CRP problem, as solutions obtained by solving the “mean-
value” problem are not good enough for the stochastic problem. To respect the page limit, we
have presented the results of the L-shaped algorithm in Online Appendix EC.8. However, it is
worth noting that the B&C algorithm outperformed the L-shaped algorithm when using the same
combination of accelerators.

6.4. Marginal Impacts of Accelerators

To gain insight into the effectiveness of each enhancement, we use BCI as our baseline and remove
the accelerators one by one, analyzing the results of each removal. The summarized results can be
found in Table 3 and 4, as well as in Figure EC.5.1 and Figure EC.5.2 in Section EC.5 of the online
Appendix. In these tables, under “BC(I\{LBF })” and “BC(I\{P O})”, the performance of the best
algorithm, i.e., BCI , without LBF valid inequalities and PO cuts, are given, respectively. Addi-
tionally, we report the results for the BCI algorithm without warm-up and BDD under columns
“BC(I\{W arm−up})”, and “BC(I\{BDD})”, respectively. Column “BC(I+{LDD})” gives information
about BCI algorithm when LDD is added to it. Comparison of the results in Tables 3 and 4 with
the gaps reported for the BCI algorithm in Table 2 show that each accelerator used in the BCI
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Table 2: Computational Results of the B&C Algorithm for the CRP problem with Stochastic Demand and
Hospital Bed Capacity.

Problem Size BC0 BCII BCI

#
ACF

#
De.Loc.

Nodes
No.

Time
(sec) LB UB

Gap
(%)

Nodes
No.

Time
(sec) LB UB

Gap
(%)

Nodes
No.

Time
(sec) LB UB

Gap
(%)

EC
(%)

P C
(%)

T C
(%)

SC
(%)

V SS
(%)

10 10 20,352 8,742 71,294 71,294 0.0 6,861 2,398 71,294 71,294 0.0 2,673 2,082 71,294 71,294 0.0 55.8 21.6 22.5 0.0 95.98
15 57,222 29,572 84,936 84,936 0.0 3,274 3,102 84,936 84,936 0.0 4,517 3,206 84,936 84,936 0.0 47.1 26.1 26.8 0.0 95.88
20 77,248 65,904 100,547 112,544 12.7 4,112 4,740 112,396 112,396 0.0 6,703 6,453 112,396 112,396 0.0 44.5 26.8 28.7 0.0 95.25
25 64,102 86,400 98,700 134,746 37.4 3,803 4,381 134,560 134,560 0.0 2,512 3,674 134,560 134,560 0.0 43.5 25.9 30.7 0.0 94.97
30 53,991 86,400 93,787 160,863 72.6 5,316 5,911 152,864 152,864 0.0 6,015 9,149 152,864 152,864 0.0 44.0 27.1 28.9 0.0 94.83

15 10 44,817 52,929 60,662 78,111 32.50 4,975 3,620 70,144 70,144 0.0 4,670 3,863 70,144 70,144 0.0 54.2 23.4 22.5 0.0 95.84
15 49,260 74,733 62,658 91,502 49.90 4,767 7,013 86,515 86,515 0.0 4,887 3,492 86,515 86,515 0.0 45.3 24.8 28.2 1.7 95.70
20 51,057 86,400 60,357 123,197 105.4 2,638 5,800 106,614 106,614 0.0 7,152 8,848 106,614 106,614 0.0 45.2 26.4 28.4 0.0 95.69
25 40,426 86,400 64,655 174,057 174.7 3,991 11,442 129,213 129,213 0.0 8,099 11,198 129,213 129,213 0.0 44.7 27.1 28.2 0.0 95.43
30 36,343 86,400 70,889 195,192 176.4 7,664 13,265 148,799 148,799 0.0 6,218 11,585 148,799 148,799 0.0 45.9 27.9 26.3 0.0 95.25

20 10 44,755 82,091 64,434 111,083 82.1 5,471 8,209 89,341 89,341 0.0 8,027 8,210 89,341 89,341 0.0 52.5 24.9 22.5 0.0 96.46
15 46,615 86,400 54,250 93,900 83.5 2,866 6,809 81,913 81,913 0.0 3,719 6,333 81,913 81,913 0.0 44.4 26.4 29.2 0.0 96.24
20 33,866 86,400 62,387 182,208 193.7 4,714 14,799 135,098 135,098 0.0 3,447 11,397 135,098 135,098 0.0 45.1 27.7 27.2 0.0 96.40
25 37,311 86,400 57,033 183,345 219.5 9,073 17,773 129,052 129,052 0.0 8,083 16,728 129,052 129,052 0.0 45.1 27.3 27.6 0.0 95.28
30 28,487 86,400 81,606 489,132 493 15,786 39,170 189,248 189,248 0.0 9,713 19,861 189,248 189,248 0.0 44.1 27.9 28.0 0.0 95.58

25 10 38,567 86,076 42,266 103,501 174.4 6,218 11,123 62,969 62,969 0.0 4,639 9,288 62,969 62,969 0.0 49.2 24.6 26.2 0.0 96.47
15 31,126 86,400 41,776 131,532 224.0 2,489 10,572 81,884 81,884 0.0 4,412 12,310 81,884 81,884 0.0 44.0 26.3 29.7 0.0 96.06
20 30,653 86,400 45,888 132,961 190.9 7,612 25,843 103,774 103,774 0.0 2,889 20,392 103,774 103,774 0.0 43.8 27.0 29.3 0.0 95.70
25 28,500 86,400 54,354 504,775 827.9 12,004 51,736 126,730 127,516 0.6 11,691 34,941 127,287 127,287 0.0 43.8 27.7 28.5 0.0 95.19
30 22,462 86,400 64,169 227,172 255.0 7,684 52,985 142,678 146,703 2.9 10,058 51,805 144,366 146,494 1.5 44.4 28.3 27.2 0.1 95.27

30 10 24,411 86,400 33,432 170,149 410.6 1,994 19,230 65,726 65,726 0.0 2,924 24,869 65,726 65,726 0.0 52.7 22.9 24.4 0.0 96.22
15 28,085 86,400 35,685 110,018 208.9 4,034 32,332 82,406 82,406 0.0 7,054 34,350 82,406 82,406 0.0 46.7 26.5 26.8 0.0 96.13
20 25,575 86,400 44,349 158,219 256.5 4,427 40,186 102,028 102,028 0.0 8,453 46,085 101,943 102,028 0.1 45.4 28.1 26.5 0.0 95.81
25 21,031 86,400 53,541 1,065,915 1,897 10,650 77,125 122,064 126,828 4.0 9,719 57,124 124,152 125,422 1.1 43.5 27.7 28.8 0.0 95.37
30 17,531 86,400 69,759 5,519,098 7,899 8,961 83,403 155,760 159,507 2.4 7,879 62,579 157,632 159,152 1.0 45.0 28.3 26.8 0.0 95.36

Average 38,152 78,210 62,937 416,378 563.1 6,055 22,119 110,720 111,253 0.4 6,246 19,193 110,965 111,165 0.1 46.4 26.4 27.2 0.07 95.69
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Table 3: Reverse Marginal Impact (part 1).

Problem Size BCI\{LBF } BCI\{P O} BCI\{W arm−up}

#
ACF

#
De.Loc.

Nodes
No.

Time
(sec) LB UB

Gap
(%)

Nodes
No.

Time
(sec) LB UB

Gap
(%)

Nodes
No.

Time
(sec) LB UB

Gap
(%)

10 10 9,414 4,855 71,294 71,294 0.0 4,570 1,540 71,294 71,294 0.0 3,162 2,488 71,294 71,294 0.0
15 14,787 10,384 84,936 84,936 0.0 5,302 2,764 84,936 84,936 0.0 2,791 2,762 84,936 84,936 0.0
20 19,081 13,379 112,396 112,396 0.0 6,272 4,521 112,396 112,396 0.0 2,378 4,509 112,396 112,396 0.0
25 52,252 20,115 134,560 134,560 0.0 6,292 5,554 134,560 134,560 0.0 6,193 5,872 134,560 134,560 0.0
30 46,012 42,556 152,864 152,864 0.0 16,040 7,104 152,864 152,864 0.0 2,971 5,601 152,864 152,864 0.0

15 10 13,114 8,614 70,144 70,144 0.0 8,353 4,584 70,144 70,144 0.0 4,697 3,140 70,144 70,144 0.0
15 25,603 29,093 86,515 86,515 0.0 8,235 4,931 86,515 86,515 0.0 7,961 6,798 86,515 86,515 0.0
20 22,155 51,963 102,054 106,614 5.1 10,847 7,919 106,614 106,614 0.0 5,171 4,738 106,614 106,614 0.0
25 32,855 80,137 113,223 130,250 15.9 3,704 7,013 129,213 129,213 0.0 4,953 9,182 129,213 129,213 0.0
30 22,566 78,381 126,120 153,251 24.0 9,468 13,473 148,799 148,799 0.0 5,056 11,200 148,799 148,799 0.0

20 10 14,635 34,132 89,341 89,341 0.0 8,095 18,346 89,341 89,341 0.0 8,769 11,284 89,341 89,341 0.0
15 20,265 31,421 81,913 81,913 0.0 2,421 6,654 81,913 81,913 0.0 2,222 5,022 81,913 81,913 0.0
20 22,264 86,400 113,344 139,149 25.2 9,684 13,144 135,098 135,098 0.0 7,322 12,985 135,098 135,098 0.0
25 10,998 86,400 91,525 139,287 52.2 19,211 28,912 128,626 129,052 0.3 7,833 25,119 129,052 129,052 0.0
30 11,256 86,400 135,316 210,898 56.0 14,914 38,802 187,162 190,398 1.8 12,169 35,559 189,248 189,248 0.0

25 10 10,335 40,512 56,180 64,278 18.5 3,413 11,671 62,969 62,969 0.0 5,579 8,481 62,969 62,969 0.0
15 23,886 67,763 75,700 82,758 10.8 6,959 11,544 81,884 81,884 0.0 9,693 11,922 81,884 81,884 0.0
20 14,885 86,400 76,449 105,587 39.3 6,753 19,162 103,774 103,774 0.0 9,526 25,453 103,774 103,774 0.0
25 7,240 86,400 88,808 144,047 62.2 7,569 35,694 127,287 127,287 0.0 9,599 36,465 127,287 127,287 0.0
30 6,930 86,400 104,718 165,502 58.0 15,194 63,452 143,478 146,690 2.3 7,524 34,335 146,319 146,319 0.0

30 10 22,915 53,806 65,726 65,726 0.0 5,596 28,587 65,726 65,726 0.0 4,120 20,156 65,726 65,726 0.0
15 23,646 86,400 63,444 87,418 41.7 7,981 45,210 82,406 82,406 0.0 6,101 27,481 82,406 82,406 0.0
20 5,030 86,400 72,179 129,491 79.4 12,199 46,737 101,565 102,303 0.7 5,214 38,126 102,028 102,028 0.0
25 4,798 86,400 86,513 247,202 184.3 16,353 84,704 122,573 125,892 2.8 9,717 70,184 122,237 125,995 3.1
30 3,710 86,400 113,071 740,939 498.1 16,026 82,585 155,554 159,709 2.6 7,811 86,400 151,275 159,218 5.1

Average 18,425 57,244 94,733 143,854 46.8 9,258 23,784 110,668 111,271 0.4 6,341 20,210 110,716 111,184 0.3
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Table 4: Reverse Marginal Impact (part 2).

Problem Size BCI\{BDD} BCI+{LDD}

#
ACF

#
De.Loc.

Nodes
No.

Time
(sec) LB UB

Gap
(%)

Nodes
No.

Time
(sec) LB UB

Gap
(%)

10 10 5,072 1,844 71,294 71,294 0.00 6,169 5,319 71,294 71,294 0.00
15 6,815 2,605 84,936 84,936 0.00 3,853 6,300 84,936 84,936 0.00
20 4,579 3,530 112,396 112,396 0.00 6,571 9,270 112,396 112,396 0.00
25 797 3,381 134,560 134,560 0.00 4,737 15,466 134,560 134,560 0.00
30 2,057 4,649 152,864 152,864 0.00 6,961 14,015 152,864 152,864 0.00

15 10 3,922 4,427 70,144 70,144 0.00 5,036 13,774 70,144 70,144 0.00
15 2,999 6,978 86,515 86,515 0.00 1,668 15,937 86,515 86,515 0.00
20 3,295 5,831 106,614 106,614 0.00 5,017 40,206 106,614 106,614 0.00
25 3,042 8,818 129,213 129,213 0.00 6,129 44,029 129,213 129,213 0.00
30 15,529 14,692 148,799 148,799 0.00 4,351 44,741 148,799 148,799 0.00

20 10 12,284 11,795 89,341 89,341 0.00 6,923 43,523 89,341 89,341 0.00
15 3,355 4,444 81,913 81,913 0.00 1,861 36,722 81,913 81,913 0.00
20 6,234 11,877 135,098 135,098 0.00 6,521 54,277 135,098 135,098 0.00
25 4,538 15,468 129,052 129,052 0.00 2,457 52,442 129,052 129,052 0.00
30 4,280 20,069 189,248 189,248 0.00 7,263 56,968 187,782 189,248 0.76

25 10 4,179 6,725 62,969 62,969 0.00 5,556 49,882 62,969 62,969 0.00
15 3,660 7,780 81,884 81,884 0.00 5,955 51,754 81,884 81,884 0.00
20 3,261 12,802 103,774 103,774 0.00 2,881 54,936 103,774 103,774 0.00
25 7,515 29,719 127,287 127,287 0.00 6,032 61,904 127,287 127,287 0.00
30 11,297 37,542 146,319 146,319 0.00 9,867 67,092 143,926 146,319 1.70

30 10 925 5,296 65,726 65,726 0.00 4,370 52,372 65,726 65,726 0.00
15 4,922 20,331 82,406 82,406 0.00 2,280 60,992 82,406 82,406 0.00
20 11,231 25,750 102,028 102,028 0.00 5,178 62,452 101,710 102,193 0.48
25 17,447 78,520 121,379 126,280 4.03 7,157 81,956 121,398 125,569 3.54
30 13,973 67,884 154,876 159,273 2.86 5,476 83,595 152,230 819,356 409.97

Average 6,288 16,510 110,825 111,197 0.28 5,211 43,197 110,553 137,579 16.66
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algorithm positively marginalizes the gap. The only accelerator that elongates solution time within
our algorithm is BDD. It has raised the average solution time from 16,510 seconds in BC(I\{BDD})

to 19,193 seconds in BCI . This increased time could be attributed to the necessity of solving MIP
subproblems with each iteration. Additionally, we found that the LBF valid inequalities and PO
cuts have the most significant and least significant marginal impacts on the algorithm’s efficiency,
respectively. Removing LBF valid inequalities dramatically increases solution time and prevents
the algorithm from reaching an optimal solution in 15 instances. Furthermore, we have assessed
the impact of a combination of enhancements in Online Appendix EC.6.

7. Case Study
Apart from evaluating the generated instances, we also examined the effectiveness of our proposed
algorithm in solving a CRP problem derived from an earthquake case study in Turkey with
real data. Our study aimed to identify the location of ACFs in Van Province, Turkey, following
the earthquake of 2011. Van district in Turkey is located in a seismically active region and,
as a result, has experienced numerous earthquakes throughout its history. The eastern Turkish
province of Van experienced a catastrophic earthquake on October 23, 2011, which measured 7.2
on the Richter scale and resulted in numerous fatalities. A second harmful tremor (5.6 on the
Richter scale) struck near Van City two weeks after the initial earthquake in October. These two
earthquakes had a profound impact, as over 600 individuals lost their lives, and 2,500 suffered
injuries (International Federation of Red Cross and Red Crescent Societies 2012). The 2011 Van
earthquake has been the subject of numerous scholarly studies, covering a range of aspects such as
last-mile relief network design (Noyan, Balcik, and Atakan 2016, Noyan and Kahvecioğlu 2018),
humanitarian relief network design (Elçi, Noyan, and Bülbül 2018), shelter location (Kılcı, Kara,
and Bozkaya 2015) and assessment planning (Balcik and İhsan Yanıkoğlu 2020). We contribute
to this stream of research by studying the location-allocation of ACFs in the Van district after the
disaster utilizing a dataset from the related natural disaster. We mainly follow the data scheme
presented by Oksuz and Satoglu (2020) and Noyan, Balcik, and Atakan (2016). Below, we outline
the key parameters for the case study.

We have 94 demand neighborhoods affected by the earthquake (squares in Figure 1, with size
indicating demand) and 31 potential ACF locations (circles in Figure 1, with size indicating
capacity). Noyan, Balcik, and Atakan (2016) also grouped these 94 points into 30-point and 60-
point clusters using a p-median model, which minimizes the total demand weighted travel time.
We also evaluate our model on these two versions. Each neighborhood is classified into one of three
damage intensity levels, “destructive,” “damaging,” and “strong or very strong,” based on the
earthquake’s intensity and distance from the fault line. Each damage intensity level corresponds to
different damage state ratios, including “no damage,” “slight and medium damage,” and “heavy
damage and collapse” for buildings in the neighborhood. The base demand for each location was
then determined by considering the neighborhood’s population, the damage intensity level, the
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Figure 1 Van’s Demands, ACFs,
and Hospitals Points.

Figure 2 Van District ACFs
(Deterministic).

Figure 3 Van District ACFs
(Stochastic).

damage state, and the total number of injuries resulting from the 2011 Van earthquake (see the
online Appendix in Noyan, Balcik, and Atakan (2016), for details). To realize demands for each
outcome, we multiply the base demands by a deviation factor. These deviation factors are sampled
from uniform distributions, which have intervals of [0.75,1.10], [0.75,1.20], and [0.75,1.30] for
intensity levels of “destructive,” “damaging,” and “strong or very strong,” respectively.

In the Van district, five primary hospitals are available to assist patients during a disaster
(represented with circles with a plus inside in Figure 1, with size indicating capacity). However,
in the case of an earthquake, the capacity of these hospitals becomes uncertain. Therefore, we
assume their capacity will be reduced by a random percentage between 0% and 21% (Oksuz and
Satoglu 2020). To calculate the distance between points a and b, we use the Haversine formula
(61), in which ϕa and λa are the latitude and longitude of point a, respectively, and r represents
the Earth’s radius, i.e., 6,371 km (Chen et al. 2022). The distance H in kilometers is then
multiplied by the network circuity factor for Turkey, i.e., 1.36, provided by Ballou, Rahardja, and
Sakai (2002). We obtain the remaining parameters based on what we explained in Section 6.3.

H = 2r sin−1

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos(ϕ1) cos(ϕ2) sin2

(
λ2 − λ1

2

))
(61)

The average optimality gap of approximately 0.79% signifies that our proposed algorithm is
capable of generating high-quality solutions. Additionally, the substantial values of VSS, averaging
at 97.79%, underscore the critical role of stochasticity in disaster management. Let us delve deeper
into the solutions. In both deterministic and stochastic models, we established ACFs with specific
capacities and the ability to treat certain injuries. In both models, we established the following
ACFs:

• ACF #1 (with a capacity of 750, capable of treating the following injuries: fractures/crush
(Injury #1), laceration/contusions/open wounds (Injury #2), peripheral nerve injury (Injury
#3), and burns (Injury #4)),

• ACF #2 (with a capacity of 570, treating Injuries #2 and #3),
• and ACF #11 (with a capacity of 52, treating injury #2).
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However, in the deterministic model, we opened an additional ACF, #10, with a capacity of 70
patients capable of treating injuries #1, #2, and #4 concurrently (Figure 2). In the stochastic
model, considering 100 different scenarios with varying patient numbers and hospital bed capac-
ities, we established two more ACFs: ACF #9 (treating injuries #1 and #2) and ACF #21
(specializing in treating Injuries #1 and #4), with capacities of 130 and 100, respectively (Figure
3). Notably, the decision to incorporate two additional ACFs, namely #9 and #21, rather than
just one (e.g., ACF #10), results in a total capacity increase of 160 patients compared to the
deterministic model. This decision not only allows us to provide care for more patients but also
enhances our geographical coverage, leading to reduced patient transport times.

Examining the challenging scenarios that can arise after an earthquake, particularly when
we base decisions on the average demand in the deterministic model, we come across a critical
situation in scenario #22. This scenario has the highest number of low-priority cases associated
with Injuries #1 and #2. Moreover, if first-stage decisions are made based on the average scenario
in the deterministic model, this scenario also leads to the highest number of unsatisfied low-
priority patients. In scenario #22, we encounter a remarkable 1,596 low-priority patients, with 402
patients falling into class #3, the most heavily populated patient class within this scenario. Upon
closer examination of class #3, we discover that it exclusively comprises patients with Injuries
#1 and #2. This revelation underscores the necessity of an ACF specializing in treating these
two specific injuries, much like ACF #9 in the stochastic model. This level of responsiveness to
the unique demands of various scenarios is a notable advantage of the stochastic approach, and it
addresses an oversight in the deterministic model where such specialized care was not adequately
considered.

Effective collaboration among various organizations is crucial for ensuring the availability
of necessary equipment, an often overlooked aspect in post-disaster scenarios. The differences
between the deterministic and stochastic models extend beyond the number, capacity, and treat-
ment capability of the established ACFs. For example, the stochastic model significantly increases
the number of vehicles of various types assigned to ACFs to ensure all low-priority patients can
be attended to in every scenario, including worst-case scenarios. Concerning the number of physi-
cians, while the deterministic model accurately estimated the number of required orthopedic
physicians, it significantly underestimated the need for wound specialists and plastic physicians
or dermatologists and overestimated the number of required neurologists. This highlights the
importance of a collaborative effort among companies and organizations to ensure that the right
mix of medical professionals and resources is readily available in post-disaster situations, as the
requirements vary considerably between deterministic and stochastic models.

8. Conclusion
In this paper, we addressed the challenge of a casualty response planning problem with patients
having multiple injuries. To tackle this problem, we developed two two-stage stochastic integer
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programming models to formulate the CRP with uncertain demands and hospital bed capaci-
ties. The first model is a basic mathematical model, whereas the second one is a more intricate
version that significantly reduces solution times. We proved that the two proposed models are
equivalent. As our solution methods, we introduced both the L-shaped algorithm, a pure cutting-
plane method tailored to our stochastic mathematical model, and the Benders branch-and-cut
algorithm. In order to significantly improve the efficiency of these algorithms, we have incorpo-
rated a diverse set of acceleration techniques, including Benders dual decomposition, Lagrangian
dual decomposition, a multi-cut reformulation, the integration of Pareto-optimal cuts, and the
utilization of lower bounding functional valid inequalities.

Our computational results showed that the improved two-stage stochastic programming model
is around 42.5% faster than the initial model. We demonstrated that the proposed accelera-
tion techniques significantly improve the performance of the algorithms and reduce the average
optimality gap from 563.1% to 0.1%. Particularly, in some instances, the gap improved from
nearly 7,900% to around 1%. We also observed that the average VSS is 95.7%, that demonstrates
the importance of addressing uncertainty in casualty response planning problem and highlights
the advantage of our proposed two-stage stochastic programming model compared to its corre-
sponding deterministic model. We also provided extensive results to measure the contribution of
enhancements separately. To highlight the applicability of our proposed models and algorithms,
we ran our best algorithm on a case study from Turkey and demonstrated that we can find
near-optimal solution with an average gap of 0.8%.

We suggest two important directions for future research. First, as we have demonstrated the
crucial role of road conditions and travel times in post-disaster outcomes, it would be valuable
to incorporate debris clearance as an integral component of the problem outlined in this paper.
Second, developing robust optimization for the CRP with uncertain demands, stochastic hospital
capacities, and multiple injuries would be paramount, considering that information ambiguity is
often present in such planning contexts.
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EC.1. Proof of Theorem 1
In order to prove the equality of the two models, it is sufficient to demonstrate that an algorithm
exists, such as Algorithm EC.1.1 and Algorithm EC.1.2, which can transform any feasible solution
of model (P1) into a feasible solution of model (P2), and vice versa, while preserving the same
objective function value. In these algorithms, we introduce a one-to-one function, F(p), which
maps the value of p to the corresponding set of injuries. For example, F(3) returns the set injuries
{1,2}, F(15) returns the injury set {1,2,3,4}, and F(0) corresponds to the empty set. To maintain
our investigation into model equivalence, we introduce Algorithm EC.1.1, which takes the decision
variable values from model (P1) and transforms them into equivalent variables for model (P2).

It is worth highlighting that model (P1) and model (P2) are nearly identical except for three
variables: upp′ihm(ω), ηpp′ii′m(ω), and σpi(ω) in model (P1), and upihm(ω), ηpii′m(ω), and σpji(ω)
in model (P2). Due to this similarity, our focus will be solely on these specific variables. This
leads us to the subsequent Algorithm EC.1.2, where our attention turns to the decision variable
values of model (P2). In Algorithm EC.1.2, we aim to find feasible solutions for model (P1) using
the variables obtained from model (P2). In this algorithm we have:

Zip(ω) : The number of patients of type p at ACF i when the outcome ω is observed.
Nip′p(ω): The number of class p patients previously classified as class p′, who are now in

a state of readiness for transfer from ACF i to either hospital h or another ACF
when the outcome ω is observed.

The objective function of model (P1) consists of objectives (1) and (10), while the objec-
tive function of model (P2) comprises objectives (1) and (21). With the understanding that∑

p′∈P up′pihm(ω) = upihm(ω) for all p ∈ P, i ∈ I, h ∈ H,m ∈ M,and ω ∈ Ω, and
∑

p′∈P ηp′pii′m(ω) =
ηpii′m(ω) for all p ∈ P, i ∈ I, i′ ∈ I, i′ ̸= i,m ∈ M,and ω ∈ Ω, we can confidently assert that the
objective functions of both models are effectively aligned. These insights establish a firm basis
for confirming the equality of the objective functions, thus providing a strong foundation for the
conversion process between the two models.

Stochastic Casualty Response Planning with Multiple Classes of Patients

36 CIRRELT-2023-41



Algorithm EC.1.1 Model (P1) to Model (P2).
1: for (ω = 1 to Ω) do

2: σpji(ω) := 0 for p ∈P, j ∈ Ji, i ∈ I

3: for (i = 1 to |I|) do

4: pnew := 0
5: for (p = 1 to |P|) do

6: Q :=∅

7: for (p′ = 1 to |P|) do

8: if (F(p′) ⊂F(p)) then

9: Q := (F(p) \F(p′))
10: t := 1
11: pnew := p

12: for (Q{t} to Q{|Q|}) do

13: σpnewQ{t}iω+ = (
∑

h∈H

∑
m∈M

upp′ihm(ω) +
∑

i′∈I
i′ ̸=i

∑
m∈M

ηpp′ii′m(ω))

14: pnew :=F−1(F(pnew) \Q{t})
15: Q{t} :=Q{t+1}

16: end for

17: end if

18: end for

19: pnew := 0
20: Q :=∅

21: pnew := p

22: Q :=F(p)
23: t := 1
24: for (Q{t} to Q{|Q|}) do

25: σpnewQ{t}iω+ = σpi(ω)
26: pnew :=F−1(F(pnew) \Q{t})
27: Q{t} :=Q{t+1}

28: end for

29: end for

30: end for

31: end for
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Algorithm EC.1.2 Model (P2) to Model (P1).
1: for (ω = 1 to Ω) do

2: Nip′p(ω) := 0
3: Zip(ω) := 0
4: for (i = 1 to |I|) do

5: for (p = 1 to |P|) do

6: Zip(ω) := −(
∑
l∈L

∑
m∈M

qplim(ω) +
∑

i′∈I
i′ ̸=i

∑
m∈M

ηpi′im(ω) −
∑

j∈Ji

σpji(ω))

7: for (p′ = 1 to |P|) do

8: if (F(p) ⊂F(p′)) then

9: for (j = 1 to J) do

10: if ((j ∈F(p′)) & ((F(p′) \ j) = F(p)) then

11: Nip′p(ω)+ = σp′ji(ω) −Zip(ω)
12: end if

13: end for

14: end if

15:
∑

m∈M

∑
h∈H

up′pihm(ω) +
∑

m∈M

∑
i′∈I
i′ ̸=i

ηp′pii′m(ω) =Nip′p(ω)

16: end for

17: σpi(ω) :=
∑
l∈L

∑
m∈M

qplim(ω) +
∑

m∈M

∑
i′∈I
i′ ̸=i

ηpi′im(ω) −
∑

p′∈P

Nip′p(ω)

18: end for

19: end for

20: end for

EC.2. Proof of Theorem 2
The standard L-shaped algorithm begins by solving the restricted master problem given as follows.

min
x,ϑ,υ,r,θ

∑
i∈I

fixi +
∑
i∈I

∑
h∈H

∑
k∈K

ϱkrihk + θ (EC.2.1)

Subject to:

(2) − (9)

θ ≥ Q(x,ϑ,υ,r) (EC.2.2)

In which,

Q(x,ϑ,υ,r) =
∑
ω∈Ω

ϕωQ(x,ϑ,υ,r, ξ(ω)) = E
ω∈Ω[Q(x,ϑ,υ,r, ξ(ω))] (EC.2.3)

We can write Jensen’s Inequality (Jensen 1906) for Q(x,ϑ,υ,r, ξ(ω)) as follows.

E
ω∈Ω[Q(x,ϑ,υ,r, ξ(ω))] ≥ Q(x,ϑ,υ,r, ξ(ω̄)) (EC.2.4)
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Where ξ(ω̄) represents the vector of average outcome, i.e., ξ(ω̄) =
∑

ω∈Ω ϕωξ(ω). Relations
(EC.2.3) and (EC.2.4) show that the following relation holds.

Q(x,ϑ,υ,r) ≥ Q(x,ϑ,υ,r, ξ(ω̄)) (EC.2.5)

Because we have θ ≥ Q(x,ϑ,υ,r) as a part of our formulation, then based on (EC.2.5), θ ≥

Q(x,ϑ,υ,r, ξ(ω̄)) is a valid inequality for our master problem.

EC.3. Proof of Proposition 1
For each outcome ω ∈ Ω the dualization of the subproblem (21)-(32) is as follows.

max
∑
p∈P

∑
l∈L

(
dlow

pl (ω)w(1)
ωpl + dhigh

pl (ω)w(2)
ωpl

)
−
∑
h∈H

chospital
h (ω)w(5)

ωh −
∑
h∈H

∑
m∈M

crescue
m nhospital

mh w
(9)
ωmh

−
∑
i∈I

cACF
i x̂iw

(6)
ωi −

∑
i∈I

∑
j∈J

τj υ̂ijw
(7)
ωij −

∑
i∈I

∑
m∈M

crescue
m ϑ̂miw

(10)
ωim −

∑
i∈I

∑
k∈K

( ∑
h∈H

r̂ihk

)
w

(14)
ωik

(EC.3.1)
Subject to:

w
(1)
pl − w

(3)
ip − w

(4)
ip − w

(6)
i − πliw

(10)
im ≤ πli p ∈P, l ∈L, i ∈ I,m ∈M (EC.3.2)

w
(3)
ip − w

(5)
h − πihw

(10)
im ≤ πih p ∈P, i ∈ I, h ∈H,m ∈M (EC.3.3)

w
(2)
pl − w

(5)
h − πlhw

(9)
mh ≤ πlh p ∈P, l ∈L, h ∈H,m ∈M (EC.3.4)

w
(3)
ip − w

(3)
i′p − w

(4)
i′p − w

(6)
i′ − πii′w

(10)
im ≤ πii′ p ∈P, i ∈ I, i′ ∈ I, i ̸= i′,m ∈M (EC.3.5)

w
(1)
pl ≤ ρlow

pl p ∈P, l ∈L (EC.3.6)

w
(2)
pl ≤ ρhigh

pl p ∈P, l ∈L (EC.3.7)

w
(3)
ip −

∑
p′∈p|
j /∈p′

p\{j}=p′

p\{j}̸=0

w
(3)
ip′ + w

(4)
ip

− τjw
(7)
ij −

∑
k∈K

gjkw
(14)
ik ≤ 0 p ∈P, i ∈ I, j ∈ {p ∩ Ji} (EC.3.8)

w
(4)
ip ,w

(5)
h ,w

(6)
i ,w

(7)
ij ,w

(9)
mh,w

(10)
im ,w

(14)
ik ≥ 0 p ∈P, i ∈ I, h ∈H,m ∈M, k ∈K, j ∈ Ji (EC.3.9)

We also know that we can write model (EC.3.1) − (EC.3.9) in the following format.

min
∑
p∈P

∑
l∈L

(
−dlow

pl (ω)w(1)
ωpl − dhigh

pl (ω)w(2)
ωpl

)
+
∑
h∈H

chospital
h (ω)w(5)

ωh +
∑
h∈H

∑
m∈M

crescue
m nhospital

mh w
(9)
ωmh

+
∑
i∈I

cACF
i x̂iw

(6)
ωi +

∑
i∈I

∑
j∈J

τj υ̂ijw
(7)
ωij +

∑
i∈I

∑
m∈M

crescue
m ϑ̂miw

(10)
ωim +

∑
i∈I

∑
k∈K

( ∑
h∈H

r̂ihk

)
w

(14)
ωik

(EC.3.10)
Subject to:

Constraints (EC.3.2) − (EC.3.9) (EC.3.11)
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If x0, ϑ0, υ0, and r0 are core points within the feasible solution set, we can achieve the Pareto
optimal solution using model (EC.3.12) − (EC.3.14).

min
∑
p∈P

∑
l∈L

(
−dlow

pl (ω)w(1)
ωpl − dhigh

pl (ω)w(2)
ωpl

)
+
∑
h∈H

chospital
h (ω)w(5)

ωh +
∑
h∈H

∑
m∈M

crescue
m nhospital

mh w
(9)
ωmh

+
∑
i∈I

cACF
i x0

i w
(6)
ωi +

∑
i∈I

∑
j∈J

τjυ
0
ijw

(7)
ωij +

∑
i∈I

∑
m∈M

crescue
m ϑ0

miw
(10)
ωim +

∑
i∈I

∑
k∈K

( ∑
h∈H

r0
ihk

)
w

(14)
ωik

(EC.3.12)
Subject to:∑
p∈P

∑
l∈L

(
−dlow

pl (ω)w(1)
ωpl − dhigh

pl (ω)w(2)
ωpl

)
+
∑
h∈H

chospital
h (ω)w(5)

ωh +
∑
h∈H

∑
m∈M

crescue
m nhospital

mh w
(9)
ωmh

+
∑
i∈I

cACF
i x̂iw

(6)
ωi +

∑
i∈I

∑
j∈J

τj υ̂ijw
(7)
ωij +

∑
i∈I

∑
m∈M

crescue
m ϑ̂miw

(10)
ωim

+
∑
i∈I

∑
k∈K

( ∑
h∈H

r̂ihk

)
w

(14)
ωik = opt(x̂, ϑ̂, υ̂, r̂) (EC.3.13)

Constraints (EC.3.2) − (EC.3.9) (EC.3.14)

For the sake of illustration, consider D as a vector containing dual variables
w

(1)
pl ,w

(2)
pl ,w

(3)
ip ,w

(4)
ip ,w

(5)
h ,w

(6)
i ,w

(7)
ij ,w

(9)
mh,w

(10)
im ,w

(14)
ik . We establish a function denoted as

F ω(D, x, ϑ, υ, r) =∑
p∈P

∑
l∈L

(
−dlow

pl (ω)w(1)
ωpl − dhigh

pl (ω)w(2)
ωpl

)
+

∑
h∈H chospital

h (ω)w(5)
ωh +∑

h∈H

∑
m∈M crescue

m nhospital
mh w

(9)
ωmh +

∑
i∈I cACF

i xiw
(6)
ωi +

∑
i∈I

∑
j∈J τjυijw

(7)
ωij +∑

i∈I

∑
m∈M crescue

m ϑmiw
(10)
ωim +

∑
i∈I

∑
k∈K

(∑
h∈H rihk

)
w

(14)
ωik .

We can categorize all feasible solutions of the constraints (EC.3.2)−(EC.3.9) into three groups:
D′ : These solutions are neither optimal for model (EC.3.10) − (EC.3.11) nor feasible

for model (EC.3.12) − (EC.3.14).
D+ : These solutions are optimal for model (EC.3.10) − (EC.3.11), but they are not

optimal for model (EC.3.12) − (EC.3.14).
D∗ : These solutions are optimal for both models (EC.3.10) − (EC.3.11) and

(EC.3.12) − (EC.3.14).
The equality F (D+, x̂, ϑ̂, υ̂, r̂) = F (D∗, x̂, ϑ̂, υ̂, r̂) arises from both function values being equiv-

alent to the optimal objective value within model (EC.3.10) − (EC.3.11). In the case of
F (D+, x0, ϑ0, υ0, r0) and F (D∗, x0, ϑ0, υ0, r0), the former surpasses the latter due to D∗ emerging
as the optimal solution for model (EC.3.12) − (EC.3.14), while D+ does not achieve optimality,
i.e., F (D+, x0, ϑ0, υ0, r0) > F (D∗, x0, ϑ0, υ0, r0). Moreover, F (D′, x̂, ϑ̂, υ̂, r̂) ≥ sec(x̂, ϑ̂, υ̂, r̂), as D′

does not represent an optimal solution for model (EC.3.10) − (EC.3.11).
When considering D+, it is obvious that F (D+, x̂, ϑ̂, υ̂, r̂) + µF (D+, x0, ϑ0, υ0, r0) >

F (D′, x̂, ϑ̂, υ̂, r̂) + µF (D′, x0, ϑ0, υ0, r0) due to the equality F (D+, x̂, ϑ̂, υ̂, r̂) = F (D′, x̂, ϑ̂, υ̂, r̂),
along with the fact that F (D+, x0, ϑ0, υ0, r0) > F (D′, x0, ϑ0, υ0, r0) and µ > 0. As a result, D+

does not achieve optimality in the subsequent model, which is equivalent to model (47) − (48).

min
∑
p∈P

∑
l∈L

(
−dlow

pl (ω)w(1)
ωpl − dhigh

pl (ω)w(2)
ωpl

)
+
∑
h∈H

chospital
h (ω)w(5)

ωh +
∑
h∈H

∑
m∈M

crescue
m nhospital

mh w
(9)
ωmh
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+
∑
i∈I

cACF
i x̂iw

(6)
ωi +

∑
i∈I

∑
j∈J

τj υ̂ijw
(7)
ωij +

∑
i∈I

∑
m∈M

crescue
m ϑ̂miw

(10)
ωim +

∑
i∈I

∑
k∈K

( ∑
h∈H

r̂ihk

)
w

(14)
ωik

+µ

(∑
p∈P

∑
l∈L

(
−dlow

pl (ω)w(1)
ωpl − dhigh

pl (ω)w(2)
ωpl

)
+
∑
h∈H

chospital
h (ω)w(5)

ωh +
∑
h∈H

∑
m∈M

crescue
m nhospital

mh w
(9)
ωmh

+
∑
i∈I

cACF
i x0

i w
(6)
ωi +

∑
i∈I

∑
j∈J

τjυ
0
ijw

(7)
ωij +

∑
i∈I

∑
m∈M

crescue
m ϑ0

miw
(10)
ωim +

∑
i∈I

∑
k∈K

( ∑
h∈H

r0
ihk

)
w

(14)
ωik

)
(EC.3.15)

Subject to:

Constraints (EC.3.2) to (EC.3.9) (EC.3.16)

When considering D′, it is evident that sec(x̂, ϑ̂, υ̂, r̂) > F (D∗, x̂, ϑ̂, υ̂, r̂) + µF (D∗, x0, ϑ0, υ0, r0)
due to the equality F (D∗, x0, ϑ0, υ0, r0) = opt(x0, ϑ0, υ0, r0), F (D∗, x̂, ϑ̂, υ̂, r̂) = opt(x̂, ϑ̂, υ̂, r̂),
and the condition 0 < µ < sec(x̂,ϑ̂,υ̂,r̂)−opt(x̂,ϑ̂,υ̂,r̂)

opt(x0,ϑ0,υ0,r0) . Since F (D′, x̂, ϑ̂, υ̂, r̂) + µF (D′, x0, ϑ0, υ0, r0) >

sec(x̂, ϑ̂, υ̂, r̂), it follows that F (D′, x̂, ϑ̂, υ̂, r̂) + µF (D′, x0, ϑ0, υ0, r0) > F (D∗, x̂, ϑ̂, υ̂, r̂) +
µF (D∗, x0, ϑ0, υ0, r0). Consequently, D′ also does not represent an optimal solution for model
(47) − (48).

In the case where a solution does not meet optimality criteria for model (EC.3.12)− (EC.3.14),
it consequently fails to attain optimality in model (47)− (48) as well. This implies that a solution
achieving optimality in model (47) − (48) is an optimal solution in model (EC.3.12) − (EC.3.14),
representing a Pareto-optimal solution.

EC.4. Parameter Settings
In this section, the remaining parameters utilized to generate our instances are presented and
listed in Table EC.4.

Table EC.4.1: Parameters Used for Instance Generation.

Parameters Value
Probability of occurrence of outcome ω ϕω = 1

|Ω|
The bed capacity of ACF i cACF

i = U [400,1200]
Fixed cost of opening an ACF at point i fi = cACF

i × 1.3 × 25
The bed capacity of hospital h when the outcome ω is observed chospital

h (ω) = U [1000,2000]
The inventory capacity for non-renewable resource k at ACF i cInv

ik = cACF
i × U [7,9]

The maximum supply capacity of non-renewable resource k from hospital h cSupply
hk = chospital

h (ω) × U [14,16]
Shortage cost of the unsatisfied high-priority demand type p at location l ρhigh

pl = $150,000

Shortage cost of the unsatisfied low-priority demand type p at location l ρlow
pl =

ρ
high
pl

2

EC.5. Accelerators’ Marginal Impact (Single Version)
This section summarizes the main algorithm’s performance in terms of solution time and gap
percentage when we remove each one of the accelerators or add the LDD. However, due to a
high gap in the algorithm’s performance without the LBF in most cases or with the LDD in the
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Figure EC.5.1 Solution Times for Marginal Impacts. Figure EC.5.2 Gaps for Marginal Impact.

largest-sized example, we have excluded their results from Figure EC.5.2 to preserve the figure’s
scale. For solution times, please refer to Figure EC.5.1, and for gap percentages, please refer to
Figure EC.5.2.

EC.6. Accelerators’ Impact
We need to analyze the individual contributions of each strategy within the combination. After
identifying the specific roles of each strategy, we can categorize them into groups and combine
enhancements only from different groups. By Pareto-optimal cuts, we are improving the quality
of each cut. Almost the same thing happens for the BDD and LDD. In those accelerators, again,
we are trying to generate strengthened (high-quality) cuts. Therefore, if we put both Pareto-
optimal cuts and BDD together, they both aim to enhance the quality of the cuts we add to the
MP. On the other hand, partial Benders decomposition diversifies the cuts by adding LBF valid
inequalities in addition to optimality cuts. By incorporating LBF valid inequalities, the emphasis
shifts toward enhancing the diversity of the overall lower bound rather than solely concentrating
on cut optimization. In the warm-up process, we are generating a set of cuts rapidly. So, if we
do not use the warm-up process at the very beginning steps, there will be no cuts; therefore,
there will be no information regarding the SPs. By solving the linear relaxation of the MP and
generating cuts quickly, the warm-up process provides a starting point for the search, which would
otherwise be a blind search of the feasible domain of the MP. In a nutshell, we have the following
classes:

• Strengthening the cuts (PO cuts, BDD, and LDD)
• Diversifying the cuts (LBF valid inequalities)
• Improving the quality of the MP (Warm-up)
There are three different combinations of strategies from various classes. In Table EC.6.2, we

have four main columns. In the first one, we present the problem information, including the
number of ACFs and demand locations; then, in the second column, we evaluate the combination
of warm-up, LDD, and LBF valid inequalities. The third and fourth columns combine warm-
up and LBF valid inequalities with BDD and PO cuts, respectively. For each algorithm, we
provided the number of evaluated nodes in the search tree, the solution time, the lower and
upper bound, and the gap. Our analysis revealed that the two algorithms, BC(W armUp+BDD+LBF )
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Table EC.6.2: Impact of Different Combinations for the Enhancements.

Problem Size BC(W armUp+LDD+LBF ) BC(W armUp+BDD+LBF ) BC(W armUp+P O+LBF )

#
ACF

#
De.Loc.

Nodes
No.

Time
(sec) LB UB

Gap
(%)

Nodes
No.

Time
(sec) LB UB

Gap
(%)

Nodes
No.

Time
(sec) LB UB

Gap
(%)

10 10 6,974 7,147 71,294 71,294 0.00 4,570 1,535 71,294 71,294 0.00 5,072 1,775 71,294 71,294 0.00
15 3,467 7,281 84,936 84,936 0.00 5,302 2,570 84,936 84,936 0.00 6,815 2,749 84,936 84,936 0.00
20 10,422 10,206 112,396 112,396 0.00 6,272 4,785 112,396 112,396 0.00 4,579 3,493 112,396 112,396 0.00
25 4,655 13,400 134,560 134,560 0.00 6,292 5,415 134,560 134,560 0.00 797 3,754 134,560 134,560 0.00
30 2,111 15,907 152,864 152,864 0.00 16,040 6,785 152,864 152,864 0.00 2,057 4,866 152,864 152,864 0.00

15 10 9,191 23,562 70,144 70,144 0.00 8,353 5,080 70,144 70,144 0.00 3,922 4,451 70,144 70,144 0.00
15 4,257 20,994 86,515 86,515 0.00 8,235 4,927 86,515 86,515 0.00 2,999 7,116 86,515 86,515 0.00
20 5,956 38,658 106,614 106,614 0.00 10,847 7,695 106,614 106,614 0.00 3,295 5,442 106,614 106,614 0.00
25 6,469 47,246 129,213 129,213 0.00 3,704 6,888 129,213 129,213 0.00 3,042 8,784 129,213 129,213 0.00
30 7,485 47,985 148,799 148,799 0.00 9,468 12,254 148,799 148,799 0.00 15,529 14,335 148,799 148,799 0.00

20 10 6,611 50,970 89,341 89,341 0.00 8,095 18,033 89,341 89,341 0.00 12,284 11,257 89,341 89,341 0.00
15 2,713 45,820 81,913 81,913 0.00 2,421 5,874 81,913 81,913 0.00 3,355 3,745 81,913 81,913 0.00
20 8,194 52,630 135,098 135,098 0.00 9,684 13,134 135,098 135,098 0.00 6,234 13,233 135,098 135,098 0.00
25 11,638 60,283 129,049 129,400 0.28 18,116 31,036 128,069 129,538 1.21 4,538 16,099 129,052 129,052 0.00
30 20,788 65,284 186,354 189,248 1.62 15,700 41,793 187,371 190,568 1.80 4,280 21,340 189,248 189,248 0.00

25 10 4,384 48,712 62,969 62,969 0.00 3,413 13,028 62,969 62,969 0.00 4,179 7,597 62,969 62,969 0.00
15 3,993 49,962 81,884 81,884 0.00 6,959 13,093 81,884 81,884 0.00 3,660 8,319 81,884 81,884 0.00
20 11,694 53,187 103,774 103,774 0.00 6,753 15,672 103,774 103,774 0.00 3,261 12,422 103,774 103,774 0.00
25 6,708 66,920 125,870 127,877 1.60 7,569 32,113 127,287 127,287 0.00 7,515 23,200 127,287 127,287 0.00
30 9,558 74,476 142,147 146,589 3.27 10,849 66,497 143,008 146,690 2.63 11,297 38,854 146,319 146,319 0.00

30 10 1,743 52,610 65,726 65,726 0.00 5,596 20,728 65,726 65,726 0.00 925 5,936 65,726 65,726 0.00
15 6,396 62,358 82,406 82,406 0.00 7,981 37,651 82,406 82,406 0.00 4,922 22,669 82,406 82,406 0.00
20 5,870 66,098 101,074 102,214 1.16 12,093 50,627 101,565 102,303 0.73 11,231 23,049 102,028 102,028 0.00
25 9,974 86,400 118,216 128,532 8.77 12,022 83,913 121,968 125,892 3.26 22,388 77,403 121,629 126,280 3.81
30 8,935 86,400 151,794 160,853 5.80 15,136 81,232 155,541 159,740 2.68 14,488 67,580 155,061 159,273 2.73

Average 7,207 46,180 110,198 111,406 0.90 8,859 23,294 110,610 111,299 0.49 6,507 16,379 110,843 111,197 0.26
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and BC(W armUp+P O+LBF ), performed similarly regarding the gap, but both outperformed the
algorithm with LDD. However, in terms of solution time, BC(W armUp+P O+LBF ) outperformed
BC(W armUp+BDD+LBF ), likely due to its use of linear SPs instead of MIP ones.

EC.7. Sensitivity Analysis and Managerial Implications
In this section, we evaluate how the flexibility of the ACF in treatment, the distances between
demand points, hospitals, and ACFs, and variations in demand can affect the objective function.
We also explore ways to manage chaotic situations after a disaster by making informed deci-
sions about ACFs. To perform the sensitivity analysis, we have a region with 20 demand points,
20 potential locations for ACFs, 5 hospitals, and 3 types of vehicles. We uniformly select the
demand and hospital capacity from the range of [100,200] and [500,1000], respectively. All other
parameters used for evaluating the algorithms’ performance in Section 6 remain the same.

– Importance of ACFs’ Flexibility
In our initial assumption, we randomly assigned the set of injuries that each ACF could

treat (model #1 in Figure EC.7.3). However, we were curious to explore the impact of the
following alternative scenarios:

• Model #2 in Figure EC.7.3, where ACFs were classified into different classes, and each
class could only treat one type of injury.

• Model #3 in Figure EC.7.3, where all ACFs were allowed to treat all injuries.
• Model #4 in Figure EC.7.3, where each ACF was randomly assigned a set of injuries,

but all ACFs could treat injury #1.
• Model #5 in Figure EC.7.3, where each ACF was randomly assigned a set of injuries,

but all ACFs could treat injury #2.
• Model #6 in Figure EC.7.3, where each ACF was randomly assigned a set of injuries,

but all ACFs could treat injury #3.
• Model #7 in Figure EC.7.3, where each ACF was randomly assigned a set of injuries,

but all ACFs could treat injury #4.
Figure EC.7.3 illustrates that the minimum objective function is achieved when we give

maximum freedom to the ACFs by enabling them to treat all patients. However, focusing on
only one type of injury at each ACF (model #2) may lead to a terrible decision. Additionally,
suppose we cannot treat all injuries in all ACFs due to a lack of physicians. In that case, it
is better to randomly assign all injuries to ACFs but ensure that all ACFs treat the injury
with the highest probability of occurrence (e.g., injury #1 in our case).

– Sensitivity Analysis on Distances
When the distance coefficient between points is less than 1.3, indicating that the points

are close to each other or the roads are in good condition, the model may choose to transfer
patients from the demand locations to ACFs to stabilize their situation. This is done before
transporting them from ACFs to hospitals for complete treatment. This approach results in
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Figure EC.7.3 ACFs’ Injury
Treatment
Flexibility.

Figure EC.7.4 Effect of Distance
Coefficient on the
Establishment Cost.

Figure EC.7.5 Distance Coefficient
Impact on Transport
and Procurement
Cost.

a reduced number of ACFs, but it also leads to an increase in transportation costs (as shown
in Figure EC.7.5). When the distance coefficient exceeds 1.3, which is a common occurrence
after any disaster due to road blockages from debris, damage, or other obstacles, both estab-
lishment and procurement costs increase (as shown in Figure EC.7.4 and Figure EC.7.5).
The procurement cost increases because we need to equip more ACFs with the required non-
renewable resources. Therefore, as we increase the number of ACFs and treat more patients,
we also need to procure more non-renewable resources. Additionally, the increasing trend in
total costs by increasing the distance coefficient from 0.1 to 2 underscores the importance of
debris clearance after disasters. Blocked or damaged roads can make it difficult or impossible
for emergency responders and aid workers to reach affected communities, hindering their
ability to provide timely assistance to those in need.

– Sensitivity Analysis on Demand’s Variations
To understand how changes in demand affect the objective function, it is essential to

know the capacities of the ACFs and the types of injuries they can treat. You can find this
information in Table EC.7.3. For instance, ACF #1 can accommodate 497 patients and only
treat nerve injuries (#3) and burns (#4). Among all the ACFs, seven have a capacity of
over 1000 patients, making them the most expensive to establish. However, ACFs #2 and
#6 are unable to treat fractures (#1) and lacerations (#2), which are common injuries after
an earthquake, affecting approximately 96% of patients. This makes them inefficient, and
the model does not recommend selecting them as part of its optimal solution. Nonetheless,
if the demand increases for any reason, the model will establish large but effective ACFs to
ensure no unmet demands occur. The rise in establishment costs shown in Figure EC.7.4
results directly from this decision.

Based on the data presented in Figure EC.7.5, we can see that once the demand for
hospital beds reaches 1.5 times its initial value, the transportation cost stabilizes, indicating
no significant changes. This is because the hospitals’ bed capacity is full, and we cannot
transfer any more patients from the ACFs. To treat as many patients as possible in ACFs, we
establish more of them and provide more non-renewable resources. However, if the demand
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Table EC.7.3 ACFs’ Capacities and Treatment Abilities.
Treatable Injuries Treatable Injuries

#ACF Capacity #1 #2 #3 #4 #ACF Capacity #1 #2 #3 #4
1 497 × × 11 401 ×
2 1082 × × 12 572 ×
3 416 × × × 13 739 × × × ×
4 715 × × × × 14 471 × × ×
5 1101 × 15 1196 × × ×
6 1091 × 16 421 ×
7 1157 × × 17 594 × ×
8 461 × × × 18 974 × ×
9 1152 × × × × 19 1046 × × ×
10 638 × × × × 20 789 ×

coefficient exceeds 2, even the ACFs have no available beds, resulting in a steady procurement
cost beyond that point.

EC.8. L-Shaped Algorithm Performance
In this section, we assess the performance of the L-shaped algorithm with and without the inclu-
sion of LBF valid inequalities. It is important to highlight that both versions of the algorithm
incorporate the generation of PO cuts and the warm-up process. The results for the CRP solved
using the L-shaped algorithm are presented in Table EC.8.4. Each row in this table represents
the average results across five instances. As discussed in Section 6, the key distinction between
the L-shaped and B&C algorithms lies in how they handle the implementation of the master
problem. The L-shaped algorithm, which is a pure cutting-plane method applied to our stochas-
tic mathematical model, solves the master problem optimally at each iteration, while the B&C
algorithm requires solving the master problem only once.

Table EC.8.4 presents the instance information in the “Problem Size” column, followed by
the performance results for the L-shaped algorithm without and with the application of the
LBF, listed under “L-shaped Algorithm without LBF” and “L-shaped Algorithm with LBF,”
respectively. The table also includes additional columns such as “Iter.,” “Time (sec),” “LB,”
“UB,” and “Gap (%),” presenting the number of iterations, solution time, lower bound, upper
bound, and optimal gap in percentage, respectively, for each algorithm. The “# ACF” and “#
De.Loc.” columns provide the count of potential locations for the ACFs and the number of demand
locations, respectively.

While the the inclusion of LBF valid inequalities within the L-shaped algorithm led to a signif-
icant reduction in the optimality gap and the required number of iterations, from approximately
722% to nearly 478% and from 170 to 37, respectively, the remaining gap still falls outside the
acceptable range. Consequently, we chose to proceed with the B&C algorithm for the subsequent
sections of this paper.
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Table EC.8.4: Computational Results of the L-Shaped Algorithm for the CRP with Stochastic Demand and
Hospital Bed Capacity.

Problem Size L-shaped Algorithm without LBF L-shaped Algorithm with LBF

#
ACF

#
De.Loc. Iter. Time

(sec) LB UB
Gap
(%) Iter. Time

(sec) LB UB
Gap
(%)

10 10 118 31,651 70,937 71,408 0.67 24 6,501 70,955 71,352 0.57
15 165 52,910 83,894 85,007 1.32 22 20,268 84,657 84,914 0.30
20 197 61,351 109,528 116,237 6.50 44 48,111 111,973 112,658 0.61
25 230 82,553 125,755 156,037 24.43 33 18,783 133,927 134,644 0.53
30 236 86,400 131,754 189,684 45.47 51 30,581 152,403 153,188 0.51

15 10 163 66,833 67,844 73,866 8.84 45 33,884 69,680 70,468 1.07
15 189 76,518 79,395 115,183 48.33 33 27,985 86,138 86,644 0.59
20 194 86,400 87,910 206,204 143.06 41 45,071 105,777 110,158 4.12
25 196 86,400 99,072 203,782 107.13 60 74,365 127,714 135,059 5.67
30 188 86,400 113,773 372,035 229.89 54 70,857 147,322 173,758 17.86

20 10 171 83,708 81,175 190,021 137.21 51 64,163 88,361 94,837 6.66
15 190 86,400 73,362 96,632 31.06 26 37,361 81,463 81,907 0.54
20 167 86,400 101,853 392,503 289.21 41 76,871 132,324 843,526 530.06
25 172 86,400 92,637 887,438 868.07 48 83,757 127,519 253,845 96.10
30 169 86,400 134,911 1,463,184 976.90 52 86,400 184,122 1,811,799 896.17

25 10 157 81,332 57,259 102,664 78.46 19 41,402 61,679 64,004 3.30
15 150 86,400 65,684 133,010 106.01 24 57,574 81,535 81,916 0.47
20 159 86,400 75,021 392,523 426.89 35 75,965 101,121 1,537,159 1415.06
25 157 86,400 90,058 811,981 800.93 34 83,613 124,002 2,295,585 1733.92
30 139 86,400 105,158 1,632,509 1441.97 38 86,400 142,597 2,570,940 1723.28

30 10 146 86,400 56,300 92,383 64.40 26 48,779 64,778 103,855 60.10
15 146 86,400 60,945 285,785 371.37 28 77,372 80,299 800,762 921.07
20 153 86,400 74,639 939,314 1178.10 32 83,797 99,874 942,987 827.60
25 139 86,400 87,624 4,629,815 5216.96 33 86,400 120,730 1,867,882 1453.81
30 152 86,400 114,394 6,097,654 5460.21 35 86,400 154,719 3,613,042 2270.51

Average 170 80,226 89,635 789,474 722.54 37 58,106 109,427 723,876 478.82
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