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Abstract. Collecting a customer’s point-of-sale demand data can alleviate the 
problem of intermittent demand by providing less intermittent data for demand 
forecasts. This also allows for collaborative supply chain arrangement such as 
Vendor Managed Inventory. However, data collection technologies can be cost 
prohibitive and information-sharing arrangements amongst supply chain 
members, unreliable. When obtaining point-of-sale demand data is not feasible, 
specialised forecasting methods have been proposed to tackle the problem 
using improved modeling of intermittent time series. For supply chains faced 
with intermittent demand, decisions about an information strategy are complex 
and cost-benefit investigations are rare. In this paper, we present a simulation of 
the supply chain of a real supplier currently operating a non-periodic stochastic 
order-up-to-level Vendor Managed Inventory arrangement with multiple 
customers. The proposed simulation framework allows for comparison between 
two different information strategies: the point-of-sale telemetry demand data 
versus the historical deliveries demand data. Simulations are for targeted service 
levels and attempt to minimize both the number of deliveries and the required 
safety stock. Results are measured in terms of exact safety level, inventory stock, 
and the number of deliveries to achieve a targeted service level across the entire 
supply chain. The influence of product lead time is also explored. Our results show 
that collecting a customer’s point-of-sale demand data offers significant savings 
in terms of customer inventory stock and lesser savings in terms of the number 
of deliveries.  
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1 Introduction 
Intermittent demand in supply chain management remains a pervasive challenge for industries 
(Nikolopoulos, 2021). Unfortunately, this problem has received less academic attention compared to 
forecasting of fast moving (non-intermittent) items (Syntetos et al., 2016), even though intermittent items 
account for substantial proportions of stock value (Johnston et al., 2003). Furthermore, this problem will 
become increasingly common as industries have shown a willingness to use granular data in their supply 
chain operations, whether that be by forecasting individual clients or products (Willemain et al., 1994). 
The more granular the data, the more intermittent the time series can be (Bartezzaghi et al., 1999).  

Vendor Managed Inventory (VMI) offers an appealing solution as a customer’s direct point-of-sale 
demand data contains less noise and possesses a higher sampling frequency, while still being of the 
desired granularity (Murray et al., 2018a). Furthermore, VMI allows for improved inventory management, 
which in turn translates to cost savings (Cao and Zhang, 2011; Jung et al., 2005; Zhou et al., 2017).  

However, acquiring the customer’s direct demand data through technological means can be cost 
prohibitive (Jung et al., 2005) and information sharing often requires proof that the cost improvements 
are worth the efforts for both suppliers and their customers (Kembro and Näslund, 2014). Information 
sharing arrangements are inherently risky (Colicchia et al., 2019) and improvements are unknown until 
the arrangement has been finalized. Such risks imply that suppliers may have to continue operating a VMI 
without data sharing for some of its customers. Thus, there is a need for more case studies that compare 
the performance increase and possible risk mitigation to help guide industry practitioners when making 
these choices.  

In this paper, we have access to two sources of demand data from an industrial partner operating under 
a VMI arrangement: a customer’s point-of-sale demand data collected by means of telemetry storage 
containers, and a customer’s delivery demand data from the supplier’s delivery records. These two 
sources of demand data represent two different perspectives of the same demand along the supply chain. 
Both sources of demand data have varying degrees of intermittent behavior.  

This paper proposes and executes an experimental design for evaluating these two sources of information 
in a VMI arrangement. First, we propose a VMI arrangement under which a supplier is entirely responsible 
for a customer’s stock. The supplier, using the available demand data, forecasts and performs customers’ 
replenishments. Secondly, we iteratively simulate the replenishments for each customer over an entire 
year to determine the lowest number of deliveries and safety stock level required to maintain a desired 
service level. Lastly, we evaluate the simulations on the inventory performance, the safety stock level, and 
the number of deliveries. Results are presented for different targeted service levels and different lead 
times under both demand information scenarios. 

The remainder of this paper is organized as follows. Section 2 presents a review of the pertinent literature 
on VMI and intermittent demand models for both forecasting and inventory management. Section 3 
describes the experimental design of the VMI, the simulation, the forecasting model, and the performance 
measurements. Section 4 presents and discusses the results. Section 5 concludes the paper with 
managerial recommendations, limits, and opportunities for further research.  
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2 Literature Review 
2.1 Vendor Managed Inventory 
Various forms of VMIs have been implemented in multiple industries differing in the type of good, supply 
chain size, and industry-specific problems (Borade and Sweeney, 2015). Broadly, VMIs are a type of 
collaborative supply chain management in which the supplier and customer share information that allows 
the supplier to manage the customer’s stock directly. Once implemented, the supplier can independently 
decide when and how much to deliver based on the shared information (Vigtil, 2007). Thus, information 
sharing is key to successful VMI (Angulo et al., 2004). Ideally, a supplier has access to downstream 
information related to product usage, sales plans, and product forecasts (Achabal et al., 2000). This allows 
suppliers to optimise their own forecasts and their logistic network to ensure the reliability of the supply 
arrangement between themselves and their customers. Many papers have demonstrated the advantages 
of information sharing in collaborative supply chain management for both suppliers and their customers 
(Cao and Zhang, 2011; Jung et al., 2005; Zhou et al., 2017). Despite this, supply chain partners may be 
unable or unwilling to share data (Holweg et al., 2005; Kembro and Näslund, 2014). In such cases where 
information is not shared, the supplier must turn to other means to forecast customer demand (Ali et al., 
2017). Oftentimes, as a last resort, the supplier will use historical delivery records for demand forecast, 
but these records may be noisy (Murray et al., 2018a). 

Information collection offers an alternative when data is not willingly shared. Telemetry systems can 
directly measure and relay the downstream information on product usage. Advances in information 
technology have lowered the cost (Ru et al., 2018) of what was in the past considered a cost-prohibitive 
solution (Jung et al., 2005). However, information sharing should not be considered an entirely cost-free 
solution. Determining the cost benefit of information collection is not obvious and remains grounded in 
empirical evaluations that hopefully match the conditions of an industry pursuing this solution. In terms 
of cost determining cost benefits of VMI, Ru et al. (2018) show that for the one supplier one customer 
scenario, the benefit of VMI depends on having low inventory holding costs for customers and high 
inventory holding costs for suppliers. The opposite result has also been presented (Kim, 2008). 

VMI studies that directly researched VMI under intermittent demand are more rare. Wu and Hsu (2008) 
proposed a configurable bill-of-materials to reduce logistic costs for spare parts, but their proposed 
approach was both computationally costly and slow. In our case study, there is no spare parts bill-of-
materials, as each customer receives a single product. Scala et al. (2013) proposed an alternative measure 
for the lead time demand based on adjusting the lead time following a simulation to minimize inventory 
costs, but the use case for their method was for extremely infrequent spare parts in the order of less than 
one transaction per year, which is significantly lower than our available case study. Fu and Chien (2019) 
showed improvements of intermittent demand forecasting model for vendor managed inventories over 
traditional models but did not explore the influence of the input demand data. 

2.2 Intermittent Demand 
The development of intermittent demand has been driven by industry use cases: forecasting, inventory 
planning, and smoothing. These different approaches may seem distinct but share the common trait of 
imposing an underlying model for the intermittent demand. For modeling intermittent inventory demand, 
which is the object of research in this paper, two families of models exist: parametric and nonparametric. 
Regardless of use case, determining the optimal intermittent demand model is still an open problem 
(Kourentzes et al., 2019).  
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For parametric models, a known distribution is chosen for the model and then fit to the data. The most 
widely used parametric model is Croston’s method (Croston, 1972). Croston’s method first divides 
intermittent demand into two constituent parts: the demand amount and the interdemand interval (the 
time between two periods of non-zero demand). The demand amount is assumed to follow a normal 
distribution and the interdemand arrival, a geometric distribution. Syntetos and Boylan (2005) provided 
a bias correction for Croston’s method, and it is their Syntetos-Boylan Approximation (SBA) method which 
continues to receive substantial empirical support (Syntetos et al., 2016; Syntetos et al., 2015).  

Nonparametric models do not assume an underlying distribution for the intermittent demand model. We 
further divide nonparametric models into three broad groups: temporal aggregation, bootstrapping, and 
machine learning. Temporal aggregation methods resolve the issue of zero demand observations by 
aggregating time series from higher (e.g., daily) to lower (e.g., weekly) frequencies. The aggregated time 
series can then be forecasted and disaggregated to return it to the original frequency. Temporal 
aggregation has received significant support following its initial concept in (Nikolopoulos et al., 2011; 
Spithourakis et al., 2012). Kourentzes et al. (2014) proposed a systematic approach that combines the 
result of multiple exponential smoothing forecasts done at different aggregated frequencies. Murray et 
al. (2018a) proposed the use of Croston’s method to improve the aggregation. Bootstrapping methods 
sample observations to create a histogram that replaces a theoretical distribution, as very erratic demand 
may not comply with any standard theoretical distribution (Hasni et al., 2019b). The downside of 
bootstrapping techniques is the added complexity (Syntetos et al., 2015), especially when considering that 
difference in performance is small (Hasni et al., 2019c). Finally, the very broad machine learning category 
leverages recent innovations in machine learning to tackle intermittent demand. Methods used have 
included neural networks (Kourentzes, 2013; Lolli et al., 2017) and segmentation (Murray et al., 2018b). 
These methods are not widely applied, owing to their increased complexity, the mixed evidence of their 
superiority, and their narrower use cases (Mukhopadhyay et al., 2012; Teunter and Duncan, 2009). 

In inventory planning under intermittent demand, the choice is either to model the demand as a known 
distribution or to use a nonparametric bootstrapping method (Zhou and Viswanathan, 2011). In the simple 
order-up-to-level case with a known demand distribution, the order-up-to-level can be determined by 
using the inverse of the cumulative distribution function of the model’s chosen distribution (Syntetos et 
al., 2015). For nonparametric methods, the models produce a point forecast of the order-up-to-level for 
a targeted service level (Syntetos et al., 2015). When comparing these two approaches, Syntetos et al. 
(2015) recommended the simpler parametric models in terms of performance compared to the added 
complexity of nonparametric models. Sillanpää and Liesiö (2018) further recommends against the use of 
point forecasts over parametric distributions modeling. In more complex inventory management 
situations, full scale simulation of the inventory is done based on parametric or nonparametric point 
forecasts of the inventory demand which must then be filled (Eaves and Kingsman, 2004). Estimates for 
the safety stock can also be determined from the point forecast error uncertainty (Trapero et al., 2019). 

For intermittent demand models used in VMI systems, Fu and Chien (2019) used a combination forecast 
of temporal aggregation and Croston’s method, autoregressive integrated moving average, and recurrent 
neural networks. The VMI methodologies proposed in (Scala et al., 2013; Wu and Hsu, 2008) were agnostic 
as to the type of intermittent demand model. The lack of research on the intermittent demand for VMI is 
to be expected, as most VMI papers assume that the distribution is known. This is in line with a similar 
observation made by (Syntetos et al., 2015) who noted the lack of studies on intermittent demand for 
inventory management, of which VMI is a subproblem.  
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3 Experimental Design 
The goal of this paper is to compare demand information strategies in a VMI arrangement under 
intermittent demand. To do this, we will simulate a VMI arrangement with point-of-sale telemetry 
demand and with historical deliveries demand, and then evaluate their respective performance. Thus, we 
need to describe the VMI arrangement, the simulation design and parameters, both sources of demand 
data, the demand forecasting model, and the performance measurements. 

3.1 Vendor Managed Inventory 
Properly describing the VMI arrangement is of utmost importance, as VMIs differ widely in both their 
industrial implementations and in the literature (Borade and Sweeney, 2015). The VMI arrangement 
presented in this paper is adapted from the one used by the industrial partner who provided the data 
required to simulate the VMI. The industrial partner is a large supplier of raw materials operating across 
the contiguous United States. The partner delivers to thousands of customers operating in a variety of 
industries, such as manufacturing, agriculture, food processing, and medical services. These different 
industrial sectors are known to have varied intermittent demand behaviors. The supplied product requires 
a dedicated storage container installed on the customer’s site-of-operations. These containers can be 
equipped with telemetry that measure the level of the product. 

The VMI arrangement is for a single supplier shipping to several customers. The supplier monitors the 
inventory of each customer and determines the replenishment policy (amount and date). Both the 
replenishment amount and date are forecasted based on the available demand information. While 
ensuring that no stock-out occurs, the replenishment is done as late as possible to maximise the useable 
onsite inventory and thus minimise the number of deliveries being made. The forecasted replenishment 
amount attempts to bring a customer back to its maximum level. This is defined as a non-periodic order-
up-to-level policy. Under the details of the arrangement, the values of the safety stock level (SSL) and the 
maximum order-up-to-level are fixed for each customer. The maximum order-up-to-level is constrained 
by the physical system which contains the stock and negotiated amongst the supplier and the customer 
based on the expected product consumption over the duration of the arrangement. The SSL is determined 
through simulation optimization. The amount delivered will vary for each delivery. The product being 
delivered has a targeted lead time + review (LT), which the supplier attempts to respect.  

For a specific customer and a single replenishment, the equation to forecast the date of the replenishment 
𝑡𝑡𝑟𝑟�  and the amount of the replenishment 𝑄𝑄𝑟𝑟�  are follows. 

𝑡𝑡𝑟𝑟� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡

��𝐷𝐷𝚤𝚤�
𝑡𝑡

𝑖𝑖=𝑡𝑡𝑠𝑠

≥  𝑆𝑆𝑡𝑡𝑠𝑠 − 𝑆𝑆𝑆𝑆𝑆𝑆� (1) 

For a starting date 𝑡𝑡𝑠𝑠, the forecasted date of replenishment 𝑡𝑡𝑟𝑟�  is the smallest time at which the cumulated 
forecasted demand 𝐷𝐷𝚤𝚤�  time series is greater than the difference between the starting stock 𝑆𝑆𝑡𝑡𝑠𝑠 and the 
SSL, i.e., the first date our cumulated customer demand exceeds the safety reserves. 

𝑄𝑄𝑟𝑟� = �𝐷𝐷𝚤𝚤 �
𝑡𝑡𝑟𝑟�

𝑖𝑖=𝑡𝑡𝑠𝑠

(2) 
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The forecasted replenishment amount is equal to the customer’s demand from 𝑡𝑡𝑠𝑠 to 𝑡𝑡𝑟𝑟�  inclusively. We 
include the 𝑡𝑡𝑟𝑟�  in the sum as some demand will be consumed on the day of delivery. Generally, the starting 
date 𝑡𝑡𝑠𝑠 will be the day immediately following a delivery as after a delivery. The supplier will wish to know 
when to schedule the next delivery. 

A unique benefit of VMI arrangements is that since the demand data is being continuously fed to the 
supplier, either through data collection or information sharing, the supplier can update the delivery 
forecast 𝐷𝐷𝚤𝚤�  whenever new observations of the demand are acquired. Updating the demand forecast with 
new observations improves the accuracy of the replenishment date and amount as the true demand is 
now partly known. However, because the product has an LT, there is a set amount of time during which 
the supplier cannot update the forecast. The forecast is locked in for production, scheduling, and review. 

For example, consider a product with an LT of 5 and a starting date 𝑡𝑡𝑠𝑠. An initial forecast for 𝑡𝑡𝑟𝑟�  is 8. The 
supplier waits a day to collect that day’s actual demand data and performs a new forecast. This second 
forecast for 𝑡𝑡𝑟𝑟�  is 5. Both forecasts have the same starting date 𝑡𝑡𝑠𝑠. This second forecast is sent off for 
production and scheduling since our LT has been reached. 

Two additional replenishment cases are treated separately. First, if the forecasted replenishment date 
following a delivery is less than the LT, we assume that the supplier will accelerate the production and 
perform the delivery anyway. Second, if due to a bad forecast of the demand, the level of stock ends up 
under the SSL or if there is a stock-out, an emergency delivery is done immediately the following day. 
Increasing the safety stock level can reduce the occurrence of these two events.  

3.2 Simulation  
Simulation is a common strategy when validating proposed methodologies in both VMI literature (Borade 
and Sweeney, 2015) and intermittent demand inventory management (Bartezzaghi et al., 1999; Eaves and 
Kingsman, 2004; Persson et al., 2017; Syntetos et al., 2015). Simulating a VMI arrangement entails 
determining optimal replenishments over a time frame for a targeted service level. Simulations are useful 
because they allow for retrospective analysis to determine a minimal optimal safety stock level (Eaves and 
Kingsman, 2004; Persson et al., 2017; Scala et al., 2013). The experimental nature of this paper will be to 
simulate our VMI arrangement and measure the performance under the demand information scenarios. 
Our strategy is iterative in nature. The VMI is simulated under a set number of parameters and re-
evaluated iteratively until the optimal safety stock level and replenishments are found. 
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Fig. 1. Simulation flowchart 

Before the simulation begins, we set the values of the product’s LT, the customer’s maximum order-up-
to-level, and the safety stock level for the customer. The supplier will attempt to always keep the customer 
above the safety level. Then, a starting date for the simulation is chosen. The initial stock level at the start 
date is measured from the real telemetry data. From this date and stock level, we forecast the date and 
amount of the next replenishment following the forecasting process described in the previous section. 
While a replenishment date is forecasted, we also follow the real stock changes at the customer’s site to 
see if an out-of-stock may occur before the forecasted replenishment is done. If a stock-out occurs, the 
event is logged, and an emergency delivery is sent out the next day to fill the customer to the maximum 
level. Once the delivery is done, the procedure is repeated using the replenishment date and amount as 
the starting date and stock amount for the next forecast. This process is repeated sequentially over the 
window of time dedicated for the simulation. These steps are shown visually on the flowchart in Fig. 1. 

This process represents a single iteration of a simulation of the supply chain for a specific safety stock 
level. The service level of an iteration is 1 minus the ratio of out-of-stock deliveries over the total number 
of deliveries done in the simulation. A service level of 100% means there were no stock-outs. To determine 
the required safety stock for a targeted service level for a customer, we iterate the simulation over all 
possible safety stock amounts, i.e., [0-100%] of the maximum stock. To speed up the iterating process, we 
used a bisection algorithm with a stopping tolerance criterion of 2%.  

Generally, VMI arrangements target a 100% service level. However, since our experimental design allowed 
for it, we simulate for service levels of 85%, 90%, 95%, and 100%. Targeted service levels in our simulations 
are always achieved at a minimum, i.e., we may target a 90% service level but achieve a 92%, since one 
more stock-out would bring us to an 89% service level, which is not allowed. Furthermore, since we 
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included the LT in our replenishment forecasts, we can study its effect during our simulation by changing 
the LT value, assuming the supplier is capable of such a feat. 

3.3 Data 
The data available from the supplier’s VMI arrangement are the demand time series of its customers as 
seen from two points of view. At a customer’s site, the telemetry periodically measures the stock level. 
Ignoring the stock changes due to deliveries, we take the first difference and aggregate to the daily level. 
This is the telemetry demand time series and represents the customer’s stock usage. On the supplier’s 
side, a historical record of the deliveries sent to customers is maintained. These records are aggregated 
to the daily level and make the deliveries demand time series. To be concise when distinguishing between 
the results using these two demand time series, the telemetry demand time series will be referred to by 
telemetry and the historical delivery time series by delivery. These two sources of demand data are shown 
visually on Fig. 2. 

 

Fig. 2. Supply chain information overview 

For both time series, the supplier provided observations for 921 customers from 2015-07-01 to 2016-12-
31, i.e., the second half of 2015 and the full year of 2016. From this, we chose for the starting training 
data the second half of 2015 and for the simulation time window the year of 2016. The simulation begins 
on 2016-01-01, using as starting value the last stock value measured on 2015-12-31. There is a minimum 
of two observations of the demand in the second half of 2015 in order to train the forecasting model.  

The descriptive statistics for the delivery and consumption time series are shown respectively in Table 1 
and Table 2 for the three constituent parts of the Croston intermittent model: demand, interdemand 
interval, and demand per period. We note the interdemand interval of 1 in the telemetry up to the third 
quartile. Since the telemetry time series are daily observations of the consumed stock, this indicates that 
in roughly 75% of observations some amount of stock is used every day. This would initially lead us to 
believe that most telemetry time series are not intermittent, as they will most likely have a low number 
of 0 observations. 
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Table 1 
Descriptive statistics of the historical deliveries demand time series 

 Demand (units) Interdemand interval (days) Demand per period (units/day) 
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Min. 43.36 23.22 9.19 15.94 3.37 3.64 
1st Qu. 76.25 33.48 15.64 18.94 9.02 12.52 
Median 93.15 39.57 20.13 22.87 13.10 18.94 
3rd Qu. 108.55 44.56 25.08 26.45 19.93 29.52 
Max. 157.79 91.58 39.01 35.77 67.63 91.01 

 

Table 2   
Descriptive statistics of the telemetry demand time series 

 Demand (units) Interdemand interval (days) Demand per period (units/day) 
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Min. 2.85 7.08 1 0 2.84 7.08 
1st Qu. 7.93 14.35 1 0 7.93 14.34 
Median 11.31 18.33 1 0 11.30 18.33 
3rd Qu. 15.52 24.95 1.00 0.03 15.52 24.95 
Max. 71.60 117.80 1.48 2.28 71.11 117.18 

 

SBC-KH-SES intermittent time series categorization (Petropoulos and Kourentzes, 2015) of the telemetry 
and delivery time series is shown in Table 3. Time series are categorized based on the coefficient of 
variation of the demand and the interdemand interval. The table also specifies the optimal model for 
forecasting between Croston, SBA, and Simple Exponential Smoothing (SES). Time series categorized as 
Croston or SBA are intermittent. Time series categorized as SES are not intermittent. 100% of delivery 
time series in our dataset are classified as intermittent compared to only 24% of telemetry time series.  

Table 3  
SBC-KH-SES intermittent time series categorization of the delivery and telemetry time series 

Category Delivery Telemetry 
Croston 7 66 
SBA 914 153 
SES 0 702 

 

The collection of point-of-sale data using telemetry does not entirely resolve the issue of working with 
intermittent data under VMI. However, this intermittent behavior is due almost entirely to variations in 
the demand amount, as the interdemand interval is 1 in most cases. VMI is proposed as a solution under 
the belief that the demand collected at or shared by the customer is not intermittent. However, this is not 
the case if that customer’s own demand is also intermittent. Furthermore, there always remains the case 
that if the data is unavailable, the supplier falls back to using historical delivery records, which are more 
likely to be intermittent (Murray et al., 2018a). 

3.4 Forecasting Model 
Core to the VMI framework is a demand forecast. It is from this demand forecast that the replenishment 
amount and date are determined (eq. 1-2). When choosing the demand forecasting model, we were 
guided by two considerations. First, the forecasting model must be capable of accommodating both 
intermittent time series and standard time series. As shown in Table 3, the telemetry and deliveries time 
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series possess different degrees of intermittency. Fortunately, most intermittent time series forecasting 
models can model non-intermittent data and have been tested on a wide range of intermittent and non-
intermittent data (e.g., M-competition) (Kourentzes et al., 2014; Spithourakis et al., 2012).  

Second, calculation speed is a practical concern since time is limited. As described in 3.1, the demand 
forecast can be updated when new demand data is received. In our case study, the telemetry demand 
data was collected at the end of the day. The forecast is repeated multiple times from the start date until 
the product’s LT is reached. Thus, the number of forecasts being performed scales with the number of 
customers and the number of days in the simulation time frame. This comes out to ~325,000 point 
forecasts (921 x 365) for each bisection iteration of a supply chain simulation. 

The parametric SBA Croston’s method was chosen for the forecasting method as it offers fast computation 
and the most empirical validation (Gardner, 2006; Syntetos et al., 2016; Syntetos and Boylan, 2005; 
Syntetos et al., 2015). The SBA method is presented in equations (3-5). 

𝑍̂𝑍𝑡𝑡 =  𝛼𝛼𝑧𝑧𝑧𝑧𝑡𝑡 + (1 − 𝛼𝛼𝑧𝑧)𝑧̂𝑧𝑡𝑡−1 (3) 

𝑋𝑋�𝑡𝑡 =  𝛼𝛼𝑥𝑥𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼𝑥𝑥)𝑥𝑥�𝑡𝑡−1 (4) 

𝑍̂𝑍𝑡𝑡 and 𝑋𝑋�𝑡𝑡 are the SES forecasts of the non-zero demand amounts and the intervals between non-zero 
demand periods, respectively.   

𝑦𝑦�𝑡𝑡 = �1 −
𝛼𝛼𝑥𝑥
2
� 𝑍̂𝑍𝑡𝑡 𝑋𝑋�𝑡𝑡�  (5) 

To determine the point forecast 𝑦𝑦�𝑡𝑡, the ratio of the demand amount over the interval is performed with 
a bias correction.  

Both smoothing parameters 𝛼𝛼𝑥𝑥 and 𝛼𝛼𝑧𝑧 are set to the commonly used values of 0.05 (Syntetos and Boylan, 
2005). Although it has also been recommended to use different values for the smoothing parameters 
(Schultz, 1987) or to optimise these values on training data (Kourentzes, 2014), we found that considering 
the very low number of observations in the training dataset for each customer (minimum of 2 
observations in the training data), either option could lead to overfitting the parameters. Furthermore, 
setting the values of Croston’s method makes it quicker to compute compared to more sophisticated 
alternatives.  

Croston’s method can be viewed as a more general case of simple exponential smoothing. When the 
interdemand interval 𝑋𝑋�𝑡𝑡 is equal to 1, i.e., the time series is non-intermittent, Croston’s method reduces 
itself to simple exponential smoothing. This allows for Croston’s method to model both intermittent and 
non-intermittent time series. 

A further computational advantage of Croston’s method is that the point forecast 𝑦𝑦�𝑡𝑡 is only updated when 
a non-zero demand observation occurs. This means that the forecast can be “valid” for many days if no 
new demand is observed. In the VMI with delivery data strategy, this means we only need to compute the 
replenishment once, regardless of LT, as no new information is collected until the forecasted 
replenishment delivery is done which can be used to update the forecast. 
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3.5 Performance Measurement 
The effects of forecast errors on inventory management have been studied for more general use cases 
(Sanders and Graman, 2009). Under intermittent demand, accuracy measures are known for being 
misleading (Teunter and Duncan, 2009; Wallström and Segerstedt, 2010). Therefore, as prescribed in 
other studies on intermittent demand stock control accuracy (Kourentzes et al., 2020; Syntetos et al., 
2010), the performance is evaluated only on the stock.  

When evaluating the impact of an inventory strategy on stock, what needs to be shown is the relationship 
between the costs of implementing the strategy versus the inventory outcome. Trade-off curves offer a 
visual understanding of the trade-off between total inventory investment and the outcome (Gardner, 
1990, 2006). Plotting multiple trade-off curves on the same graph makes it possible to compare the 
performance of different scenarios. 

The result of the VMI simulation is the optimal replenishments and the safety stock level required to 
achieve a targeted service level for each customer. The cost of the VMI strategy contains 2 aspects: the 
deliveries and the inventory. Inventory costs are measured as the total stock which must remain on site 
for all customers. Delivery costs are the number of deliveries. Trade-off curves are presented separately 
for these two costs. On each trade-off curve, we superimpose the result for each simulation scenario. 

Another useful measurement of the inventory performance is the exact safety stock level required to 
achieve a targeted service level (Eaves and Kingsman, 2004). This level is a fraction of the maximum stock 
allowed on a customer’s site. In our VMI simulations, the safety stock level is calculated for each customer. 
To present these results, we will show the distribution of the safety level under each information scenario 
for targeted service levels using a box plot. 

4 Empirical Evaluation and Discussion 
The VMI arrangement was simulated for targeted service levels of 85%, 90%, 95%, and 100% under both 
telemetry and delivery demand information with a product LT of 3 and 7. As described in 3.4, a shorter LT 
has no effect when the demand data is the historical deliveries with Croston’s forecasting method; it is 
thus omitted from the results. A shorter lead time can be understood as allowing the supplier to gain more 
demand knowledge before performing a replenishment. The question these results answer is the impact 
of demand information strategies on the VMI costs as explored through data acquisition strategies and 
the LT. Under each data scenario, the simulation returns the replenishment dates and amounts, the 
service interruptions for service levels of less than 100%, and the safety stock level required to achieve 
the service level.  

In the results figures, the results for different data strategies are labelled as follows: the demand data 
collected through a customer’s point-of-sale telemetry system is labelled as telemetry, and the demand 
data collected by the supplier’s aggregated delivery records is labelled as delivery. The LT is indicated to 
the right of the data label. 

Firstly, we were successful in determining replenishment and safety stock levels under intermittent 
delivery information for all our customers. This shows the possibility of operating a VMI using solely a 
supplier’s historical deliveries without information sharing or telemetry data collection. It is possible even 
while ensuring a 100% service level. This is important, as VMIs, like any supply chain arrangement, are 
imperfect (Colicchia et al., 2019). Information may be missing or specific partners may be unwilling to 
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provide all the required information (Kembro and Näslund, 2014; Wang et al., 2014). Although specialized 
forecasting models have been suggested to perform point forecasts of the demand in situations where 
data is missing, their use has not been evaluated empirically (Murray et al., 2018a). Our results offer such 
an empirical validation under a complex inventory management arrangement like VMI. Even without 
information sharing or collection, intermittent demand forecasting makes it possible and even worthwhile 
to engage in VMI.  

 

Fig. 3. Exact safety stock level distribution 

Fig. 3 presents the distribution of the safety stock level as a percentage of the maximum allowed stock on 
site for a targeted service level. For a service level of 100% (most common in VMI), the mean safety stock 
is halved from 32% to 17% when going from delivery data to telemetry data. Lowering the product’s lead 
time further halves the mean safety stock from 17% to 9%. These ratios are roughly maintained for the 
other service level values. However, in absolute terms, the improvement is greatest for higher service 
levels, since the mean safety stock is smaller for smaller values of service levels. 

Looking at outliers in all three simulations reveals similarities in both their number and their required 
safety stock. For a given service level, the furthest outlier is similar in each configuration. This behavior is 
more obvious for the outliers at a service level 1 where certain customers’ demand is intermittent enough 
to require nearly 100% safety stock to ensure the service level under all information scenarios. The 
number of outliers also remains consistent for each information scenario across the different service level. 
For example, there are only a couple of outliers for the delivery data at each service level. These two 
observations indicate that this is an issue directly with the demand of some specific customers. Their 
demands are so lumpy, that regardless of the data, they are unforecastable. Individual cost benefit of 
outlying customers may indicate to the supplier that a VMI arrangement is unprofitable with them. The 
supplier may then decide to return to a more standard arrangement or ask for more information sharing 
from those customers.  
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Fig. 4. Number of deliveries vs. service level 

 

Fig. 5. Inventory vs. service level 

Fig. 4 and Fig. 5 present the trade-off curves for the inventory stock and the number of deliveries versus 
the service level. For both performance measurements at all service levels, telemetry data is better than 
delivery data and lower lead times are better. For a service level of 100%, telemetry data offers an 
improvement of 16% in the number of deliveries and of 43% in inventory stock over delivery data. 
Lowering the lead time from 7 to 3 offers a further improvement of 21% in the number of deliveries and 
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of 45% in inventory stock. There are greater improvements in inventory stock than in the number of 
deliveries for all service levels between the information strategies. Intuitively, there will always be a 
minimum number of deliveries for customers even under perfect information. However, the inventory 
stock nears 0 with perfect information, i.e., no safety level is necessary with perfect forecasts. Telemetry 
data lowers the number of deliveries and inventory stock since there are fewer deliveries of greater 
amounts. 

The inventory stock amount can be translated directly into an inventory cost by multiplying the amount 
by the product’s price. In our context, there were only 2 different products being delivered of a 
comparable price. As such, the transformation from stock to cost is linear. Determining the cost for 
deliveries is much more complicated. A full analysis of the delivery costs would include, but not be limited 
to, routing and truck sizing (Borade and Sweeney, 2015). Unfortunately, this was not done as the required 
data was not available to us. Regardless, we can safely claim that lowering the number of deliveries will 
lower the total delivery costs. Even without directly calculating the costs of the deliveries and inventory 
stock, we can still offer the following recommendations. 

Since the cost reduction is greater for inventory stock than deliveries, that is to say, the major cost 
improvements under a VMI are the inventory, we differ in the conclusion of (Ru et al., 2018) that savings 
are more important if customer inventory holdings costs are low. Greater savings will be had by a VMI if 
a customer’s inventory holding costs are high. This is in continuation with the more standard 
recommendation in the literature (Kim, 2008). In this specific case study, our industrial partner’s stock 
holdings costs are low, as specialized standardized containers are required to store the product. Thus, the 
deciding factor for managers when doing a cost analysis is most likely to be industry specific. Perhaps this 
is what led to the opposing recommendations between (Ru et al., 2018) and (Kim, 2008). 

Performance improvements between the different scenarios is greater for higher service levels. Increased 
improvements at higher service levels is similar to previous inventory management strategy comparisons 
(Syntetos et al., 2015). However, there is one case in our results for which this is not respected. The 
difference in inventory stocks between delivery and telemetry data at a LT of 7 is consistent for all service 
levels. This has the managerial implication that acquiring improved data is more valuable at higher service 
levels when deliveries are the main cost driver, and valuable at all service levels when the inventory is the 
main cost driver. 

We note the sharper increase in the number of deliveries required to achieve a 100% service level 
compared to the inventory stock. The managerial implication would be that more delivery savings are to 
be had if the service level can be lowered even slightly from 100%. In our case, 95% may be as low as a 
single stock-out during the whole year. A strategy under VMI may be to negotiate a policy with a stock-
out penalty that still results in a cost saving when weighed against the reduced delivery and stock costs. 

The safety stock level increased with the service level. We can also deduce that the number of deliveries 
increases as a function of the safety stock level (simply flip the variables of Fig. 4). This implies that 
lowering the safety stock level can reduce the number of deliveries, as there will be fewer deliveries but 
of each delivery will be larger. Thus, it is possible to reduce the safety stock level while still maintaining 
the same service level by increasing the maximum order-up-to-level at a customer’s site. For example, 
doubling the maximum order-up-to-level reduces the safety stock level by half while the stock investment 
is the same. This strategy may help reduce the frequency of deliveries to this specific customer, but the 
deliveries will be larger. Furthermore, the cost of increasing the maximum order-up-to-level must also be 
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considered. In our context, this would require installing a second container or replacing it with a larger 
one. This strategy would be more useful for customers with high safety stock levels that can be identified 
using distributions like the ones shown on Fig. 3. 

5 Conclusion  
Good information is critical to produce good forecasts. When forecasts have large impacts on inventory 
policy, the need for good information only increases. Technological or strategic decisions on how to 
acquire information then becomes paramount. This paper simulated a VMI arrangement under different 
information strategies. Only a single forecasting model was used to isolate and compare the influence of 
the information strategy. Regardless of the chosen information strategy, intermittent time series were 
present and challenging. Using an SBA Croston forecasting model to determine the replenishment 
amounts and dates, demand data from a customer’s point-of-sale lowered the number of deliveries by 
16% and the inventory stock by 43% for a targeted service level of 100% compared to using demand data 
from a supplier’s delivery records. For lower service levels, lesser but consistent improvements between 
information strategies is maintained. Lowering product lead time to acquire more up-to-date demand 
information also reduces the number of deliveries and inventory stock.  

The described VMI framework in this paper allows for practitioners to implement a VMI style arrangement 
even without any information gathering. This is sometimes necessary when the required information is 
not made available to supply chain members—an inherent risk of any information sharing arrangement 
(Colicchia et al., 2019). This is an enhancement to previous methods that have focused on purely 
improving intermittent demand forecasts under missing information (Murray et al., 2018a). 

In the presented case, the performance improvements were larger in terms of inventory stock compared 
to the number of deliveries. We would thus recommend that suppliers will see more benefit for supply 
chains with higher inventory costs. This recommendation is in line with those given by (Kim, 2008). 
Furthermore, better information offers significantly more improvements for higher targeted service 
levels.  

Regardless of the chosen information strategy, intermittent demand remains an important challenge that 
industries will continue to face (Nikolopoulos, 2021). Our work reinforces the use of Croton’s model for 
inventory management under intermittent demand in terms of performance and for practical 
considerations. We concur with the recommended use of parametric models both for computational 
speed and their robustness (Syntetos et al., 2015). Our work also reinforces the growing consensus on the 
value of information sharing in supply chain management (Cao and Zhang, 2011; Jung et al., 2005; Zhou 
et al., 2017).  

The scope of this paper was limited to the comparison of demand information in intermittent supply chain 
forecasting. We did not tackle the challenge of comparing different forecasting models. Performing the 
simulation with different forecasting models would have allowed us to compare them, but multiple papers 
have already compared intermittent demand forecasting models (Hasni et al., 2019a; Mukhopadhyay et 
al., 2012; Syntetos et al., 2015) and our computing time was limited. The forecasting model remains of 
practical importance as a more accurate forecast of the reorder point means improved delivery and 
inventory performance for the same price of the demand data collection strategy. 
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Collecting improved data on demand either through data sharing or technological means between a 
customer and a supplier is also known to reduce noise in the data caused by the Bullwhip effect (Gang et 
al., 2017; Jeong and Hong, 2019). The link between the Bullwhip effect and intermittent demand has been 
discussed (Murray et al., 2018a). Our research only considers this effect as another source of noise which 
is present in a supplier’s delivery records demand data that must be overcome with better forecasting. 

Future work in VMI under intermittent demand may look at extending the idea proposed in (Kourentzes 
et al., 2020) to optimise the forecasting model directly on the VMI results. We believe that this would also 
require a simulation framework for the VMI arrangement. The framework proposed here can be used as 
a starting point. 

Finally, we are left pondering the issue of whether or not changes to the supply chain arrangement may 
also affect the intermittent behavior of the demand. Implementing a new replenishment policy may cause 
changes in the observed demand which would then change the replenishment policy. This type of 
feedback interaction could be analyzed from a systems theory angle. 
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