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Abstract. This paper addresses the integrated optimization of assortment 

breadth, shelf assignment, shelf space allocation, and positioning of the selected 

product groups on the multi-level shelves to maximize store profitability. To 

improve the tidiness and findability of the product groups along the shelves, 

following the merchandising rules, the allocated space to each product group 

should be rectangular and enclosed within the region of the larger group it 

belongs to. We formulate the problem as a mixed-integer linear programming 

model. A two-phased matheuristic algorithm is proposed to solve the problem. 

In the first phase, a simplified version of the problem is solved by a column 

generation heuristic. An optimization-based algorithm provides the initial 

columns by which the efficiency of the column generation heuristic is improved. 

The second phase uses the output of the first phase and solves a set of 

independent single-shelf problems. The numerical studies show that the 

proposed algorithm yields high-quality solutions for problem instances with up 

to 40 multilevel shelves and more than 1000 product groups with a relative 

optimality criterion of less than 3.8% in a reasonable time. Further, we 

demonstrate the usefulness of the proposed methodology by using a case study. 

Keywords: Assortment breadth optimization, merchandising rules, macro-level 

shelf space allocation, two-phased matheuristic, column generation heuristic. 

Results and views expressed in this publication are the sole responsibility of the authors and do 
not necessarily reflect those of CIRRELT. 
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la 
position du CIRRELT et n'engagent pas sa responsabilité. 

_____________________________ 

* Corresponding author: m.mahnam@iut.ac.ir

Dépôt légal – Bibliothèque et Archives nationales du Québec 
  Bibliothèque et Archives Canada, 2024 

© Abbaszadeh, Iranpoor, Mahnam, Bahrami and CIRRELT, 2024 



1. Introduction

The breadth of the assortment provided by a store is the main driver to attract cus-
tomers, while the conversion rate of the customers is mainly influenced by how the
space allocation is conducted. During a visit to a physical store, customers are ex-
posed to items which are not on their shopping list. For example, a customer visiting
a store to buy staple items might end up with unplanned and impulsive purchases.
Accordingly, retailers should offer an assortment of high-sales and impulsive product
groups and arrange them along the shelves in a way that increases the visibility of
both fast-moving and impulsive ones (Flamand et al., 2018).

The customers’ in-store experience is also heavily influenced by how convenient it is
to find the products they are searching for. The following merchandising rules can en-
hance the tidiness and findability of product groups along the shelves (Bianchi-Aguiar
et al., 2021). Firstly, the area allocated to each product group should be enclosed
within the area of its corresponding larger product group. For example, a retailer may
place subcategories of classic and drinkable yogurt in the area assigned to the yogurt
category. Secondly, to improve the findability of the areas allocated to various product
groups within a shelf, it is recommended that these areas be rectangular (Geismar
et al., 2015; Bianchi-Aguiar et al., 2018; Hübner et al., 2020).

Shelf space planning is divided into two hierarchical levels. At the macro-level,
the product groups form the basis of decisions on shelf space planning, while at the
micro-level, the individual products within each group are allocated to the shelves
(Bianchi-Aguiar et al., 2018; Hübner et al., 2020). Similarly, assortment planning in-
cludes hierarchical decisions about (i) the variety of product groups which are offered
in the store, i.e., breadth of the assortment, and (ii) the variety of items within each
product group, i.e., depth of the assortment (Kök et al., 2015). A broad variety of
product groups is in conflict with the limited space of store shelves. Consequently,
determining a subset of product groups to be carried in the store, i.e., the breadth of
assortment, and shelf space planning are two interrelated problems of great importance
to retailers.

This paper addresses assortment breadth planning and allocation of the selected
product groups to the multi-level shelves considering the merchandising rules. We
develop a two-phased matheuristic algorithm, which provides high-quality solutions
to instances with up to 40 multi-level shelves and more than 1000 product groups.
We also apply the proposed approach to a real case study and analyze the obtained
results.

The remainder of the paper is organized as follows. Section 2 provides a review
of relevant literature. Section 3 presents the formal problem statement. Section 4 is
dedicated to describing the mixed-integer linear programming model for the problem.
Section 5 delineates the solution approach. Section 6 presents the computational ex-
periments. Section 7 investigates the usefulness of the proposed approach in practice
using real data. Finally, Section 8 concludes the paper and summarizes the findings.
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2. Literature review

One main stream of shelf space allocation studies focuses on the micro-level, specifi-
cally addressing individual products. Corstjens and Doyle (1981), as one of the first
researchers in this area, developed a model to find the optimal space allocated to
each product considering the effects of space and cross-space elasticity on demand.
Hwang et al. (2009) extended this model by taking into account the location effects
on demand as well as deciding on the shelf design and item allocation. Geismar et al.
(2015) proposed a model for two-dimensional shelf space allocation that allows the dis-
play area of a product to spread across multiple levels of a shelf. Hübner and Schaal
(2017) developed an integrated model to determine the depth of assortment and the
space allocation decisions for listed items by considering both space and substitution
effects. Hübner et al. (2020) extended this problem by taking into account tilted two-
dimensional shelves. Bianchi-Aguiar et al. (2018) formulated a novel two-dimensional
shelf space allocation model which includes additional features related to the merchan-
dising rules. The authors considered a specific product group whose location within
the store has been determined in advance. Düsterhöft et al. (2020) developed an inte-
grated optimization model for shelf management and replenishment decision that con-
siders shelf segments with different height, depth, and width. Kim and Moon (2021)
proposed an integrated model for product selection, two-dimensional shelf space allo-
cation, and replenishment decisions considering the effects of space and location on
demand. Gencosman and Begen (2022) presented an exact method using logic-based
Benders decomposition to solve real-size instances of a two-dimensional shelf space al-
location problem with rectangular arrangement. Gecili and Parikh (2022) formulated
a model that jointly determines the design of a two-dimensional shelf and optimizes
the number of assigned faces per item within each product family.

These studies primarily focused on optimizing facing decisions to determine the
details of planograms, i.e., blueprints of the shelves, at an operational level. In most
cases, it is assumed that the assignment of product groups to the shelves was given by
preceding decisions at macro-level planning. Therefore, these studies investigated a set
of shelves independently without taking into account the store layout considerations
such as the customer traffic density in different store areas.

The other stream of shelf space planning studies addresses the macro-level and deals
with the product groups. Irion et al. (2011) developed an optimization model to de-
termine the assortment breadth and the amount of space allocated to each selected
product group. Ghoniem et al. (2016b) devised an optimization framework based on
a large-scale local search method to assign product groups to the shelves and simulta-
neously determined the horizontal location and the amount of space allocated to each
product group. In another study, Ghoniem et al. (2016a) provided an exact solution
to the problem using a branch-and-price algorithm which could solve the instances
with up to 60 product groups and 10 shelves. Flamand et al. (2016) developed an
optimization model to maximize impulse purchase profit by allocating shelf space to
the product groups. Flamand et al. (2018) proposed an integrated optimization model
for assortment planning and store-wide shelf space allocation problem by considering
a store that includes a set of single-level shelves. To maximize store profitability, this
model jointly optimized the breadth of the assortment, the assignment of product
groups to the shelves, the horizontal location of product groups within shelves, and
the amount of space allocated to each product group.

Table 1 summarizes the most related works to the present study. To the best of our
knowledge, there is no study that jointly determines the breadth of the assortment and
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Table 1. Summary of relevant studies

Reference
Shelf space

planning scope

Assortment

decision

Shelf space

allocation decisions

Merchandising

rules

Shelves

dimension

Store

wide
Solution approach

Hwang et al. (2009) Micro S/V/H R 2D Genetic algorithm

Geismar et al. (2015) Micro S/V/H R 2D ✓ Decomposition heuristic

Bianchi-Aguiar et al. (2018) Micro S/V/H R/P 2D Optimization-based heuristic

Hübner et al. (2020) Micro D S/V/H R 2D Genetic-based heuristic

Kim & Moon (2021) Micro D S/V/H 2D Tabu search, Genetic

Gencosman & Begen (2022) Micro S/V/H R 2D ✓ Two-stage exact model

Gecili & Parikh (2022) Micro S/V/H R/P 2D Decomposition-based approach

Irion et al. (2011) Macro B S 1D Hierarchical decomposition

Ghoniem et al. (2016a) Macro S/H 1D ✓ Branch-and-price

Ghoniem et al. (2016b) Macro S/H 1D ✓ Large-scale neighborhood search

Flamand et al. (2016) Macro S/H 1D ✓ Mixed-integer programing

Flamand et al. (2018) Macro B S/H 1D ✓ Optimization-based heuristic

This paper Macro B S/V/H R/P 2D ✓ Two-phased matheuristic

D = depth of the assortment; B = breadth of the assortment. S = space allocation; V = vertical location within a shelf; H = horizontal location within a shelf.

R = rectangular arrangement; P = product hierarchy. 1D = one-dimensional; 2D = two-dimensional.

macro-level shelf space allocation which takes into account rectangular arrangement
and product hierarchies. The studies investigating shelf space planning at the macro-
level assume that the store is composed of a set of single-level shelves, while the
current study considers a store that consists of multi-level shelves. According to this
table, the current study extends the problem studied by Flamand et al. (2018) with the
consideration of product hierarchies and rectangular arrangement of product groups
along multi-level shelves.

3. Problem definition

In this study, we consider a store consisting of K shelves. Each shelf k ∈ K consists of
Vk×Hk segments, where v, v′ ∈ Vk are the indices of shelf levels and h, h′ ∈ Hk are the
indices of horizontal segments. For example in Fig. 1, the displayed shelf consists of
4×3 segments. The intersection of shelf level v and horizontal segment h of the shelf k
is denoted by segment (v, h)k. Moreover, the horizontal coordinate of the leftmost and
rightmost corners of segment (v, h)k are denoted by Bk

h and Ek
h, respectively. Segment

(v, h)k has attractiveness γkvh ∈ (0, 1], which indicates the impact of its location on the
likelihood of visiting by the customers.

The retailer has pre-clustered the individual products based on a set of common
characteristics into U product groups (indexed by u,m, n ∈ U). The problem comprises
selecting a subset of product groups and allocating two-dimensional space of the shelves
to them in order to maximize the store profitability. If a product group is selected in
the assortment, it can be located on a number of consecutive shelf levels and its area
can spread horizontally over multiple contiguous segments. However, its total allocated
space should be between lower bound LOu and upper bound UPu and form a rectangle.

Furthermore, product groups are embedded in a product hierarchy with three lev-
els (L = 3, indexed by l ∈ L) of families (e.g., dairy), categories (e.g., milk), and
subcategories (e.g., low-fat milk), represented by sets F , C, and S, respectively (see
Fig. 2). We specify product groups available at level l using set Nl. The parent of
all product families is a dummy node at the root of the product hierarchy (N0). We
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Horizontal segment 1 Horizontal segment 2 Horizontal segment 3

Shelf level 4

Shelf level 3

Shelf level 2

Shelf level 1

Segment

Segment

Segment Segment

Segment Segment

Segment

Segment

Segment

Segment

Segment

Segment

Horizontal axis

Figure 1. Front view of a shelf k consisting of 4× 3 segments

Dummy node

F.2

C.2 C.3

S.3 S.4 S.5 S.6 S.7

Level 1 (Families)

Level 3 (Subcategories)

Level 2 (Categories)
C.1

S.1 S.2

F.1

Figure 2. Example of a product hierarchy with three levels

denote the product groups belonging to product group u by Mu. For example, in Fig.
2, MF.1 = {C.1} and MC.1 = {S.1, S.2}.

The area allocated to each product group must be enclosed within the area of
its parent. For instance, the area allocated to the toothpaste subcategory should be
enclosed within the area of the oral care category. In the same way, the area allocated
to the oral care category must be enclosed within the area allocated to the personal
care family. In contrast to product groups that should be placed together, specific
pairs of product groups, denoted by set A, should not be displayed on the same shelf
due to a lack of affinity. For example, suppose that A = {(Bleach, Juice)}. If these two
product groups are selected simultaneously in the store assortment, they will not be
assigned to the same shelf.

Following Flamand et al. (2018), the objective function is the total possible profit
of the selected product groups. The possible profit of each product group is a function
of its expected demand, profit margin, conversion rate, and the visibility of the region
in which it is displayed. It is worth mentioning that the substitution effect typically
exists between similar individual products within the same subcategory. Since this
study deals with product groups at the macro-level, here, this effect can be disregarded
and tackled in a downstream micro-level problem.

5

Optimization of Assortment Breadth and Allocation of the Selected Product Groups to the Two-Dimensional Shelves

CIRRELT-2024-03



4. Model formulation

This section introduces the mathematical formulation proposed for the problem, re-
ferred to as the General Problem (GP) model. The decision variables of the proposed
model are as follows:

• xku ∈ {0, 1}: xku = 1 if and only if product group u is assigned to shelf k.
• zkuvh ∈ {0, 1}: zkuvh = 1 if and only if product group u is assigned to segment (v, h)k.
• rum ∈ {0, 1}: rum = 1 if and only if product group m is displayed on the right side
of product group u in the same segment of a shelf.
• skuvh: length of space allocated to product group u along segment (v, h)k.
• ckuh: horizontal coordinate of the left side of the area allocated to product group u
in horizontal segment h of shelf k.

Fig. 3 illustrates the definition of the last two variables for a product group u which
is located on the horizontal segments 1, 2, and 3 of shelf levels 2 and 3. The detailed
description of the GP is provided in Sections 4.1 to 4.3.

Horizontal segment 1 Horizontal segment 2 Horizontal segment 3

Shelf level 4

Shelf level 3

Shelf level 2

Shelf level 1

The space allocated to a product group

Horizontal axis

Figure 3. Illustration of variables skuvh and ckuh

4.1. Objective function

The objective function maximizes the total possible profit, benefiting from the same
idea of Flamand et al. (2018):

Maximize
∑
k∈K

∑
u∈S

∑
v∈Vk

∑
h∈Hk

ϕu
γkvhs

k
uvh

Ek
h −Bk

h

, (1)

where ϕu = ρuνuηu is a measure of the highest possible profit for the product group u
in which ρu, νu, and ηu represent the profit margin, the expected demand volume, and
the conversion rate of this product group, respectively. It is assumed that the demand
of each product group is deterministic and computed as an average of all possible
scenarios. The conversion rate of product group u, ηu ∈ (0, 1], represents the likeli-
hood of it being purchased when noticed by a customer. The term γkvhs

k
uvh/(E

k
h −Bk

h)
calculates the visibility of product group u along segment (v, h)k. This term expresses
the likelihood of product group u to be spotted by a customer (Flamand et al., 2016).
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γkvh represents the visibility of segment (v, h)k and skuvh/(E
k
h −Bk

h) calculates the pro-
portion of this segment occupied by product group u.

4.2. Assignment constraints and space requirements

The constraints corresponding to the assignment of product groups to the store shelves
along with their space requirements are as follows:∑

k∈K
xku ≤ 1, ∀u ∈ F (2)∑

v∈Vk

∑
h∈Hk

zkuvh ≤ Mxku, ∀u ∈ U , k ∈ K (3)

skuvh ≤ (Ek
h −Bk

h)z
k
uvh, ∀u ∈ U , k ∈ K, v ∈ Vk, h ∈ Hk (4)∑

k∈K

∑
v∈Vk

∑
h∈Hk

skuvh ≤ UPu

∑
k∈K

xku, ∀u ∈ U (5)

∑
k∈K

∑
v∈Vk

∑
h∈Hk

skuvh ≥ LOu

∑
k∈K

xku, ∀u ∈ U (6)

xku + xkm ≤ 1, ∀u,m ∈ U : (u,m) ∈ A, k ∈ K (7)

Constraints (2) ensure that each product family can be assigned to no more than one
shelf. Constraints (3) enforce that a product group can be displayed on segments of a
shelf only if it is assigned to that shelf. Constraints (4) state that the amount of space
allocated to any product group in each segment cannot exceed the segment capacity.
Constraints (5) and (6) guarantee that the total space allocated to each product group
should not violate its corresponding lower and upper bounds. Constraints (7) prevent
pairs of product groups having a lack of affinity to be assigned on the same shelf.

4.3. Merchandising rules constraints

In each segment, different product groups should not overlap horizontally. Further,
the space allocated to each product group in each shelf level should not be composed
of separate areas. Eqs. (8) to (15) guarantee these requirements.

rmn + rnm ≥ zknvh + zkmvh − 1,

∀l ∈ L ∪ {0}, u ∈ Nl, n,m ∈ Mu : n < m, (n,m) /∈ A, k ∈ K, v ∈ Vk, h ∈ Hk

(8)

cknh + sknvh ≤ ckmh +M(1− rnm),

∀l ∈ L ∪ {0}, u ∈ Nl, n,m ∈ Mu : n ̸= m, (n,m) /∈ A, k ∈ K, v ∈ Vk, h ∈ Hk

(9)

ckuh + skuvh ≤ Ek
h, ∀u ∈ U , k ∈ K, v ∈ Vk, h ∈ Hk (10)

cku,h+1 ≤ Bk
h+1 +M(2− zkuvh − zkuv,h+1),

∀u ∈ U , k ∈ K, v ∈ Vk, h ∈ {1, . . . ,Hk − 1} (11)

cku,h+1 ≥ Bk
h+1 −M(2− zkuvh − zkuv,h+1),

∀u ∈ U , k ∈ K, v ∈ Vk, h ∈ {1, . . . ,Hk − 1} (12)
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cku,h−1 + skuv,h−1 ≤ Ek
h−1 +M(2− zkuvh − zkuv,h−1),

∀u ∈ U , k ∈ K, v ∈ Vk, h ∈ {2, . . . ,Hk} (13)

cku,h−1 + skuv,h−1 ≥ Ek
h−1 −M(2− zkuvh − zkuv,h−1),

∀u ∈ U , k ∈ K, v ∈ Vk, h ∈ {2, . . . ,Hk} (14)

skuv,h+1 ≥ (Ek
h+1 −Bk

h+1)(z
k
uvh + zkuv,h+2 − 1),

∀u ∈ U , k ∈ K, v ∈ Vk, h ∈ {1, . . . ,Hk − 2} (15)

Constraints (8) require that if two product groups are on the same shelf segment,
one must be on the right side of the other. Constraints (9) ensure that the product
groups on the right side of product group n are horizontally positioned after the
location of product group n plus the length of the area occupied by this product
group. Constraints (10) limit the space for each product group on a segment to the
right border of that segment. Constraints (11) to (14) determine the left and right
coordinates for a group when it is assigned to adjacent horizontal segments. Constraints
(15) allow a group to be assigned to two nonadjacent segments if it spans the segment
between them.

On each shelf, the space allocated to each product group should be enclosed in the
allocated space of its parent and rectangular. Eqs. (16) to (22) assure these require-
ments.

ckmh ≥ ckuh, ∀l ∈ L, u ∈ Nl,m ∈ Mu, k ∈ K, v ∈ Vk, h ∈ Hk (16)

ckuh + skuvh ≤ ckmh + skmvh, ∀l ∈ L, u ∈ Nl,m ∈ Mu, k ∈ K, v ∈ Vk, h ∈ Hk (17)

sku,v+1,h ≤ skuvh +M(2− zkuvh − zku,v+1,h),

∀u ∈ U , k ∈ K, v ∈ {1, . . . , Vk − 1}, h ∈ Hk (18)

sku,v+1,h ≥ skuvh −M(2− zkuvh − zku,v+1,h),

∀u ∈ U , k ∈ K, v ∈ {1, . . . , Vk − 1}, h ∈ Hk (19)∑
v′∈Vk

∑
h′∈Hk,
h′≥h+1

zkuv′h′ ≤ M(1− zkuvh + zkuv,h+1),

∀u ∈ U , k ∈ K, v ∈ Vk, h ∈ {1, . . . ,Hk − 1} (20)∑
v′∈Vk,
v′≥v+1

∑
h′∈Hk

zkuv′h′ ≤ M(1− zkuvh + zku,v+1,h),

∀u ∈ U , k ∈ K, v ∈ {1, . . . , Vk − 1}, h ∈ Hk (21)∑
v′∈Vk,
v′≤v−1

∑
h′∈Hk

zkuv′h′ ≤ M(1− zkuvh + zku,v−1,h),

∀u ∈ U , k ∈ K, v ∈ {2, . . . , Vk}, h ∈ Hk (22)

xku, z
k
uvh ∈ {0, 1}, ∀u ∈ U , k ∈ K, v ∈ Vk, h ∈ Hk (23)

rum ∈ {0, 1}, ∀u,m ∈ U : u ̸= m (24)

skuvh, c
k
uh ≥ 0, ∀u ∈ U , k ∈ K, v ∈ Vk, h ∈ Hk (25)

Constraints (16) and (17) enforce that, in each segment, the space allocated to each
product group is contained within the space allocated to its parent. Constraints (18)
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and (19) guarantee that if product group u is simultaneously assigned to segments
(v, h)k and (v + 1, h)k, its allocated space in these two segments should be equal.
Constraints (20)-(22) preclude the assignment of any product group to the sets of
segments when it contradicts the requirement that the whole space of each group
must form a rectangle. Finally, constraints (23) to (25) indicate the domains of the
decision variables.

5. Solution approach

This section proposes a two-phased matheuristic, called TPM, to solve GP. In the first
phase, a simplified version of the GP, called SGP, is solved using a column generation
heuristic. In the second phase, GP is solved independently for each shelf, considering
only the product families which have been assigned to that shelf in the solution of the
SGP.

5.1. Phase 1: SGP model

SGP is formulated by replacing merchandising constraints (8)-(22) in GP with con-
straints (26) and (27):

skuvh ≥
∑

m∈Mu

skuvh, ∀l ∈ L, u ∈ Nl, k ∈ K, v ∈ Vk, h ∈ Hk (26)

∑
u∈Nl

skuvh ≤ Ek
h −Bk

h, ∀l ∈ L ∪ {0}, k ∈ K, v ∈ Vk, h ∈ Hk. (27)

In the absence of constraints (8)-(22), constraints (26) guarantee that the space
allocated to a product group along any segment is at least as large as the total space
allocated to its included product groups. Moreover, constraints (27) restrict the total
amount of allocated space of a segment to its capacity.

To solve this problem, we first reformulate SGP to a column-oriented form and then
decompose it into a master problem (MP), and a pricing sub-problem (PSP). The
former is a 0-1 integer programming model that selects the family-to-shelf assignment
patterns (columns) from a given set of available patterns. The latter is a mixed-integer
linear programming model, searching for the columns with negative reduced costs to
improve the solution of MP.

Let Jk denote the set of distinct columns corresponding to feasible family-to-shelf
assignment patterns for shelf k. Then, the column vector Dk

j , which represents the jth
column for shelf k, is defined as follows:

Dk
j =

u = 1
u = 2

...
u
...

u = |F|


(
dkuj

)
 ,

where dkuj = 1 implies that pattern j of shelf k includes family u. In other words, in

this pattern xku = 1.
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The formulation of the MP model is stated as follows:

MP : Maximize
∑
k∈K

∑
j∈Jk

δkj y
k
j (28)

subject to :
∑
k∈K

∑
j∈Jk

dkujy
k
j ≤ 1, ∀u ∈ F (29)

∑
j∈Jk

ykj ≤ 1, ∀k ∈ K (30)

ykj ∈ {0, 1}, ∀k ∈ K, j ∈ Jk, (31)

where ykj is a binary variable representing whether or not column Dk
j is selected.

Further, let s̄kuvh be the space allocated to product group u along segment (v, h)k in the
PSP optimal solution, corresponding to column Dk

j . Then, the objective coefficient δkj
is calculated by setting skuvh = s̄kuvh and K = {k} in Eq. (1). Constraints (29) guarantee
the assignment of each product family to at most one shelf. Constraints (30) ensure
that each shelf will be represented at most by one column. Constraints (31) enforce
the logical binary restrictions on the decision variables.

By relaxing constraint (31) to 0 ≤ ykj ≤ 1, the resulting linear master problem
(LMP) can be efficiently solved by column generation (CG). This procedure starts by
solving a restricted linear master problem (RLMP), with a subset of feasible columns.
At each iteration, PSP generates a new column for each shelf, based on dual solutions
associated with RLMP constraints. The generated column for a shelf is added to RLMP
if it has a negative reduced cost and updated RLMP is solved again. This procedure
continues until no column with negative reduced cost is found; in this case, the optimal
solution of LMP is obtained (Chen et al., 2009; Wolsey, 2020).

Let π and µ represent the dual variables associated with constraints (29) and (30),
respectively, where π̄ and µ̄ indicate their values. For each shelf k ∈ K, we solve the
following pricing sub-problem:

PSP(π̄, µ̄, k) : Minimize

{
µ̄k +

∑
u∈F

π̄uxu −
∑
u∈S

∑
v∈Vk

∑
h∈Hk

ϕu
γkvhsuvh

Ek
h −Bk

h

}
(32)

subject to :
∑
v∈Vk

∑
h∈Hk

zuvh ≤ Mxu, ∀u ∈ U (33)

suvh ≤ (Ek
h −Bk

h)zuvh, ∀u ∈ U , v ∈ Vk, h ∈ Hk (34)∑
v∈Vk

∑
h∈Hk

suvh ≤ UPuxu, ∀u ∈ U (35)

∑
v∈Vk

∑
h∈Hk

suvh ≥ LOuxu, ∀u ∈ U (36)

xu + xm ≤ 1, ∀u,m ∈ U : (u,m) ∈ A (37)

suvh ≥
∑

m∈Mu

suvh, ∀l ∈ L, u ∈ Nl, v ∈ Vk, h ∈ Hk (38)

∑
u∈Nl

suvh ≤ Eh −Bh, ∀l ∈ L ∪ {0}, v ∈ Vk, h ∈ Hk, (39)

where xu is a binary variable indicating the selection of product group u in the
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column of shelf k. Additionally, zuvh is a binary variable representing whether prod-
uct group u is assigned to segment (v, h)k, and suvh is the length of space allocated
to product group u along segment (v, h) in the column of shelf k. PSP generates a
column by employing x-variables related to the families, minimizing the reduced cost,
i.e., objective function (32). Constraints (33)-(39) are similar to constraints (3)-(7) and
(26)-(27) of the SGP, but they are specifically applied to single-shelf pricing subprob-
lems where K = {k}. Furthermore, we add the following valid inequalities to speed up
the PSP solution time.

xm ≤ xu, ∀l ∈ L, u ∈ Nl,m ∈ Mu, (40)

which state that each product group can be selected for shelf k if its parent product
group is also selected.

5.1.1. Generating initial columns

In this section, we present an optimization-based algorithm to create initial columns
for RLMP. To this end, let Capk represent the capacity of each shelf k ∈ K and ak be
a measure of its relative attractiveness, which are computed as follows:

Capk = Vk ×
[ ∑
h∈Hk

(Ek
h −Bk

h)

]
, (41)

ak =

∑
v∈Vk

∑
h∈Hk

γkvh(E
k
h −Bk

h)

Capk
. (42)

Additionally, let σ = (σ1, . . . , σK) be a permutation of the shelves, sorted in non-
increasing order of their relative attractiveness. In the proposed method, the initial
columns are generated respectively for σ1, . . . , σK . The initial column for each shelf is
generated by consecutively solving two optimization problems. Firstly, a set of families
are assigned to shelf k∗ by solving the following knapsack problem using the algorithm
proposed by Dantzig (1957):

KP(k∗) : Maximize
∑

u∈F\Sf

ϕuxu

subject to :
∑

u∈F\Sf

UPuxu ≤ Capk∗

0 ≤ xu ≤ 1,∀u ∈ F \ Sf .

Secondly, we solve model S-SGP(k∗) for shelf k∗, which is SGP with only shelf K =
{k∗} and its objective function is denoted by δk

∗

0 . The pseudocode of this method is
described in Algorithm 1.

As a simple alternative approach, the RLMP could be initialized with columns
where all elements are set to zero, indicating that all shelves are empty and no product
group is selected in the assortment. The performance of the CG procedure under these
alternative initializations is compared in Section 6.
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Algorithm 1 Initialization procedure

1: Input σ, k ← 1, Sf ← ∅
2: k∗ ← σk

3: Solve KP(k∗)
4: Fk∗ ← set of all families with positive value of xu in the optimal solution of KP(k∗)
5: Solve S-SGP(k∗), regarding product families in Fk∗ and their included product groups

6: Fk∗ ← set of all product families with xu = 1 in the optimal solution of S-SGP(k∗), Sf ← Sf ∪ Fk∗

7: δk
∗

0 ← the calculated objective function of S-SGP(k∗)

8: Generate Dk∗
0 regarding Fk∗

9: Add Dk∗
0 to RLMP.

10: If (k < K) and (Sf ̸= F) then k ← k + 1 and go to step 2

11: Stop

5.1.2. Column generation heuristic

The column generation procedure solves the LMP. In order to obtain the integral
values for ykj s, CG procedure is equipped with the the following heuristic. Let Ȳt be

the set of optimal values of variables associated with the RLMP columns (i.e., ykj ) at
iteration t of the CG procedure. We denote the largest value of this set by ȳt(k

∗, j∗).
Further, consider Ωt as the set of columns with negative reduced cost at iteration t
of the CG procedure. At any iteration, if RLMP is non-degenerated for the last τ
iterations or no column is identified with a negative reduced cost, i.e., Ωt = ∅, the j∗th
column of shelf k∗ is accepted as an assignment for this shelf, i.e., yk

∗

j∗ = 1. The set
of product families selected and assigned to shelf k is denoted by Fk. This procedure
continues until an assignment is obtained for every shelf. The flowchart of Phase 1 is
shown in Fig. 4.
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Figure 4. Phase 1
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5.2. Phase 2: repairing algorithm

The previous phase obtains an integer solution for SGP. However, it is possible that the
space allocated to some selected product groups does not follow the relaxed merchan-
dising rules, e.g., not organized in rectangular shapes. In this phase, we solve the single-
shelf variant of the GP model for each shelf k ∈ K, wherein the selectable set of product
groups for shelf k is limited to the families assigned to this shelf in Phase 1 together
with their corresponding categories and subcategories. Consequently, the formulation
of the single-shelf problem for shelf k can be obtained by setting K = {k}, F = Fk,
C = Ck = {u|u ∈ MFk

}, S = Sk = {u|u ∈ MCk}, and U = Uk = {u : u ∈ Fk ∨Ck ∨Sk}
in the GP model.

6. Computational studies

In this section, we evaluate the performance of the TPM algorithm by comparing the
obtained solutions to the upper bounds achieved by CG as well as the solutions of GP
found by the CPLEX solver. The algorithms were coded in C# and all mathematical
programming models were solved using CPLEX 12.8. The numerical tests were con-
ducted on a computer having an Intel® Core™ i7-9700K processor and a CPU at 3.60
GHz with 25 GB of RAM.

6.1. Problem instances

To evaluate the proposed algorithm, we use four sets of random instances with differ-
ent sizes. To enhance diversity among the instances, product groups are distributed
randomly within the hierarchical structure for each instance. Each family or category
contains one to five immediate subgroups. Other features of the problem instances are
as follows:

• Each shelf has five levels and includes three horizontal segments, each of which has
six units of length.

• The attractiveness of each segment (v, h)k, γ
k
vh, is randomly determined by a uniform

distribution based on the ranges specified in Table 2. α represents the shelf attrac-
tiveness which is selected with equal probability from {0.05, 0.25, 0.45, 065, 0.85}.

• For each subcategory u, LOu is randomly selected from {1, 2, . . . , 6}. Moreover, for
each category or family m, LOm = minn∈Mm

{LOn}.
• For each subcategory u, UPu is randomly selected from {LOu, . . . , 6}. Moreover, for

each category or family m, UPm =
∑

n∈Mm
UPn.

• For each subcategory u, ϕu is randomly selected from {1, . . . , 25}.

Table 2. The ranges of attractiveness for various segments of a shelf

Horizontal segments

Shelf levels
Eye and hand level Top or lowest

End segments [α+ 0.11, α+ 0.15] [α+ 0.06, α+ 0.10]

Middle segments [α+ 0.06, α+ 0.10] [α, α+ 0.05]
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6.2. Performance comparison and analysis

This section is dedicated to the analysis of the performance of the TPM algorithm
for randomly generated instances. Table 3 compares the effectiveness and efficiency
of the TPM algorithm against the CPLEX solver. The column generation procedure
is launched under two policies based on our discussion in Section 5.1.1. In this table,
Columns 10 and 12 report the relative optimality criterion. This criterion, which is
called ROC, is calculated for each instance by (BUB − OBJ)/BUB × 100, where
OBJ represents the value of the objective function obtained by the algorithm and
BUB = min{up1, up2}, where up1 is the best upper bound found by CPLEX for the
GP after 18000 CPU seconds and up2 is the optimal solution of LMP using the CG
approach described in Section 5.1.

CPLEX failed to solve any of the generated instances to optimality within the
preset time limit of 18,000 CPU seconds. This solver has an average relative optimality
criterion of 30.93% for instances of Set 1. Furthermore, the solutions obtained by
CPLEX for Sets 2 to 4 represent completely empty stores, where no product group
is included in the assortment plan. TPM algorithm launched with the empty shelves
as the initial columns found higher quality solutions for all instances than solutions
provided by CPLEX. However, TPM launched with columns provided by Algorithm 1
achieved superior solutions with ROC < 3.8% for all problem instances. The average
computational time of the proposed algorithm under the latter policy is practically
reasonable, given that the GP problem is a medium to long range planning problem.
To summarize this section, the proposed TPM algorithm equipped with Algorithm 1
can solve the GP both efficiently and effectively.

7. Case study

To demonstrate the usefulness of our proposed method, we implemented it for a case
study based on real data for a new branch of an Iranian chain of retail stores called
Ofoq Kourosh (OK). This store is composed of 13 shelves having a grid layout. Each
shelf consists of three horizontal segments and five levels. The store merchandiser has
estimated the attractiveness of each segment. In this regard, the segments located at
the client’s eye level and close to store entrances have high visibility and attractiveness.
The product hierarchy of this store consists of 305 candidate product groups (20 fam-
ilies, 67 categories, and 218 subcategories). The candidate product families are Break-
fast products, Poultry & Meats, Tea & Herbal tea, Oils, Cereals & Legumes, Dairy
products, Condiments & Spices, Canned foods, Powders, Pasta & Noodles, Pickles &
Olives, Dried fruit and nuts, Beverages, Snacks, Personal care, Household cleaners,
Cosmetics, Sanitary paper products, Detergents, and Kitchen supplies. These families
are numbered from 1 to 20. Due to our obligation to keep confidential information
of the OK, a product family number is not necessarily equivalent to its introducing
order. TPM algorithm obtained a solution with 3.4% of relative optimality criterion in
less than 4 minutes. The assortment plan generated by the TPM algorithm included
75.1% of candidate product groups. All candidate product families were included in
the assortment. Fig. 5 depicts how the proposed approach has assigned the families to
the shelves of the new store. The illustration of all shelves violates the limited space of
the paper. Hence, only the shelf that is allocated to the product groups of the Personal
care family is displayed in Fig. 6. This figure depicts the mentioned hierarchical and
rectangular space allocation rules for merchandising.
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Table 3. Performance of the TPM algorithm vs. CPLEX.
Set (|F|, |C|, |S|) K Inst. Model GP TPM algorithm

Using the empty shelves Using the Algorithm 1

CPU(s) ROC(%) CPU(s) ROC(%) CPU(s) ROC(%)

Set 1 (15, 60, 180) 10 1 18000 19.56 281.2 17.89 429.8 2.41

2 18000 44.88 141.8 34.42 415.7 2.61

3 18000 31.53 256.9 18.39 359.2 3.40

4 18000 32.40 414.3 7.36 376.4 3.40

5 18000 27.73 395.5 10.00 444.7 2.88

6 18000 42.08 391.1 10.59 435.0 3.38

7 18000 30.03 248.4 24.02 479.7 2.74

8 18000 34.30 354.0 15.04 378.9 2.44

9 18000 26.13 272.2 24.71 387.4 3.02

10 18000 20.69 360.9 8.08 464.9 2.37

Average 18000 30.93 311.6 17.10 417.2 2.90

Set 2 (30, 120, 360) 20 1 18000 - 738.9 18.29 988.3 2.82

2 18000 - 384.3 29.95 837.2 2.49

3 18000 - 453.8 39.94 1029.8 3.79

4 18000 - 888.6 12.11 955.1 2.85

5 18000 - 512.7 31.98 1056.1 3.23

6 18000 - 409.6 35.99 943.7 3.43

7 18000 - 448.3 32.07 1074.1 3.06

8 18000 - 518.4 30.76 874.4 2.62

9 18000 - 520.2 27.78 1007.2 3.49

10 18000 - 573.2 26.87 958.7 2.83

Average 18000 - 544.8 28.60 972.5 3.06

Set 3 (45, 180, 540) 30 1 18000 - 760.8 33.96 1597.7 3.32

2 18000 - 861.9 34.79 1634.0 2.44

3 18000 - 767.0 36.58 1803.7 3.58

4 18000 - 897.7 34.63 1824.3 3.26

5 18000 - 713.0 39.65 1893.7 3.44

6 18000 - 907.4 34.06 1662.5 2.65

7 18000 - 1164.2 22.34 1650.9 3.43

8 18000 - 1045.9 25.59 1775.5 3.09

9 18000 - 1092.6 25.60 1690.7 3.10

10 18000 - 639.4 45.08 1967.5 2.75

Average 18000 - 885.0 33.20 1750.1 3.11

Set 4 (60, 240, 720) 40 1 18000 - 1185.0 37.92 3054.5 2.99

2 18000 - 2254.7 20.98 2513.4 2.83

3 18000 - 1325.0 38.29 2854.7 2.89

4 18000 - 1175.2 32.04 2333.9 2.69

5 18000 - 1708.2 29.00 3273.2 3.13

6 18000 - 1626.3 26.97 2608.1 3.00

7 18000 - 1448.2 34.59 2943.8 2.81

8 18000 - 1059.6 39.78 2356.0 3.15

9 18000 - 1678.5 21.14 2815.7 2.52

10 18000 - 1995.8 23.87 2347.7 2.88

Average 18000 - 1545.7 30.50 2710.1 2.89
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Figure 5. Bird’s-eye view of the new store
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Figure 6. The shelf featuring Personal care family

Fig. 7 depicts the association between the visibility of product families and their
highest possible profit in the optimized solution. The visibility of each product family
is the summation of the allocated visibilities to its subcategories. It is worth reminding
that the visibility of subcategory u located in segment (v, h)k is calculated through
γkvhs

k
uvh/(E

k
h − Bk

h). According to this figure, generally, the higher values of visibility
have been assigned to the product families which have higher values of ϕu. In this
figure, the red-circled families have gained the highest visibility. According to the
historical data, these families, which consist of fast-moving or impulsive products, can
yield nearly 80% of the store’s profit. These families are also highlighted in Fig. 5.
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As shown, these profitable families occupy the maximum possible space (their upper
bound or shelf capacity) and are located in aisles with the highest traffic density, both
of which have led to their high level of visibility.
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Figure 7. Visibility of families in the optimized solution

8. Conclusion

This paper addresses a joint problem of assortment breadth optimization and macro-
level shelf space planning to maximize store profitability. To the best of our knowledge,
this is the first study that considers merchandising rules, i.e., rectangular arrangement
and product hierarchies, for an integrated problem of store-wide two-dimensional shelf
space allocation and assortment breadth optimization. Due to the ineffectiveness of
CPLEX to tackle the computational challenges of the problem, we developed a two-
phased matheuristic algorithm that utilizes the column generation approach. In the
computational study, 40 problem instances with up to 40 multi-level shelves and 1020
candidate product groups were randomly generated based on the literature. The nu-
merical results showed that the proposed algorithm was able to obtain high-quality
solutions with less than 3.8% of relative optimality criterion at acceptable times for
all problem instances.

We also demonstrate the usefulness of the proposed optimization approach by ex-
amining the real data related to a real chain of stores. The optimized assortment and
allocation plan was analyzed. In this case study, there was a positive correlation be-
tween the highest possible profits of the product groups and their assigned visibilities.
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