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Abstract. Bike-Sharing Systems provide eco-friendly urban mobility, 
contributing to the alleviation of traffic congestion and to healthier lifestyles. 
Efficiently operating such systems and maintaining high customer satisfaction 
is challenging due to the stochastic nature of trip demand, leading to full or 
empty stations. Devising effective rebalancing strategies using vehicles to 
redistribute bikes among stations is therefore of uttermost importance for 
operators. As a promising alternative to classical mathematical optimization, 
reinforcement learning is gaining ground to solve sequential decision-making 
problems. This paper introduces a spatio-temporal reinforcement learning 
algorithm for the dynamic rebalancing problem with multiple vehicles. We first 
formulate the problem as a Multi-agent Markov Decision Process in a continuous 
time framework. This allows for independent and cooperative vehicle 
rebalancing, eliminating the impractical restriction of time-discretized models 
where vehicle departures are synchronized. A comprehensive simulator under 
the first-arrive-first serve rule is then developed to facilitate the learning process 
by computing immediate rewards under diverse demand scenarios. To estimate 
the value function and learn the rebalancing policy, various Deep Q-Network 
configurations are tested, minimizing the lost demand. Experiments are carried 
out on various datasets generated from historical data, affected by both 
temporal and weather factors. The proposed algorithms outperform 
benchmarks, including a multi-period Mixed-Integer Programming model, in 
terms of lost demand. Once trained, it yields immediate decisions, making it 
suitable for real-time applications. Our work offers practical insights for operators 
and enriches the integration of reinforcement learning into dynamic 
rebalancing problems, paving the way for more intelligent and robust urban 
mobility solutions. 
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1. Introduction

The blossoming of Bike-Sharing Systems (BSS) in cities worldwide marks a sig-
nificant stride towards easing traffic congestion and curtailing CO2 emissions. By
2022, the global landscape boasted over 1,900 operational BSS, collectively fielding
close to 9 million bikes [32]. Despite their widespread adoption, optimizing rebalanc-
ing strategies remains a critical research area for further exploration and refinement.
Due to the stochastic nature of user behaviors and high demand in certain areas
during peak hours, the stations are often unbalanced, being either full or empty,
which results in user dissatisfaction and lost demand. As a remedy, BSS operators
use vehicles to actively redistribute bikes across the station network.

The optimization problems for bike-sharing repositioning can be divided into the
Static Bicycle Repositioning Problem (SBRP) and the Dynamic Bicycle Reposition-
ing Problem (DBRP) [36]. The former, also referred to as overnight rebalancing,
optimizes the initial inventories of the stations without reacting to their changing in-
ventories throughout the day. In contrast, the DBRP explicitly rebalances intraday,
taking into account the synergies with bikes relocated by users. As such, rebalancing
operations are performed multiple times during the day such that the unmet demand
of bike rentals and returns, especially during demand peak hours, is minimized. We
here focus on the DBRP, as it allows for a higher impact on user satisfaction.

Existing works primarily model the DBRP via Mixed-Integer Programming (MIP)
or as Markov Decision Process (MDP). The majority of the literature applies MIP
[e.g., 13; 28; 48; 46], leveraging its flexibility and frequent application within indus-
trial decision-making processes. However, MIP models typically simplify the plan-
ning problem, e.g., by discretizing the planning horizon into multiple time-periods
and assuming that each vehicle only visits one station per time-period. Such an
assumption is artificially imposed and does not correspond to reality. It may restrict
the capability of BSS to effectively coordinate multiple vehicles and hence hinder
the system to reach its full potential. In contrast, MDPs present a viable alterna-
tive, framing the DBRP as a sequential decision-making problem [1]. Nevertheless,
the tractability of MDP models tends to heavily depend on the dimensions of the
state and action spaces, confining their applicability to limited problem settings,
such as single-vehicle operations [see, e.g., 7; 26; 39], or small station networks [see,
e.g., 17; 20; 26]. Although several studies applied dynamic programming or heuristic
policies to trackle the MDP [see, e.g., 17; 7; 8, etc], these approaches rely on having
a complete and accurate model of the environment and can face challenges in high-
dimensional state and action spaces. Reinforcement Learning (RL), on the other
hand, learns optimal policies directly from interactions with the environment, obvi-
ating the need for an explicit model of the environment dynamics. This makes RL
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applicable to scenarios where the system dynamics are complex, unknown, or hard
to model accurately. Thus, RL techniques offer a potential to solve MDP models for
DBRP, an area that remains underexplored.

Our study aims at proposing a spatio-temporal RL-based algorithm for dynamic
rebalancing problems in BSS with multiple vehicles under a continuous time frame-
work that does not require time discretization. We formulate the DBRP as a Multi-
agent Markov Decision Process (MMDP) whose state and action spaces are designed
to capture the dynamics and uncertainties of the system. Utilizing a Deep Q-Network
(DQN), which employs Neural Networks to approximate the optimal action-value
function, we estimate the total expected rewards of rebalancing actions, targeting
to minimize lost demand. A fine-grained simulator is developed to obtain imme-
diate rewards under different demand scenarios. Experiments are conducted on a
trip dataset generated based on historical trips, weather conditions, and temporal
factors.

The main contributions of this study can be summarized as follows: (1) We pro-
pose an MMDP model to address the DBRP, capable of coordinating simultaneous
rebalancing operations by multiple vehicles without the need for time discretization.
(2) We present a spatio-temporal RL-based algorithm with DQN to solve the model,
aiming at minimizing lost demand for networks of up to 60 stations. (3) We introduce
a highly realistic simulator to estimate the rewards under the first-arrive-first-serve
rule, handling different demand scenarios generated from weather and temporal fea-
tures. (4) We conduct an experimental evaluation and compare to a MIP baseline
model, demonstrating the benefits of our algorithm and its effectiveness in reducing
lost demand. The proposed RL approach not only reduces the lost demand by up to
27.12% on average, but also generates planning solutions in a matter of milliseconds,
which makes it ideal for dynamic use in practice.

The remainder of the paper is organized as follows. Section 2 reviews related
literature on the DBRP for BSS and summarizes the existing MDP models and
RL algorithms for this planning problem. Section 3 describes the model formula-
tion based on MDPs under continuous time. Section 4 presents the methodology
to estimate the value function for lost demand under certain actions. A simula-
tor considering stochastic demand is discussed to calculate the immediate rewards.
Numerical tests and analyses are illustrated in Section 5. This is followed by the
conclusions in Section 6.

2. Literature Review

In this section, we first review literature on the DBRP in BSS (Section 2.1),
which has predominantly been approached by MIP. We then discuss the existing
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efforts of using Markov Decision Processes for the DBRP in Section 2.2. Finally,
existing RL approaches for planning problems related to the DBRP are summarized
in Section 2.3.

2.1. Dynamic bicycle repositioning and MIP models

Dynamic rebalancing strategies for BSS are primarily categorized into two types:
user-based rebalancing and operator-based rebalancing [41]. User-based rebalancing
entails incentivizing users to rent or return bikes at specific stations, as discussed by
[14]. This strategy is predominantly utilized in dockless BSS. In contrast, operator-
based rebalancing involves the active participation of a dedicated rebalancing fleet
(commonly vehicles) to redistribute bikes, which is prevalent in station-based BSS.
According to a recent statistical report by [32], station-based systems continue being
more common than dockless systems. Even when addressing rebalancing challenges
for the latter, researchers tend to divide the station network into sub-clusters, each
of which can be regarded as an individual station [see, e.g., 10; 26; 43; 47]. Given
the prevalence and relevance of station-based systems, our study opts to concentrate
on operator-based rebalancing in station-based BSS.

The MIP models in DBRP usually employ time discretization, partitioning the
temporal dimension into specific periods. Time-periods with equal length is most
common in the literature [see, e.g., 9; 48; 24]. To cast the complexity of DBRP
planning into tractable MIP models, existing approaches rely on a wide range of
modeling assumptions [21]. Indeed, time discretization itself requires to aggregate all
rental and return demand for each station occuring within the same time-period. This
raises a multitude of issues, including assumptions on the sequence in which rentals,
returns and rebalancing operations should be carried out within the same time-
period, as well as priority rules to ensure a sufficiently realistic allocation of available
bikes to rental demand whenever the latter exceeds the former. Furthermore, it
is necessary to constrain each vehicle to rebalance a maximum number of stations
(typically, one station) per time-period to ensure that the produced planning solution
is time-feasible in practice. Finally, selecting an appropriate length for each time-
period is a non-trivial task. Time-periods that are too long may result in idle time
of vehicles, which have to wait until the next time-period before starting a new
rebalancing operation. They also aggregate over too many rentals and returns, losing
accuracy of the original sequences of such user demand. In contrast, time periods
that are too short, may result in intractably large optimization models and may not
ensure that the vehicles have sufficient time to relocate to stations farther away.

In addition to such challenges, explicitly modeling the stochastic nature of trip
demand would require the use of stochastic optimization models, which results in even
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more complex optimization models [see, e.g., 25; 24], limiting the use of such models
to smaller problem instances. While MIP models with discretized time-periods are
prevalent in the BSS literature, the above mentioned disadvantages highlight the
necessity for models that better align with the dynamic and uncertain nature of
rental and return demand, as well as the asynchronous operations of the rebalancing
fleet.

2.2. Markov Decision Process

Markov Decision Processes are mathematical models for sequential decision-making
in stochastic environments, and have received increasing attention in recent years.
The DBRP can be represented as such a sequential decision-making problem [see,
e.g., 38], where the agents, represented by the vehicles, interact within a complex
environment, here composed of a station network and the stochastic trip demand.
The decision-making process involves a series of decision epochs, at each of which
the vehicles evaluate the current state of the system and make rebalance decisions,
typically with the goal of catering to user demand effectively. Despite its relevance
and potential for application to the DBRP, the adoption of MDPs in this applica-
tion domain has been relatively recent, with a limited but growing body of work in
academic research. In DBRP, the state space (representing various configurations of
bike availability across stations and vehicles) and the action space (choices of vehicle
movements and rebalancing operations) can be vast, leading to exponential growth
in computational complexity and requirements [4]. As a result, MDP models for
DBRP tend to be limited by the immense complexity of the problem space, often
rendering the computation of an optimal policy impractical within a reasonable time
[17].

[7] conceptualized the DBRP as an MDP and introduced a dynamic lookahead
policy heuristic, albeit limited to scenarios involving a single rebalancing vehicle.
Building upon this work, [8] extended the model to incorporate multiple vehicles,
proposing a coordinated lookahead policy to simultaneously address inventory and
routing decisions. [17] applied MDP to develop the decision-support tool for DBRP,
aiming to minimize the rate of unsatisfied users who find their station empty or
full. They implemented a one-step policy improvement method, which incrementally
refines the strategy by focusing on the immediate next decision rather than a series
of future actions, to identify priority stations. However, their approach segments the
planning horizon into periods of equal length, which is subject to the same drawbacks
as a discretized planning horizon typically engaged in MIP models. [26] designed a
policy function approximation algorithm and applied the optimal computing budget
allocation method to search for the optimal policy parameters for an MDP model of
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dynamic rebalancing with one single vehicle.
As an extension of traditional MDP, Multi-agent Markov Decision Processes al-

low for concurrently operating multiple decision-making agents. Within an MMDP
framework, each agent aims to determine its optimal strategy, while considering both
its actions and those of other agents. As multi-agent systems become more preva-
lent in various domains such as robotics [27; 16], transportation [2; 12], and gaming
[18; 29], the importance of developing effective and scalable algorithms for MMDPs
continues to grow [44].

The existing literature clearly demonstrates the potential of MDP to more ef-
fectively address DBRP planning. Its application in this domain is still evolving
and further research is required to overcome challenges, such as their computational
complexity, the choice of time discretization, and vehicle synchronization for more
accurate and efficient decision-making.

2.3. Reinforcement Learning

Reinforcement learning is a subfield of Machine Learning (ML) that focuses on
training agents to make sequential decisions by interacting with an environment and
learning optimal strategies through a trial-and-error process [40]. RL has witnessed
profound advancements in the realm of multi-agent systems, offering promising av-
enues for algorithmically learning effective decision-making strategies [31]. This is
particularly relevant given the complexity of MDPs encountered in DBRP, where
the need for adaptive solutions is paramount. To be specific, RL allows the system
to learn from past experiences and adjust its strategies dynamically in response to
the changing environment, shaped by the stochastic nature of user demand in BSS.

The success of RL on various optimization problems [5; 6; 23] motivates the use
of RL in BSS. [42] further highlighted that rebalancing shares many environmental
characteristics (i.e., complex and high dimensional environment, constantly changing
system drivers, and closed-loop system) with gaming, finance, and marketing, where
RL is typically applied.

In the domain of BSS, the majority of the studies on RL focuses on user-based
rebalancing. [33] presented a RL algorithm based on a deep deterministic policy
gradient method to offer users monetary incentives and to suggest alternative pick-
up/drop-off stations to rebalance the system. Similarly, [11] adapted a deep rein-
forcement learning framework for an MDP model, concentrating on learning differen-
tiated incentive prices for bike rebalancing. [15] proposed a dynamic incentivization
system based on RL, undertaking a comparative analysis of three policy-gradient-
based RL methods. In a distinct vein, [37] presented significant findings utilizing a
reinforcement-based dynamic incentive mechanism, highlighting the efficacy of RL-
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based solutions, particularly in terms of the average percentage improvement in ser-
vice level per hour.

For operator-based rebalancing, [19] proposed a static rebalancing method using a
policy gradient-based RL method to enhance user experience and reduce operational
costs. As opposed to static rebalancing (mostly during the night), dynamic rebal-
ancing enables efficient resource allocation in response to varying demand during the
day. Here, [20] proposed a spatio-temporal RL framework to tackle the rebalancing
problem. The authors first proposed a clustering algorithm to group the stations.
Then a spatio-temporal RL model is designed for each cluster to learn a rebalancing
policy in it. [42] proposed a distributed RL solution with transfer learning to decide
how many bikes to rebalance at each station. This approach assigns a unique agent
to each station, with each agent tasked with identifying and then combining the best
rebalancing strategy for their respective station. The model avoids an exponentially
expanding action space but requires a significant processing power to support the
parallel learning of all agents. The routing part is not included and needs to further
consolidate the rebalancing strategies for the system. Here, the efficient design of
the state and action space is crucial, influencing both the complexity of the MDP
and the quality of the final solution obtained.

[26] and [39] focused on the DBRP with a single vehicle, while [20] considered
multiple vehicles rebalancing in smaller clusters with less than 30 stations. We here
consider an algorithm for a station network up to 60 stations with multiple vehicle
rebalancing under continuous time framework, aiming to address the challenges as-
sociated with a larger problem size and the synchronization of vehicles. The paper
of [45] is close to our study, proposing a RL based rebalancing model and generating
rebalancing solutions with a DQN, yet under discrete time slots. As a result, a sim-
ulator within discretized time was employed, ignoring the order of rentals, returns,
and rebalancing operations and resulting in a less realistic reward function.

Nevertheless, the immediate reward of the agents’ actions can be, sufficiently
realistically, computed within simulators in RL. Given that such simulators can typ-
ically be executed within short computing times, they are not subject to the same
limitations as optimization models, and can therefore model rebalancing operations
and trip behavior much more realistically. This is an important advantage, which we
aim at exploiting in this work. Thus, we introduce a fine-grained event-driven simu-
lator designed to more accurately capture system dynamic as in reality, as opposite
to the current RL-based studies on DBRP with a relatively rough simulator.
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3. Multi-agent Dynamic Rebalancing

In this section, we first define the planning problem in Section 3.1. We then for-
mulate the DBRP as a Multi-agent Markov Decision Process in Section 3.2. Finally,
we elaborate on the architecture of the continuous time framework in Section 3.3.

3.1. Problem Definition

We consider the DBRP defined over a finite planning horizon, a BSS with ∣N ∣
stations and a fleet V of vehicles available to rebalance bikes among the stations. All
problem parameters are summarized in Table 1. Each station n ∈ N has a capacity
Cn of docks and each vehicle v ∈ V has a capacity Ĉv. The initial state of the system
is defined by the bike inventory dn0 at each station n ∈ N , as well as the inventory
pv0 and location zv0 of each vehicle v ∈ V . The distance and transit time between any
two stations i ∈ N and j ∈ N are given by Di,j and Ri,j, respectively. Loading or
unloading one bike (from the vehicle to the station, or vice-versa) is estimated to
take β minutes. The system encounters lost demand when rental or return requests
cannot be satisfied due to the absence of bikes or available docks, respectively. The
primary goal is to optimize the rebalancing strategies for vehicles across the station
network, minimizing the total lost demand. Parameters and variables represented in
bold are tuples, matrices, or sets whose elements are tuples or matrices.

Table 1: Input parameters of the BSS rebalancing planning problem

Parameter Definition
N The set of stations
V The set of vehicles
Cn The capacity of station n ∈ N

Ĉv The capacity of vehicle v ∈ V
Di,j The distance between station i ∈ N and j ∈ N
Ri,j The transit time between station i ∈ N and j ∈ N
β The time (in minutes) for loading/unloading one bike
dn0 The initial number of bikes in station n ∈ N
pv0 The initial number of bikes in vehicle v ∈ V
zv0 The initial location (station) of each vehicle v ∈ V

3.2. Multi-agent Markov Decision Process Model

The DBRP can be formulated as an MDP, and more specifically as an MMDP to
accommodate multiple rebalancing vehicles within the system. The related notation
is summarized in Table 2. An MMDP is characterized by the tuple (S,A,W,R, γ),
which includes S as the set of system states, A as the set of actions for the agents, W
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as the state transition probabilities, and R as the reward function with the numerical
output for the cumulative discounted total reward. Discount factor γ is defined to
emphasize a higher confidence in short-term rewards as opposed to rewards collected
farther into the future. In an MMDP, agents operate through a sequence of decision
epochs, each involving action choices leading to new states and rewards based on the
chosen actions. The structure and dynamics of these components will be elaborated
in the following sections to provide a thorough understanding of the MMDP model
applied to DBRP.

Table 2: Notation of MMDP model for rebalancing

Symbol Definition
K The sequence of decision epochs
S The set of states
T The time of each decision epoch, T = {t1, ..., t∣K∣}
dk The number of bikes available at stations, dk = (dnk ,∀n ∈ N)
bvk The station that vehicle v ∈ V is or just departed from at time tk
gvk The station that vehicle v ∈ V is heading to at time tk
pvk The inventory of vehicle v ∈ V at time tk
mv

k The estimated arrival time of vehicle v at the station gvk at time tk
ovk Remaining rebalancing operations for vehicle v ∈ V at time tk
A The set of actions
lvk The rebalancing decision at the current station for vehicle v ∈ V at time tk
zvk The routing decision for vehicle v ∈ V at time tk
Π The set of policies
γ Discount factor

3.2.1. State Space

At each decision epoch k ∈K, there is an associated state Sk ∈ S that represents
a comprehensive system status, including information related to time, stations, and
vehicles. The state space encompasses all the potential conditions or configurations
that the agent or system can encounter at any given moment. We denote Sk =

(tk,dk,Hk), where tk is the current time and dk = (dnk ,∀n ∈ N) represents the inven-
tory of each station. The vehicle status is denoted as Hk = (bvk, g

v
k, p

v
k,m

v
k, o

v
k,∀v ∈ V ),

where bvk is the current station at which vehicle v is located or has just departed from,
gvk is the next station that vehicle v is traveling to, pvk indicates the current inventory
of vehicle v, and mv

k indicates the estimated time of arrival of vehicle v at station gvk.
Note that if vehicle v is currently rebalancing at station bvk, the number of remaining
rebalancing operations (i.e., drop offs or pick ups) for that station is indicated by
ovk. For the sake of clarity and ease of reference, the here used notation can also be
found in Table 2.
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3.2.2. Action Space

At each decision epoch k ∈K, an action is selected, indicating both the rebalanc-
ing and routing decisions. Let A denote the set of actions, where ak ∈ A is defined
by (lvk, z

v
k). The rebalancing decision at the current station is indicated by lvk. A

positive lvk value indicates that vehicle v should pick up lvk bikes, while a negative lvk
value implies that vehicle v should drop off ∣lvk∣ bikes. The routing decision are given
by zvk , indicating the next station that vehicle v ∈ V will visit. Note that the DBRP
is here formulated to accommodate various operational time frameworks, where an
action can be made either for all the vehicles during each time-period in a discrete
time framework [45] or only for one specific vehicle at a particular point in time [20],
where vehicles operate independently without waiting for each other. In our continu-
ous time framework (see Section 3.3), we opt for the latter alternative, i.e., the action
at decision epoch k ∈ K is exclusively associated with a specific vehicle upon its ar-
rival at the allocated station, allowing vehicles to take action independently from
the current state of the other vehicles. The vehicles assigned by actions at different
decision epochs vary according to the system status, ensuring that decision-making
is dynamic and continuously adapts to status changes of the global system.

3.2.3. Transition Function

At decision epoch k ∈ K, the system transitions from state Sk to the next state
Sk+1 upon taking an action. This state transition is governed by a stochastic tran-
sition Wk+1, which depends on the current state Sk, the chosen action ak, and the
likelihood of transitioning to Sk+1. Essentially, Wk+1 determines the probability of
moving from Sk to Sk+1 following action ak. In the context of the here consid-
ered DBRP, these transitions are significantly influenced by user rental and return
demand during the time duration between two successive states, introducing uncer-
tainties into the system. To represent these state transitions under various demand
scenarios, we utilize a simulator to capture the change of state, which will be further
described in Section 4.2.

3.2.4. Reward and Policy

At each decision epoch k ∈ K, an action ak is taken and the system transits to
Sk+1. Accompanying this transition is the realization of an immediate reward rk+1,
which is computed based on Sk,ak, and Wk+1. In our case, rk+1 is the negative value
of lost demand across all stations occurring from tk to tk+1.

The expected cumulative discounted return, Rk = E[∑K−k−1
j=0 γjrk+j+1)], reflects

the long-term aggregated reward from a series of actions. The discount factor γ ∈
[0,1] progressively reduces the value of future rewards as decision epoch j increases,
reflecting the idea that immediate rewards are often more valuable than future ones.

9

A Reinforcement Learning Approach for Dynamic Rebalancing in Bike-Sharing Systems 

CIRRELT-2024-04



In MDPs, a planning solution is encoded through a policy π ∈ Π, where Π denotes
the set of all possible policies (policy space). A policy, represented as π(a∣s), serves
as a strategy dictating the probability of taking an action a given state s. The
overarching objective is to identify the optimal policy π∗ that maximizes the total
expected reward over time. The policy can be further quantified by the Q-value
function, denoted as Qπ(Sk,ak), expressing the expected return of a state-action
pair under policy π, as defined in Equation (1).

Qπ(Sk,ak) = E[Rk∣Sk,ak]. (1)

The goal is to determine the optimal Q-function derived to maximize the total
expected reward over time, as in Equation (2). However, directly solving for it can
be computationally challenging due to the problem complexity.

Q∗(Sk,ak) =max
π

Qπ(Sk,ak). (2)

In practice, RL algorithms use iterative methods or deep learning approaches
to approximate the optimal Q-function. Once an approximation is obtained, the
optimal greedy policy can be employed to select the action with the highest Q-value,
as defined in (3). This indicates that the probability of selecting action ak under
the policy π is 1 when ak is the action that maximizes the Q-value for the given
state Sk, and 0 for all other actions. This approach simplifies decision-making under
uncertainty, guiding actions based on the current knowledge of expected rewards.

π(ak∣Sk) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if ak = argmaxak
Q∗(Sk,ak)

0 otherwise.
(3)

3.3. Continuous Time Planning Framework for MMDP

Based on the above notation, our model framework uses multiple agents to enable
fully cooperative rebalancing decision-making tasks. Each vehicle is regarded as an
agent and the decisions (i.e., actions) taken by the vehicles affect each other.

We illustrate the states and actions within our continous-time framework in Fig-
ure 1. The moment vehicle vi ∈ V arrives at station gvik , all other vehicles either
rebalance bikes at their respective stations or relocate to their next stations. At ve-
hicle vi reaches its designated station, an action ak = (l

vi
k , z

vi
k ) is instantly generated,

dictating the next decision for vi at decision epoch k. Completing action ak, the
system transits to the next state Sk+1, and an immediate reward is obtained. As
previously mentioned, in our context, the immediate reward is given by the negative
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value of lost rental and return demand occuring within the time segment [tk, tk+1].
This reward is computed within the simulator described in Section 4.2. The duration
between two decision epochs is determined by the global system changes, where the
next epoch begins each time a vehicle arrives at a station.

0 k k + 1 k + 2 ∣K ∣...

State Sk Action ak State Sk+1

vj

...
vi

Immediate reward r(Sk,ak)

Figure 1: Continuous time planning framework of MMDP

The decision-making process focuses solely on the action for a single vehicle. As a
result, the complexity of the action space is significantly reduced compared to the case
where actions for all vehicles are taken simultaneously [45]. This framework enables
each vehicle to react dynamically and instantaneously to the present state, without
the necessity to wait for other vehicles. Additionally, it reflects realistic operational
conditions. It is crucial to note that although there is no direct communication
or coordination between the vehicles, the status of all vehicles is given within the
current state, facilitating an indirect form of situational awareness. In other words,
each vehicle operates autonomously, making decisions based solely on the global
state of the system (i.e., knowing the status of all the other vehicles) as opposed to
engaging in collaborative strategies with the other vehicles.

Adopting a simultaneous action approach for all vehicles would require segment-
ing the planning horizon into discrete time-periods [45]. In such a system, vehicles
that complete their rebalancing tasks before others within a time-period are required
to wait until the start of the next period to initiate new actions, which may lead to
inefficiencies and not align with real-world operational dynamics. Moreover, the sta-
tions that one vehicle can reach within one time-period are limited by the duration
of the time-period. This restriction is likely to reduce operational flexibility and
responsiveness. Additionally, managing the large action space required for all vehi-
cles simultaneously presents significant computational challenges. The here proposed
continuous time planning framework allows for circumventing such limitations, re-
sulting in more adaptive, responsive, and efficient vehicle planning. Next, we will
focus on a RL algorithm with DQN, capable of orchestrating a fluid and responsive
solution for such an MMDP model.
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4. MARL Methodology with Deep Q-Network

Multi-Agent Reinforcement Learning (MARL) is a research field aiming to find
high-quality solutions for multiple agents interacting with each other. In this section,
we present our Deep Q-Network framework to solve the here-considered MMDP
model.

Demand

Scenarios
Simulator DQN

Online

RebalancingReward

State

Action

Offline Learning

Figure 2: Dynamic Rebalancing Pipeline

The framework for the dynamic rebalancing pipeline is depicted in Figure 2.
Aiming at a realistic approximation for the reward function, we design a fine-grained
simulator as an interactive environment, where rebalancing, rentals, and returns
are executed under the first-arrive-first-serve rule. The rebalancing operations are
decided by the actions that the agents take, depending on the rental and return
demand obtained from the various demand scenarios. Our simulator allows for com-
puting immediate rewards between two consecutive decision epochs as realistically
as possible. The reward, along with the system state, is then collected for training
our DQN. Concurrently, the simulator updates the system state, that is then fed
back to the agents, forming a critical feedback loop through their interaction with
the environment. The DQN is trained through offline learning, utilizing a training
set of demand scenarios, where user demand is associated to temporal information.
Note that, while trip demand, in practice, also depends on weather conditions, our
framework does not rely on such information, but rather captures its impact on the
demand level implicitly. Once the offline learning is complete, the refined rebalanc-
ing policy encapsulated within the trained DQN is applied in the online rebalancing
phase. This phase involves deploying the policy on a separated test set of demand
scenarios, enabling us to assess its performance.

4.1. State and Action Space Design

Building on Section 3.3, we formulate our model within a multi-agent framework.
When a vehicle arrives at a new station, it immediately triggers a rebalancing action
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based on the current state, often referred to as the observation, without waiting the
completion of rebalancing from other vehicles. We here demonstrate the details and
structure of state and action spaces adapted to our DQN MARL algorithm.

At each decision epoch, the current state encapsulates inventories of all the sta-
tions, current time, and the status of all vehicles. The station inventories are encoded
as a vector where the size ∣N ∣ corresponds to the total number of stations, and each
element within this vector reflects the current inventory of each station. The cur-
rent time is denoted as a singular value, encapsulating the precise timestamp of the
current state.

Current Station/
Last Station

0 0 1 ... 0

∣N ∣ one-hot vector
×∣V ∣

+

Next Station

0 1 0 ... 0

∣N ∣ one-hot vector
×∣V ∣

+

Vehicle Inventory

10 5 2 8

∣V ∣

+

Estimated time

2 8 20 11

∣V ∣

+

Remaining Operation

0 2 6 1

∣V ∣

Figure 3: An example for an observation of vehicle fleet status

The status of the vehicle fleet details the current station, the next station, the
current inventory, the estimated time of arrival, and the remaining rebalancing op-
erations for each vehicle. An example is illustrated in Figure 3. Note that when a
vehicle v arrives at a station, the next station of this vehicle is not determined yet.
In our current implementation, we temporarily set the value of this feature to its
current station until the routing decision for the next station is made. For vehicles
that are still in transit between two stations, we also temporarily fix their current
station feature to the station where they left from. Both the current station and next
station for each vehicle are represented as one-hot vectors of length ∣N ∣ to facilitate
the representation of data in a format that Neural Networks can easily process and
learn from, where ∣N ∣ is the total number of stations and a singular ’1’ indicates
the active station of the feature. Conversely, the vehicle inventory, estimated time,
and remaining operations are encoded in vectors of length ∣V ∣, with ∣V ∣ being the
total number of vehicles, displaying the current vehicle inventory, the estimated time
of arrival at the next station, and the rebalancing operations. All these pieces of
information collectively form the comprehensive status of the vehicle fleet (such as
depicted in Figure 3).

Moreover, the set of forthcoming trips I = {[td(i), sd(i), ta(i), sa(i)]} is integrated
into the observation in our algorithm, which serves as input to our simulator (see
Section 4.2). Each trip i ∈ I contains origin station sd(i), departure time td(i),
destination station sa(i), and arrival time ta(i).
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The action space is defined as follows. At decision epoch k ∈K, the vehicle selects
decision ak = (lvk, z

v
k), where lvk is the loading decision and zvk is the routing decision.

For the routing decisions zvk , an agent can choose any station as its next destination.
However, a constraint is applied such that no two vehicles can be directed towards
the same station simultaneously. To obtain an action space of tractable size, we only
consider three predefined fill levels for the inventories, indicating the proportion of
the station capacity: µ1, µ2, and µ3. As such, once the vehicle arrives at station gvk,
it attempts to rebalance the station inventory either to level µ1Cgv

k
, µ2Cgv

k
, or µ3Cgv

k
.

The feasible loading decisions depend on the vehicle’s capacity Ĉv, the current vehicle

inventory pvk, and the current station inventory d
gvk
k . Thus, the rebalancing decision

variables lvk for vehicle v at decision epoch k, representing loading and unloading
operations, are defined as follows:

(lvk)i =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

min{Ĉv − pvk, d
gvk
k − µiCgv

k
} if µiCgv

k
< d

gvk
k

max{−pvk, d
gvk
k − µiCgv

k
} if µiCgv

k
> d

gvk
k

0 otherwise.

(4)

Equation (4) is interpreted as follows. In the first case, lvk > 0, i.e., the vehicle
needs to pick up bikes from the station. In the second case, lvk < 0, i.e., the vehicle
needs to drop off bikes at the station. In the third case, no rebalancing operations
are performed.

Once an action is taken, it is evaluated in the simulator detailed in Section 4.2.
The methodology and criteria used for selecting the most appropriate action are
further elaborated in Section 4.3.

4.2. Simulator of Operating Environment

Upon executing an action ak under a state Sk, an immediate reward is generated,
which is quantified as the negative of the total lost demand (rentals and returns) in
the duration of tk to tk+1. We here develop a discrete-event simulator as the envi-
ronment to compute lost demand under the first-arrive-first-serve rule. Maximizing
the long-term reward is equivalent to minimizing the total lost demand. Note that
the same simulator is also used to evaluate the policy on the test set.

The pseudo-code for our simulator is given in Algorithm 1. As vehicle v arrives
at station gvk at tk, an action ak will instantly be taken. The system status, such
as station inventory and vehicle fleet information, is obtained through the current
observation. A queue set W is created to record individual upcoming events such as
rentals, returns, and rebalancing operations. Each event within set W is detailed by
a tuple [wt(m),ws(m),wi(m),wv(m)], where m is the index of each event, wt(m)
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Algorithm 1: Simulator with a certain action and state

Input : I, Ds,s′ , Rs,s′ , Ĉv, Cs, β , ak , Sk

Initialization: W ; et; reward = 0; time = wt(1); s = ws(1);
indicator = wi(1); v = wv(1); i = 1;

while time < et and W ≠ ∅ do
sign = 0;
if indicator = d then

if dsk > 0 then
dsk = d

s
k − 1; W =W ∪ {[ta(i), sa(i), a,0]};

else
reward = reward − 1;

i = i + 1;
else if indicator = a then

if Cs − dsk > 0 then
dsk = d

s
k + 1;

else
reward = reward − 1; s′ = argminds

′

k
<Cs′

Ds,s′ ; ds
′

k = d
s′

k + 1;

else if indicator = p then

if dsk > 0 and pvk < Ĉv then
dsk = d

s
k − 1; p

v
k = p

v
k + 1;o

v
k = o

v
k − 1 ;

if ovk = 0 then
sign = 1;

else
Remove w in W whose ws = s,wi = p,wv = v; sign = 1;

else
if pvk > 0 and dsk < Cs then

dsk = d
s
k + 1; p

v
k = p

v
k − 1; o

v
k = o

v
k − 1;

if ovk = 0 then
sign = 1;

else
Remove w in W whose ws = s,wi = f,wv = v; sign = 1;

if sign = 1 then
mv

k = time +Rs,gv
k
;

if mv
k < et then
et =mv

k; Remove elements in W whose wi = d;
W =W /{[time, s, indicator, v]};
time, s, indicator, v = wt(m),ws(m),wi(m),wv(m) (m = argminwt(m)) ;

end
Update Sk+1;
Output : reward and Sk+1
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specifies the time the event occurs, ws(m) identifies the involved station, wi(m)
denotes the type of event — either a rental demand (‘d’), a return demand (‘a’), a
bike pick-up (‘p’), or a bike drop-off (‘f ’) — and wv(m) associates the event with
a particular vehicle, if applicable. Note that the value of wv(m) has no impact on
rental or return events and is set to 0. We first initialize W with all rental demands
from I (see Section 4.1) and rebalancing operations (pick-ups and drop-offs) from
ovk occurring within the time interval [tk, et), where et is the estimated point in time
for the next arrival of a vehicle (i.e., the time of the next decision epoch) derived
from mv

k in Table 2. The corresponding returns of successful rentals are created
and added to W in real time. The events from queue W are sorted by event time
wt(m) in ascending order. The simulator then processes the events (i.e., rental and
return demand, as well as rebalancing operations) in W in chronological order of
time, ensuring a first-come-first-serve execution as it is the case in practice. Once an
event is completed, the first element in queue W will be pulled out and executed as
the next event.

When a rental demand arises and the station holds at least one available bike,
we update the station inventory and add the corresponding return demand at the
destination station to queue W . Otherwise, the customer fails to rent a bike when
there is no inventory in the station, resulting in a lost rental demand. When a
return demand occurs but the station has no available docks, we assume that the
customer immediately returns the bike at the nearest station with available docks.
Given that the user was not able to return the bike at the desired station, such a
failure will be counted as a lost return demand. The station inventories are updated
accordingly. For rebalancing events (pick-up/drop-off), we verify whether sufficient
bikes/docks at the station and space/bikes within the vehicle are available. When a
vehicle completes its rebalancing task or lacks the necessary resources to continue, it
departs for the next station. Then, the vehicle’s estimated arrival time at the next
station is computed. If this estimated arrival is sooner than the current estimated
time point of the next decision epoch et (which may concern different vehicles), we
update et accordingly. As such, et will be equivalent to the point in time the next
decision epoch will occur.

During the simulation, the state is continuously updated in real time, leading to
the subsequent state Sk+1 and an immediate reward. This reward is quantified as
the negative of the total lost demand occurring until the next decision epoch.

4.3. Policy Evaluation and DQN

In this section, we delineate the methodology employed to train a Deep Q-
Network to derive an optimal policy for dynamic rebalancing. We present the princi-
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ples of Q-learning, elucidate the mechanisms of policy evaluation, and then elaborate
on the structure of the DQN.

Q-learning is a value-based off-policy Temporal-Difference (TD) RL method. In
the realm of value-based RL, the central objective is to learn a value function that
predicts the expected return of taking a specific action in a particular state, guiding
the agent towards the most rewarding outcomes. Specifically, with a Q-value func-
tion, Q(S,a) indicates the return after taking an action a in a given state S, and
a greedy policy π∗ that maximizes reward can be obtained from Equation (3). The
optimal Q-function obeys the following Bellman equation [3]:

Q∗(Sk,ak) = E[rk + γmax
ak+1

Q∗(Sk+1,ak+1)], (5)

where Sk and ak are the current state and action, respectively, Sk+1 and rk are
the next state and immediate reward after taking action ak, and ak+1 is the action
that achieves maximal Q-value at state Sk+1. The expectation is computed over the
distribution of immediate reward rk and next state ak+1.

Before the Q-value function converges to optimality, the difference between the
two sides of the equality is known as the TD error, namely

δ = r + γmax
ak+1

Q(Sk+1,ak+1) −Q(Sk,ak). (6)

The basic idea of Q-learning is to update the Q-value function by minimizing the
TD error. The key updating rule is

Q(Sk,ak)← Q(Sk,ak) + α(rk + γmax
ak+1

Q(Sk+1,ak+1) −Q(Sk,ak)), (7)

where α denotes the learning rate.
The Q-learning updating rule exemplifies the TD approach. It adjusts the value

(called the Q-value) of a state-action pair based on the actual reward received and
the projected value of the next state. This rule essentially allows the agent to forecast
future rewards and use this foresight to make informed decisions in the present. Being
off-policy, Q-learning enables the agent to gain insights from exploratory actions,
which may not immediately appear optimal, thereby enriching the learning process
and allowing the policy to evolve beyond the limits of the agent’s existing strategy.

Deep Q-Networks are an advancement in RL that combine Q-learning with Deep
Neural Networks. In DQN, two neural networks are employed: the prediction net-
work and the target network. The prediction network is responsible for approximat-
ing the Q-value of any state-action pair, and it is updated iteratively to reduce the
discrepancy between predicted Q-values and target Q-values. The target network
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serves to stabilize the learning process. Specifically, the target Q-value for a state-
action pair is given by r + γmaxa′Q(S′, a′; θtarget), where S′ is the subsequent state.
The loss function L is given by the square of TD error of the predicted Q-value and
the target Q-value

L(θpred) = E[((rk + γmax
a

Q(Sk+1,a; θ
target)) −Q(Sk,ak; θ

pred))2], (8)

where θtarget and θpred are the parameters of the target network and prediction net-
work, respectively.

During the training phase, the agents explore the state-action space by using an ϵ-
greedy strategy, where ϵ represents the exploration-exploitation trade-off, indicating
the percentage of actions through which the agent takes random actions instead of
following the current best policy. Initially, a high ϵ value is set, meaning the agent
is more likely to take a random action, ensuring sufficient exploration. As training
progresses, ϵ is gradually decreased, shifting the agent’s behavior from exploration
to exploitation, where the action that maximizes the Q-value from the prediction
network has a higher probability to be selected. As the agent interacts with the
environment, the accumulated experiences, consisting of state, action, reward and
next state are stored in a replay buffer. These experiences are then randomly sampled
in mini-batches for training the target network. At each iteration, a mini-batch of
training data is sampled from the replay buffer and the training loss is computed
as by Equation (8). The parameters of the prediction network are updated via
gradient descent to minimize the loss, while the target network’s parameters are
updated less often, usually by directly copying the prediction network’s weights.
This delayed update mechanism for the target network ensures the learning process
to avoid diverging for instability or erratic behavior, enhancing the reliability of the
training.

We employ the same Neural Network architecture for the two Q-value networks.
Initially, the input layer is designed to match the dimensions of the state observations
defined in Section 4.1. Then, we have two fully connected dense layers followed by a
Rectified Linear Unit (ReLU) activation function. The ReLU function is selected for
its non-linear properties and its ability to mitigate the vanishing gradient problem,
which is especially beneficial during the training of deep networks [30]. Finally, an
output layer corresponding to the number of actions allows the network to output a
Q-value for each possible action based on a given state.

5. Experiments and Results

In this section, we present the results of our computational investigation. In
Section 5.1, we first introduce the dataset and the baselines. Then, in Section 5.2,
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we demonstrate the training process for the DQN and evaluate the performance of
our algorithm and two baseline models on the test set.

5.1. Dataset and Baselines

Dataset. Although real-world trip data is generally available, we opt for synthetic
instance generation due to several considerations. The existing real-world data does
not account for unobserved demand and may contain inconsistencies or noise. More-
over, data on the rebalancing operations carried out by operators is not available,
which highly affects the reliability of reported station inventories. Consequently, we
utilize the instance generator introduced by [22] that generates trip data based on
different weather conditions and temporal features. The generator first generates
synthetic weather based on real-world weather data distributions. Subsequently,
hourly rentals are predicted using a linear regression model, trained on real-world
weather and trip data. Finally, the trip data is produced based on these hourly
rentals, in conjunction with trip distributions and the considered station network
(i.e., the station locations and capacities). The trip data therefore covers a diverse
set of realistic user behaviors, facilitating the DQN to learn a rebalancing policy that
accounts for different demand scenarios via the simulator.

The synthetic dataset is generated based on the weather and temporal data
sourced directly from the official website for Canadian weather statistics, where de-
tails on temperature, humidity, day, hour, year, and weekday are reported1. The
real-world trips and station information used as input to the generator are directly
obtained from BIXI, a BSS in Montreal. We focus on weekdays from the period of
May to September 2019 to ensure that the data is not affected by the COVID-19
pandemic.

We consider two ground-truth datasets, GT1 and GT2, each comprising a 60-
station network with varying station distributions. The stations within city centers
are equipped with 40 docks, while those outside city centers have 20 docks each. GT1
comprises 9 stations within 1 city center, whereas GT2 is more expansive, including
12 stations spread across 2 city centers. The remaining stations are outside city
centers. The configuration of GT2 allows for a more even distribution of work-
related trips — where individuals commute between stations in and outside city
centers for work — resulting in less stressed trip demand. Details can be found in
[22]. Utilizing two datasets is significant for algorithm validation, as it reflects a more
realistic variety of urban commuting patterns. In each dataset, we generate 150 days,
each of which contains detailed trips (each trip consisting of its origin station, the

1https://climate.weather.gc.ca
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departure time, its destination station and its arrival time). The first 100 days in
the dataset are used for training. The remaining 50 days are used as a test set for
evaluation. Four vehicles are available to rebalance the stations, each with a capacity
to carry 40 bikes.
Baselines. We benchmark our algorithm with the following two MIP models:

• Static Rebalancing: Static rebalancing only occurs during the night with
the objective of optimizing the initial inventories of the next day (in our case,
starting at 7 a.m.). The planning solution is obtained by solving an MIP
model from [21], where the inventories for the first time-period are decision
variables that sum to the total number of available bikes in the system. We
then simulate all days from the test set without intraday rebalancing starting
from the initial inventories gained by static rebalancing model. Note that the
inventory solution derived from the static rebalancing model also serves as the
initial inventory in all other models.

• Dynamic Rebalancing: We apply the multi-period dynamic rebalancing
MIP model from [21], with time-periods of 30-minute and 60-minute length.
For each station and time-period, the average number of rentals and returns is
obtained from the training set, serving as demand estimate used in the MIP
model. The produced rebalancing strategy indicates the number of bikes each
vehicle should attempt to pick up or drop off at which station for each time-
period. The performance of the rebalancing strategy is also evaluated on the
test set.

The two baseline models are solved using IBM ILOG CPLEX v20.1.0.0 on 2.70
GHz Intel Xeon Gold 6258R machines with 8 cores. Optimization terminates once
the MIP gap reaches 0.01% or the time limit of 24 hours is reached.

5.2. Experimental Results

We consider a planning horizon of 4 hours from 7 a.m to 11 a.m, surrounding
the morning demand peak. This period also corresponds to an episode in DQN. The
training phase in the DQN is performed on a single GPU Tesla V100-PCIE-32GB.

5.2.1. DQN Training Process

We introduce the parameters used in our DQN algorithm in Table 3. A total
of 3,000,000 time steps are chosen to provide the model ample opportunity to learn
from a wide range of situations and stabilize its policy. Learning is performed offline,
and is therefore not a time-sensitive matter. The moderate learning rate of 2.5e-4
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balances speed of convergence with stability of the learning updates. A buffer size
of 10,000 allows for storing a diverse set of experiences, enhancing the robustness of
the learning by preventing overfitting to recent experiences. The discount factor γ
is set to 0.99, i.e., future rewards are considered almost as important as immediate
rewards, which is suitable for tasks with long-term strategies. The batch size is 256, a
standard choice that provides a good trade-off between the computational efficiency
and the statistical robustness of gradient estimates. The exploration rate is annealed
from 1 to 0.05 to balance exploration with exploitation as learning progresses. An
exploration fraction of 0.5 defines the portion of the total time steps during which
the exploration rate is annealed.

Table 3: Parameters in training process

Parameters Values
Total time step 3,000,000
Learning rate 2.5e-4
Buffer size 10,000
Discount factor γ 0.99
Batch size 256
Exploration rate ϵ 1 → 0.05
Exploration fraction 0.5
1st layer neurons 1,024
2nd layer neurons 512

We first investigate the effects of different action spaces as defined in Section 4.1
for rebalancing decisions. We consider 3 sets of predefined inventory levels of sta-
tion capacity: a first set with µ1 = 0%, µ2 = 50%, µ3 = 100%, a second with µ1 =

10%, µ2 = 50%, µ3 = 90%, and a third with µ1 = 15%, µ2 = 50%, µ3 = 85%. The
standard DQN with the second set of µ is denoted as DQN, while the other two are
differentiated by their respective percentages. For a comprehensive understanding
of the DQN’s performance, we report the episodic return and TD Loss in Figure 4.
Each step represents one episode, which here corresponds to 4 hours (7 a.m to 11
a.m). The episodic return measures the cumulative reward obtained per episode,
i.e. the negative value of total lost demand, with higher returns suggesting more
effective rebalancing strategies. The TD Loss measures the divergence between the
predicted and the target Q-values, serving as an indicator of the network’s precision
in forecasting future rewards. Jointly, the episodic return and TD loss provide a
clear picture of both the result of the agent actions and the learning progression over
time.

Figure 4 reveals that the episodic return for the DQN with the first action space
(i.e., µ1 = 10%, µ2 = 50%, µ3 = 90%) shows a more consistent increase compared to
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Figure 4: Episodic Return and TD Loss of DQN for GT1 under different action spaces

the other two, indicating a more effective strategy. The TD Loss trends downward
for all action spaces, which indicates learning improvement across the board, yet the
standard DQN maintains a consistently low TD Loss, suggesting that it learns a
more accurate Q-value estimation faster than the others. The converging TD Loss,
coupled with the improving episodic returns, strongly points to the conclusion that
the DQN model with the µ parameters set at 10%, 50%, and 90% is developing a
more refined and potentially more successful policy within the planning horizon, as
opposed to the other tested action space parameters.

Based on the best performing action space of the DQN model (i.e., µ1 = 10%,
µ2 = 50%, and µ3 = 90%), we next investigate the impact of using distinct activation
functions for the output layer on the training performance. While the previous mod-
els did not use any activation function in the output layer, we now test Leaky ReLU,
Parameterized ReLU (PReLU), and Exponential Linear Unit (ELU) [34]. These
functions are specifically chosen for their ability to adeptly handle negative outputs,
given that the immediate reward in our DQN model is defined as the negative value
of the lost demand. Unlike the conventional ReLU function, which suffers from
the zero-gradient problem for negative inputs potentially causing inactive neurons,
Leaky ReLU, PReLU, and ELU maintain gradients, preventing neuron death during
training [35].

The results of episodic return and TD loss during the training process for GT1 for
the resulting models are shown in Figure 5. In Figure 5 (a), the episodic return across
all variants exhibits a generally upward trend, indicating an increase in cumulative
rewards as learning progresses. The convergence of episodic returns suggests that
regardless of the activation function, each variant is improving its policy effectively
over time. In terms of TD loss in Figure 5 (b), there is an initial steep decrease in
loss across all variants, which then levels off, suggesting a rapid early improvement in
predictive accuracy that stabilizes as the models approach optimal policy estimation.
Overall, standard DQN slightly stands out, while DQN-ELU lags a bit behind the
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Figure 5: Episodic Return and TD Loss of DQN variants for GT1

other opponents, particularly in episodic return.
We then focus on the best performing model, namely the DQN, in Figure 6 and

Figure 7 for GT1. The agents in our algorithm appear to be effectively learning the
dynamic rebalancing task in BSS. This is evidenced by the rising Q-values, reducing
TD loss (see Figure 6), and improving episodic returns (see Figure 7). Recall that the
Q-value represents the expected reward for taking a particular action in a state and
following the policy thereafter. The Q-value curve here represents the average of the
estimated Q-values over global steps throughout the training episodes. An increase of
the Q-value over time is a sign that, as the training phase advances, actions of higher
quality are selected, reducing the expected lost demand. As such, it measures the
quality of particular actions, with higher values suggesting more favorable actions.

Figure 6: Q-value and TD Loss for DQN (GT1)

The Q-value in Figure 6 (a) decreases at first when agents begin to explore the
state-action space with a random policy and encounter highly negative rewards,
which is typically characterized by exploration. During this initial stage, the agent
learns to track the current policy where the Q-value first converges to the value of the
random policy. Once the agents begin to learn from that experiences, the Q-value
increases steadily, leading to a better rebalancing policy. The function approximation
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of the policy’s Q-value also improves over time as the agent learns to better predict
expected returns from its actions. The decreasing trend in TD Loss observed in
Figure 6 (b) suggests that the DQN’s predictions are becoming more accurate over
time as the agent learns from its experiences. A high TD Loss at the beginning
reflects that the DQN starts with random predictions, which is expected to diminish
as the network evolves and refines its policy.

Figure 7: Episodic Return and Episodic Length for DQN (GT1)

The episodic return in Figure 7 (a) suggests that the agent’s policy becomes
more effective over time at achieving higher rewards, i.e., finding better rebalancing
policies. The episodic length is given by the number of steps all agents (i.e., all
4 vehicles) can perform during one episode (i.e., the planning horizon of 4 hours),
here reflecting the number of stations visited during one episode, increasing from
approximately 50 to 100, as shown in Figure 7 (b). This increasing trend indicates
that the agents learn to optimize rebalancing operations by covering more stations
to reduce total lost demand in the system.

The illustrated metrics offer a valuable perspective on the models’ performance
throughout the training phase, capturing the progression and refinement of the learn-
ing process. However, it is crucial to investigate the trained models’ capabilities on
the test set, which is done in Section 5.2.3.

5.2.2. Impacts of routing

In this section, we further investigate the impact of routing decisions within the
context of MMDP. We simplify the aforementioned MMDP model, restricting the ac-
tion space solely to rebalancing decisions. Therefore, upon arrival at the designated
station, the DQN policy of vehicles in this MMDP environment only makes load-
ing/unloading decisions. Then, the selection of the next station is determined either
randomly or through a predetermined routing heuristic. Specifically, the heuristic
rule is to assign the fullest station to the most empty vehicle and vice versa, i.e.,
selecting the most empty station for the most full vehicle. We conduct experiments

24

A Reinforcement Learning Approach for Dynamic Rebalancing in Bike-Sharing Systems 

CIRRELT-2024-04



to compare the two simplified DQNs against our complete DQN policy that makes
both routing and rebalancing decisions. The results are illustrated in Figure 8, where
the two new rebalancing algorithms using simplified DQNs are labelled ‘Rebalancing
& heuristic routing’ and ‘Rebalancing & random routing’.

Figure 8: Episodic Return and TD Loss under Different Routing Setting (GT1)

The variant with heuristic routing demonstrates a clear advantage over the one
with random routing, both in terms of episodic return in Figure 8(a), which measures
the system’s efficiency or profitability, and TD loss in Figure 8(b), which is indicative
of a more accurate Q-function approximation. Improvements of both methods are,
however, rather modest. The DQN is less effective than the heuristic routing at first,
as routing decisions are ineffective at the beginning of the learning process. However,
over time, both the episodic return and the TD loss consistently improve and eventu-
ally DQN outperforms the variant based on heuristic routing, demonstrating that it
is able to learn routing decisions that are superior to those of a heuristic rule. These
results emphasize the impact of routing decisions in the planning problem at hand,
as well as the relevance of including them in the learning task. Therefore, our sub-
sequent evaluation will concentrate exclusively on the DQN with both rebalancing
and routing decisions.

5.2.3. Performance comparison among the various models

We now compare the performance of the various models on the test set to illustrate
the practical efficacy and robustness when faced with new and potentially more
complex demand scenarios. Tests are carried out for both ground-truth problem
instances GT1 and GT2, where the training process for GT2 is the same as for
GT1. The training time for the DQN model and its variants has been found to
be approximately 14 hours, which is non-critical, given that training is performed
offline. In contrast, policy predictions are made within seconds. We here note, again,
that each problem instance has been trained on its respective station network (either
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GT1 or GT2), which is a realistic assumption, given that one can expect to have
available historical data for the specific BSS station network at hand.

Table 4: Total average lost demand on test set for GT1 and GT2

Model
GT1 GT2

ϵ = 0 ϵ = 0.05 ϵ = 0 ϵ = 0.05
Static Rebalancing 112.82 - 82.12 -
Dynamic MIP Model (60 mins time-period) 56.78 - 75.32 -
Dynamic MIP Model (30 mins time-period) 44.76 - 36.72 -
DQN-ELU 50.13 51.13 26.76 32.11
DQN-PReLU 36.58 44.21 29.09 29.75
DQN-LeakyReLU 44.53 48.27 27.32 29.22
DQN 35.12 42.69 29.54 31.05

Table 4 reports the average episodic lost rental and return demand on the test set
of both our algorithm and the baselines for both GT1 and GT2. For both ground-
truths, we report two distinct settings for the DQN with different values of ϵ. Here,
we set ϵ at fixed values rather than the ϵ-greedy strategy used during training, which
transitions gradually from 1 to 0.05 (see Table 3). This exploration rate is critical
in determining the likelihood that a random action is chosen over the predicted best
action. When ϵ = 0, the action yielding the maximum Q-value from the trained
network is consistently selected. The robustness of the DQN models is evaluated
by ϵ = 0.05, which incorporates a degree of randomness in action selection. This
exploration can potentially lead to the discovery of more effective strategies that
were not captured during training, or it may provide a buffer against overfitting to
the training data by occasionally deviating from the deterministic policy. Given that
the static rebalancing and the dynamic MIP model do not have a stochastic strategy,
their performance are showcased only under the ϵ = 0 condition.

The static rebalancing, i.e., overnight rebalancing without dynamic intraday re-
balancing, displays the highest total average lost demand of 112.82 for GT1 and
82.12 for GT2. In contrast, dynamic MIP models with lengths of 30-min and 60-min
per time period show a significant reduction in lost demand. This demonstrates the
natural advantage of dynamic rebalancing strategies, as they allow to adjust station
inventories throughout the planning horizon. Specifically, the 30-min dynamic model
(44.76) reduces lost demand over the static model (112.82) by up to a 60.32% (for
GT1). Among the two dynamic models, using 30-min instead of 60-min time-periods,
the lost demand reduces by up to 51.25%. This is likely explained by the rebalancing
frequency allowed by the two models, as each vehicle can only rebalance one station
per time-period. Specifically, in the case of the former model, the 4 vehicles can re-
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balance a total of 32 stations within the period of 4 hours, while in the latter model,
only 16 stations can be rebalanced. However, according to Figure 7(b), the number
of stations rebalanced by the RL solutions can reach more than 50. The continuous
time framework enables the vehicle fleet to rebalance stations more frequently and
efficiently since the vehicles do not have to wait for each other.

The DQN variants exhibit commendable adaptability and efficiency in the context
of lost demand for both GT1 and GT2. When ϵ = 0, the standard DQN demonstrates
the most effective performance, achieving the lowest total average lost demand of
35.12 for GT1, while DQN-ELU outperforms others with a lost demand of 26.76,
highlighting the robustness and capability of RL. Particularly, DQN reduces lost
demand by 21.5% compared to the Dynamic MIP model with 30-min time-period
for GT1 and DQN-ELU achieves an improvement of 27.12% for GT2. The DQN-
PReLU and DQN-LeakyReLU also show competitive results, potentially offering
superior learning dynamics during the training phase.

Introducing randomness in action selection through ϵ = 0.05 results in an in-
crease in lost demand across all DQN models. In this case, the agents are no longer
solely exploiting their learned knowledge but are also exploring potentially subopti-
mal actions to discover new strategies. Notably, most of the DQN models maintain a
superior performance over dynamic MIP model even when exploration is introduced,
especially for GT2, which underscores the DQN models’ superior ability to general-
ize and adapt to the test environment despite the introduction of randomness in the
decision-making process. The fact that the proposed models exhibit reasonable per-
formance despite random deviations also indicates their capacity to correct mistakes
made in previous actions, highlighting the algorithm’s adaptability.

6. Conclusions

We address the Dynamic Bicycle Redistribution Problem with multiple vehicles,
a planning problem of uttermost importance for dock-based Bike-Sharing Systems
to provide high user satisfaction. To provide decision-support, most of the existing
literature has focused on MIP approaches. Due to the complexity of this planning
problem, most MIP approaches are required to make simplifying assumptions to yield
tractable models.

In this work, we circumvent some of such limitations by developing a spatio-
temporal RL algorithm to solve the DBRP with a station network of up to 60 stations
and enable the coordination of multiple vehicles under a fine-grained simulator. We
first formulated the problem as an MDP under a continuous time framework, allowing
vehicles to independently and cooperatively rebalance stations without the need to
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wait for each other, which enhances the realism and efficiency of the rebalancing
process. We then developed an advanced simulator, following the first-arrive-first-
serve rule, to calculate rewards between two successive states across varied demand
scenarios. To solve the MDP model for DBRP, we proposed a DQN framework to
learn effective rebalancing strategies with the aim of minimizing lost demand. Our
method was evaluated with a diverse trip dataset, responsive to weather conditions
and temporal factors.

Our model architecture, as well as our computational experiments on two dif-
ferent station networks with different structures and diverse demand patterns allow
for observing the following benefits. First, the proposed DQN models consistently
outperform the MIP baseline models (i.e., a static and a multi-period rebalancing
model), reducing the lost demand up to 27.12% with respect to the dynamic version
of the MIP. Second, the continous-time framework enables the 4 vehicles to visit far
more than 50 stations throughout the planning horizon, avoiding idle times. In con-
trast, the number of rebalanced stations in MIP models (in our experiments, either
16 or 32) depend on the time-discretization and are therefore subject to a delicate
trade-off between computational tractability and practical feasibility. Third, our
model can be trained offline and the construction of rebalancing policies is instanta-
neous, whereas MIP models may take significant time to be solved.

This study shows the potential of RL in DBRP, outlining various intriguing av-
enues for future research. Although our method showcases computational efficiency
within a 60-station system, it is extendable to larger systems. The scalability can
be further enhanced through the integration of clustering methods, offering effective
application on large-scale BSS. Additionally, the extension of our method could also
involve additional state parameters such as vehicle initial locations, offering a more
granular and responsive approach to rebalancing. Finally, with the understanding
that the training time is not a limiting factor, we have the flexibility to emphasize
real-time decision-making once the model is trained. This allows for the development
and implementation of more detailed and tailored solutions, emphasizing that the
focus is on the swift application of the trained model rather than the speed of the
training process.
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Curran Associates, Inc., 2019, pp. 8024–8035.

[35] D. Pedamonti, “Comparison of non-linear activation functions for deep neural
networks on mnist classification task,” arXiv preprint arXiv:1804.02763, 2018.

[36] T. Raviv, M. Tzur, and I. A. Forma, “Static repositioning in a bike-sharing
system: models and solution approaches,” EURO Journal on Transportation
and Logistics, vol. 2, no. 3, pp. 187–229, 2013.

[37] M. Schofield, S.-S. Ho, and N. Wang, “Handling rebalancing problem in
shared mobility services via reinforcement learning-based incentive mecha-
nism,” in 2021 IEEE International Intelligent Transportation Systems Confer-
ence (ITSC). IEEE, 2021, pp. 3381–3386.

[38] Y. Seo, “A dynamic rebalancing strategy in public bicycle sharing systems based
on real-time dynamic programming and reinforcement learning,” Ph.D. disser-
tation, Doctoral dissertation. Seoul National University, South Korea, 2020.

[39] Y.-H. Seo, D.-K. Kim, S. Kang, Y.-J. Byon, and S.-Y. Kho, “Rebalancing docked
bicycle sharing system with approximate dynamic programming and reinforce-
ment learning,” Journal of Advanced Transportation, vol. 2022, 2022.

[40] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[41] C. M. Vallez, M. Castro, and D. Contreras, “Challenges and opportunities
in dock-based bike-sharing rebalancing: a systematic review,” Sustainability,
vol. 13, no. 4, p. 1829, 2021.

[42] I. Xiao, “A distributed reinforcement learning solution with knowledge transfer
capability for a bike rebalancing problem,” arXiv preprint arXiv:1810.04058,
2018.

[43] C. Xu, J. Ji, and P. Liu, “The station-free sharing bike demand forecasting with
a deep learning approach and large-scale datasets,” Transportation research part
C: emerging technologies, vol. 95, pp. 47–60, 2018.

32

A Reinforcement Learning Approach for Dynamic Rebalancing in Bike-Sharing Systems 

CIRRELT-2024-04



[44] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, “Mean field multi-
agent reinforcement learning,” in International conference on machine learning.
PMLR, 2018, pp. 5571–5580.

[45] Z. Yin, Z. Kou, and H. Cai, “A deep reinforcement learning model for large-
scale dynamic bike share rebalancing with spatial-temporal context,” in The
12th International Workshop on Urban Computing, 2023.

[46] D. Zhang, C. Yu, J. Desai, H. Lau, and S. Srivathsan, “A time-space network
flow approach to dynamic repositioning in bicycle sharing systems,” Transporta-
tion research part B: methodological, vol. 103, pp. 188–207, 2017.

[47] X. Zhang, H. Yang, R. Zheng, Z. Jin, and B. Zhou, “A dynamic shared bikes
rebalancing method based on demand prediction,” in 2019 IEEE Intelligent
Transportation Systems Conference (ITSC). IEEE, 2019, pp. 238–244.

[48] X. Zheng, M. Tang, Y. Liu, Z. Xian, and H. H. Zhuo, “Repositioning bikes with
carrier vehicles and bike trailers in bike sharing systems,” Applied Sciences,
vol. 11, no. 16, p. 7227, 2021.

33

A Reinforcement Learning Approach for Dynamic Rebalancing in Bike-Sharing Systems 

CIRRELT-2024-04


	Introduction
	Literature Review
	Dynamic bicycle repositioning and MIP models
	Markov Decision Process
	Reinforcement Learning

	Multi-agent Dynamic Rebalancing
	Problem Definition
	Multi-agent Markov Decision Process Model
	State Space
	Action Space
	Transition Function
	Reward and Policy

	Continuous Time Planning Framework for MMDP

	MARL Methodology with Deep Q-Network
	State and Action Space Design
	Simulator of Operating Environment
	Policy Evaluation and DQN

	Experiments and Results
	Dataset and Baselines
	Experimental Results
	dqn Training Process
	Impacts of routing
	Performance comparison among the various models


	Conclusions
	CIRRELT-2024-04-abstract.pdf
	Bibliothèque et Archives Canada, 2024




