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1 Introduction

Establishing hydrogen infrastructure and switching to hydrogen fuels in the transportation sector is an
important step towards meeting the ambitious objectives of the Paris Agreement (United Nations, 2015). A
diversified energy mix is an important milestone for achieving energy stability (IEA, 2022). Green hydrogen,
i.e., hydrogen produced without emitting CO2, must be produced through water electrolysis (EL) using
renewable electricity. With 99% of electricity being produced from renewable sources, 88% from hydropower
and 11% from wind parks (Ministry of Petroleum and Energy, 2023), Norway has a good starting position
for the production of green hydrogen. However, both electric batteries and ammonia are competing zero-
emission alternatives. The future energy mix, and hence future hydrogen demand, is still uncertain (DNV
GL, 2019). A flexible infrastructure allowing for capacity expansion as well as reduction to account for the
uncertainty in future hydrogen demand, becomes crucial to satisfy customers and provide a reliable hydrogen
supply.

Motivated by the planning context of locating hydrogen facilities in Norway, we here study a location
problem that minimizes the expected total costs while satisfying customers demand as best as possible under
three distinguishing characteristics: modular capacity adjustments, allowing to adjust production capacities
to changing demand trends; a piece-wise linear objective-function that models the piece-wise linear short-term
costs more realistically, specific to each capacity level; and the multi-stage stochastic nature of the problem,
allowing for the adjustment of decisions throughout the planning horizon when more precise information
on the uncertain parameters becomes available. While such characteristics has been tackled separately in
the existing literature, its combination, required by the here given application context, has not yet been
considered.

Our contributions are threefold. First, we present a general multi-stage stochastic facility location model
allowing for multiple capacity adjustments during the planning horizon. The proposed model formulation
allows for a large variety of different multi-stage configurations. It further extends the deterministic gen-
eralized facility location model by Jena et al. (2015) by considering uncertainty in future demand within
a multi-stage setting. We further model specific piece-wise linear short-term costs dependent on installed
capacity and the geographical location of the facility. Second, we present a solution method based on La-
grangian relaxation to find high-quality solutions to real-world size multi-stage facility location problems
with capacity adjustments within reasonable computational time. To the best of our knowledge, our work is
the first to apply Lagrangian relaxation to relax the demand constraint in the context of multi-stage stochas-
tic facility location problems. The Lagrangian dual is solved by a hybrid strategy to update the Lagrangian
multipliers more efficiently: we first use a cutting planes method with box constraints that allows for fast
convergence in early iterations; we then switch to a steepest descent method due to its fast computing times
in subsequent iterations. Finally, we evaluate the performance of the proposed solution method on a variety
of problems instances derived from an industrial case study

The remainder of this paper is structured as follows. Section 2 reviews the related literature. We then
define the planning problem and present a mathematical model in Section 3. Section 4 focuses on the
solution method. The case study considered in our computational experiments is introduced in Section 5.
Computational results and conclusions are discussed in Sections 6 and 7, respectively.

2 Related Literature

In the following, we review literature related to the three key characteristics of the here considered location
problem: modular capacity adjustments, piece-wiese linear objective functions and parameter uncertainty in
the context of multi-stage planning.

Capacity adjustments can be applied during the planning horizon in response to time-varying parameters,
such as demand or costs. As a result, depending on the application context, capacity expansion, reduction
or relocation may be necessary. Deterministic facility location problems with capacity adjustments have
received a lot of attention in the literature. An overview on such works can be found in the reviews of Melo
et al. (2009), Nickel and Saldanha-da Gama (2019), Alarcon-Gerbier and Buscher (2022).

Capacity adjustments have initially be modeled by closing existing facilities and opening new ones at the
same location (see, e.g., Shulman, 1991; Dias et al., 2007). More recent literature uses modular capacities,
where capacity adjustments can be modelled as a change between available capacity levels. Correia et al.
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(2013), Cortinhal et al. (2015), Štádlerová et al. (2022), and Štádlerová et al. (2024) allow for the expansion
of capacity over time. Problems that allow for capacity expansion and reduction, along with facility closing
and reopening have been discussed by Antunes and Peeters (2001), Jena et al. (2015), Jena et al. (2017),
and Becker et al. (2019). Melo et al. (2006), Jena et al. (2016), and Allman and Zhang (2020) study capacity
modification by relocation of modules.

A particular advantage of modular capacities is that they allow for the modelling of economies of scale
in investment and production costs, since such costs can be defined for each capacity level (see, e.g., Correia
and Captivo, 2003). To model production costs more in detail, a specific production cost function depending
on capacity utilization can be associated with each capacity level which also enables to consider economies
of scale in production and minimum production limits for each capacity level resulting from technology
specifications in industrial processes (see, e.g., Štádlerová et al., 2022, 2024). Such detailed cost functions
are considered in this work within the context of general modular capacity adjustments and a multi-stage
planning context under demand uncertainty.

The latter, parameter uncertainty, is a natural extension of deterministic formulations. Within the
paradigm of stochastic programming (Birge and Louveaux, 2011), the literature has mainly focused on
two-stage stochastic facility location problems that have been formulated as single-period problems. For a
review on facility location problems under uncertainty, we refer to Owen and Daskin (1998), Snyder (2006),
Govindan et al. (2017), Correia and Saldanha-da Gama (2019). Multi-period two-stage stochastic facility
location problems with capacity expansion as a second-stage decision are relatively new in the literature.
Correia and Melo (2021), and Štádlerová et al. (2022, 2023) study a version of the problem, where facility
location and its initial capacity are first-stage decisions while capacity expansion, together with demand
allocation, are second-stage decisions depending on the realization of uncertain demand parameters.

Formulating the planning problem with multiple decision stages (Ortiz-Astorquiza et al., 2018) allows for
the revision of capacity decisions as more information about uncertain parameters is revealed, which may lead
to considerable cost savings. However, the computational complexity increases compared to the two-stage
formulation. Indeed, previous studies on multi-stage stochastic facility location and capacity expansion
problems show that due to the complexity of the problem and a high number of binary variables, only
problems of limited size with relatively few scenarios can be solved (see, e.g., Ahmed et al., 2003; Huang and
Ahmed, 2009; Singh et al., 2009). One of the first studies on multi-stage stochastic facility location problems
with capacity expansion is provided by Ahmed et al. (2003). The authors present a model with continuous
capacity expansion variables and only require the overall capacity to be higher than demand. They use
Lagrangian relaxation to obtain a valid bound, by relaxing the non-anticipativity constraints resulting in a
problem that can be decomposed in scenarios. They then construct an integer solution for each scenario, and
finally re-enforce the non-anticipativity constraints and construct a feasible solution. The solution is further
improved using a branch and bound algorithm. Due to the computational complexity, the problem is solved
only for small instances. Huang and Ahmed (2009) formulate a multi-stage facility location problem with
capacity expansion as a recourse decision. They further show the advantage of a multi-stage formulation
over a two-stage formulation by calculating the value of multi-stage stochastic programming (VMSS). For a
review on multi-stage stochastic optimization problems, we refer to Bakker et al. (2020).

Multi-stage stochastic location problems with modular capacities have not yet been considered in the
literature. The present work aims at filling this gap, additionally considering detailed capacity-level depen-
dent piece-wise linear cost-functions and proposing a Lagrangian heuristic to find high-quality solutions to
real-world sized problem instances.

3 Problem formulation

We first provide a detailed definition of the here considered planning problem in Section 3.1. A general
mixed-integer programming (MIP) formulation is then given in Section 3.2.

3.1 Problem definition

We present a location and capacity investment planning problem considering time-varying and uncertain
demand. The problem naturally has a multi-stage structure, since the exact information about future
demand becomes available gradually during the planning horizon. At the beginning of each stage, when new
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information becomes available, facilities can be opened, and existing facilities can expand capacity, reduce
capacity, or be closed in response to the expected or observed demand level. Considering the time-varying
uncertain demand, facilities need to be opened and modified so that demand is satisfied. Otherwise, penalty
costs for unsatisfied demand must be paid.

Let I represent the set of candidate facility locations and
K =

{
−1, 0, 0′, 1, 2, . . . , k

}
the set of available capacity levels. Capacity levels may have different inter-

pretations. Specifically, capacity level 0 indicates that the location currently does not have any facility, but
is available for opening a new facility in the future. Capacity level −1 indicates that a previously existing
facility has been permanently shut down, and reopening in the future is not allowed. Capacity level 0′ is used
if the facility has been closed, but a new facility can be opened later again at that location. Capacity levels
1, 2, . . . , k indicate an existing facility open at that capacity production level. We further define a capacity
subset K0 ⊂ K = {−1, 0, 0′}, containing capacity levels without production capacity, and a capacity subset
K+ ⊂ K =

{
1, 2, . . . , k

}
, containing production capacity levels. As such, K = K+ ∪K0 contains all non-zero

capacity levels as well as capacity levels without production capacity. Note that K+ ∩K0 = ∅. Capacity set
L−(i, t, k1) ⊆ K defines all capacity levels to which the capacity of facility i ∈ I, currently open at capacity
level k1, can be changed to at the beginning of time period t ∈ T . Similarly, capacity set L+(i, t, k2) ⊆ K
contains all capacity levels from which the capacity may be changed to level k2 at facility i ∈ I at the
beginning of time period t ∈ T .

Customer locations are given by the set J . Let S be the set of scenarios s, where s is the representation
of future uncertain demand level. Each customer has a specific demand Ds

jt for time period t ∈ T in scenario
s ∈ S. Customer demand can be satisfied by one or more facilities, which, in the facility location literature,
is often referred to as multi-sourcing. Parameter Lij is set to value 1 if facility i ∈ I can serve customer
j ∈ J , and to value 0 otherwise. Unit distribution costs Tij are calculated based on the distance between
facility i ∈ I and customer j ∈ J . If demand cannot be satisfied, penalty costs MD are paid for each
unsatisfied demand unit dsjt. Such penalty costs may, for example, reflect additional costs for importing the
product.

Investment and production costs are subject to economies of scale and they depend both on the size of
the installed capacity and the location of the facility. The costs for changing a capacity level from k1 ∈ K
to capacity level k2 ∈ L−(i, t, k1) at the beginning of time period t ∈ T is given by Cik1k2t. Parameter
Φik takes value 1 if the initial capacity level at the beginning of the planning horizon is equal to k ∈ K at
location i ∈ I. Costs for changing capacity level Cik1k2t represent long-term costs and they are separated
from short-term production costs.
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Figure 1: Short-term production costs function

For each capacity level, a specific piece-wise linear short-term production cost function fk(q) defines both
the cost and the feasible production quantities for the installed capacity as illustrated in Figure 1. At each
break-point, production quantities and corresponding costs are defined. The lowest break-point of the short-
term production costs function represents the lowest production quantities at a given capacity level while
the highest break-point Bk corresponds to the installed capacity and thus to the upper production limit at
capacity level k. The short-term production costs for given location i ∈ I, production capacity level k ∈ K+,
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break-point b ∈ Bk and time period t ∈ T are denoted Fikbt. Using a linear combination of breakpoints,
arbitrary quantities between the minimum and maximum limit can be achieved. While Štádlerová et al.
(2024) are limited to strictly convex short-term production costs, we here consider a general cost function
that can take any shape. Having the assumption of convex short-term production costs, the optimal solution
always combines two consecutive breakpoints to get the required production quantities. In the case of a
general shape of the short-term cost function, the piece-wise linear function is modelled using a special
ordered set of type 2 (Schütz et al., 2008; Williams, 2013).

When considering minimum production requirements, penalty costs for overproduction MQ apply for
each overproduction unit qsit if demanded quantities are below the level of minimum production requirements.
Similar to the penalty costs for unsatisfied demand, penalty costs for overproduction may represent costs for
exporting excess production.

We here opt to model demand uncertainty by means of a multi-stage scenario-tree that represents alter-
native demand scenarios s ∈ S. The scenario-tree is defined by a set of nodes N . Hence, we define each
scenario as the entire set of demands for all locations throughout the entire planning horizon. A scenario
therefore consists of a sequence of nodes n ∈ N . Let S(n) be the set of scenarios passing through node
n ∈ N and tn ∈ T the time period associated with node n. In other words, all scenarios in S(n) cannot yet
be distinguished from each other and they still have the exact same demand realizations in the node n ∈ N
and the time period tn.

Our model can deal a large variety of multi-stage decision structures, including an arbitrary number
of decision stages and different number of time-periods within each stage. The scenario-tree structure of
a simple three-stage problem is depicted in Figure 2. All scenarios passing through the node n ∈ N in
time period tn are characterized with equal decision structure in tn. In Figure 2, the scenarios 1, 2, and 3
lead to equal decisions until time period 4, since they are passing through the same nodes and cannot be
distinguished from each other.

0.5

0.5

1

0.4

0.3

0.3

765 12

13

11

0.3

0.4

0.4

432 9

10

8

18

19

17

15

16

14

t = 1 t = 2 t = 4t = 3 t = 5 t = 6

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Figure 2: Graphical representation of the three-stage scenario-tree

3.2 Mathematical formulation

We first introduce the decision variables used to model the planning problem defined above as a mixed-integer
linear program:

ysik1k2t 1, if facility at location i ∈ I changes capacity level from k1 ∈ K to capacity level
k2 ∈ L−(i, t, k1) at the beginning of period t ∈ T for scenario s ∈ S ; 0 otherwise;

µsikbt Weight of breakpoint b ∈ Bk at location i ∈ I for capacity level k ∈ K+ in period t ∈ T and
scenario s ∈ S;

xsijkt Amount of customer demand at location j ∈ J satisfied from facility i ∈ I operating at
capacity level k ∈ K+ in period t ∈ T in scenarios s ∈ S;

dsjt Demand shortfall: the amount of unsatisfied demand at customer location j ∈ J in period
t ∈ T for scenario s ∈ S;

qsit Overproduction: the amount of overproduction at facility location i ∈ I in period t ∈ T for
scenario s ∈ S.
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The resulting multi-stage stochastic model can be written as follows:

min
∑
s∈S

ps

∑
i∈I

∑
t∈T

∑
k1∈K

∑
k2∈L−(i,t,k1)

Cik1k2ty
s
ik1k2t+∑

b∈Bk

∑
i∈I

∑
k∈K+

∑
t∈T

Fikbtµ
s
ikbt +

∑
i∈I

∑
j∈J

∑
k∈K+

∑
t∈T

Tijx
s
ijkt

∑
j∈J

∑
t∈T

MDdsjt +
∑
i∈I

∑
t∈T

MQqsit

 ,
(1)

subject to:∑
i∈I

∑
k∈K+

xsijkt + dsjt = Ds
jt, j ∈ J , t ∈ T , s ∈ S, (2)

∑
k1∈K

∑
k2∈L−(i,t,k1)

ysik1k2t = 1, i ∈ I, t ∈ T , s ∈ S, (3)

∑
k2∈L−(i,t,k)

ysikk2t = Φik, i ∈ I, t = 1, k1 ∈ K, s ∈ S, (4)

∑
k1∈L+(i,t−1,k)

ysik1k(t−1) =
∑

k2∈L−(i,t,k)

ysikk2t, i ∈ I, t ∈ T \ {1}, k ∈ K, s ∈ S, (5)

∑
b∈Bk2

µsik2bt =
∑

k1∈L+(i,t,k2)

ysik1k2t, i ∈ I, t ∈ T , k2 ∈ K+, s ∈ S, (6)

∑
j∈J

∑
k∈K+

xsijkt + qsit =
∑
b∈Bk

∑
k∈K+

Qbkµ
s
bikt, i ∈ I, t ∈ T , s ∈ S, (7)

xsijk2t ≤ LijD
s
jt

∑
k1∈L+(i,t−1,k2)

ysik1k2t, i ∈ I, t ∈ T , j ∈ J , k2 ∈ K+, s ∈ S(n), (8)

1

|S(n)|
∑

s′∈S(n)

ys
′

ik1k2tn = ysik1k2tn ,

i ∈ I, n ∈ N , k1 ∈ K, k2 ∈ L−(i, t, k1), n ∈ N , s ∈ S(n),

(9)

ysik1k2t ∈ {0, 1}, i ∈ I, t ∈ T , k1 ∈ K, k2 ∈ L−(i, t, k1), s ∈ S, (10)

xsijkt ≥ 0, i ∈ I, j ∈ J , k ∈ K+, t ∈ T , s ∈ S, (11)

µsikbt ≥ 0, b ∈ Bk, i ∈ I, k ∈ K+, t ∈ T , s ∈ S, (12)

qsit ≥ 0, i ∈ J , t ∈ T , s ∈ S, (13)

dsjt ≥ 0, j ∈ J , t ∈ T , s ∈ S. (14)

Objective (1) minimizes the expected sum of investment, capacity adjustments, production, and distri-
bution costs, as well as the penalty costs for unsatisfied demand and overproduction.

Equations (2) ensure that demand is either satisfied or accounted for as demand shortfall. Constraints
(3) require that only one capacity level can be selected for each facility location. Constraints (4) initialize the
capacity levels at the beginning of the planning horizon. Constraints (5) are the flow conservation constraints
linking the capacity change variables throughout consecutive time periods. Equalities (6) link the selected
capacity level to the appropriate short-term cost function. Constraints (7) ensure that the entire production
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is either distributed to customers or that overproduction is penalized. If minimum production requirements
have to be considered, the quantity Qbk given by the smallest breakpoint b will be strictly positive. For
problems without minimum production requirements, the quantity belonging to the smallest breakpoint is
zero. Constraints (8) limit which facility can satisfy which customer and link the distribution variable to
the operated capacity level. These constraints are formulated in the form of strong inequalities, which are
known to provide stronger linear relaxation bounds than aggregated linking constraints (see, e.g., Jena et al.,
2017). Constraints (9) require that scenarios s ∈ S(n) passing through the node n ∈ N in time period tn
are characterized by equal decisions in time period tn. Constraints (10) – (14) are the non-negativity and
binary requirements.

4 Solution method

We solve the multi-stage stochastic problem (1) – (14) using a solution approach based on Lagrangian
relaxation. Lagrangian relaxation has been widely used to solve deterministic multi-period facility location
problems (see, e.g., Shulman, 1991; Jena et al., 2016, 2017; Štádlerová et al., 2024). Štádlerová et al. (2023)
have applied Lagrangian relaxation to a two-stage stochastic multi-period facility location problem with
capacity expansion, showing that Lagrangian relaxation provides tight bounds.

4.1 Lagrangian relaxation

Relaxing the demand constraints has been a popular choice in the literature, given that this tends to result
in a decomposition by facility locations (see, e.g., Shulman, 1991; Jena et al., 2016, 2017; Štádlerová et al.,
2024). We follow this approach, relaxing the demand constraints (2), which are indeed the only linking
constraints connecting the different facility locations. Let λsjt be the Lagrangian multipliers belonging to
demand constraints (2). The resulting Lagrangian relaxation is formulated as follows:

LR(λ) = min
∑
s∈S

ps

∑
i∈I

∑
t∈T

∑
k1∈K

∑
k2∈L−(i,t,k1)

Cik1k2ty
s
ik1k2t+∑

b∈Bk

∑
i∈I

∑
k∈K+

∑
t∈T

Fikbtµ
s
ikbt +

∑
i∈I

∑
t∈T

MQqsit+∑
i∈I

∑
j∈J

∑
k∈K+

∑
t∈T

(Tij − λsjt)xsijkt+

∑
j∈J

∑
t∈T

(MD − λsjt)dsjt +
∑
j∈J

∑
t∈T

λsjtD
s
jt

 ,

(15)

subject to Constraints (3) – (14).
For given λsjt, the expression

∑
s∈S

∑
j∈J

∑
t∈T p

sλjtD
s
jt is constant. It can further be shown that any

optimal solution to LR(λ) will set dsjt to 0 (Štádlerová et al., 2023). We therefore omit both terms when
solving the Lagrangian relaxation.

Since all remaining constraints are defined for each facility location i ∈ I, the problem can be decomposed
and solved by facility location. We hence define LR(λ) =

∑
i∈I gi(λ) +

∑
s∈S

∑
j∈J

∑
t∈T p

sλjtD
s
jt, where

gi(λ) is the optimal objective function value of the Lagrangian subproblem for facility location i:

gi(λ) = min
∑
s∈S

ps

∑
t∈T

∑
k1∈K

∑
k2∈L−(i,t,k1)

Cik1k2ty
s
ik1k2t+∑

b∈Bk

∑
k∈K+

∑
t∈T

Fikbtµ
s
ikbt +

∑
t∈T

MQqsit+

∑
j∈J

∑
k∈K+

∑
t∈T

(Tij − λsjt)xsijkt

 ,
(16)
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subject to those Constraints (3) – (14) that are defined for facility i.

4.1.1 Solving the Lagrangian subproblem

In order to obtain optimal opening and capacity adjustment decisions together with optimal demand alloca-
tion for a given facility in all time periods and scenarios, we formulate the Lagrangian subproblem for a single
candidate facility location as an expected shortest-path problem and solve it using dynamic programming.
The shortest path formulation is well known in the literature for deterministic problems (Shulman, 1991;
Jena et al., 2016, 2017; Štádlerová et al., 2024). The expected shortest path formulation for a two-stage
stochastic facility location problem with a limited number of expansions is studied in Štádlerová et al. (2023).
We generalize this approach from two stages to multiple stages and formulate the expected shortest path
for a multi-stage problem allowing for capacity expansion and capacity reduction multiple times during the
planning horizon. Similar to Štádlerová et al. (2023), the expected shortest path has a nested structure.
Therefore, the non-anticipativity constraints in the multi-stage structure are considered. Hence, for a given
facility, the result of the shortest path problem provides optimal opening and capacity adjustment sched-
ule for the entire planning horizon in all scenarios and this solution does not violate the non-anticipativity
constraints of the original problem (9).

In order to solve the shortest path problem, the demand allocation costs for given facility location i ∈ I,
capacity k ∈ K, time period t ∈ T and scenario s ∈ S need to be computed. The demand allocation problem
costs can be calculated by means of continuous knapsack as explained in the next section.

4.1.2 Continuous knapsack problem

The problem of optimal demand allocation for given facility i ∈ I, capacity k ∈ K, time period t ∈ T and
scenario s ∈ S can be formulated as a continuous knapsack problem with piecewise linear costs (Amiri, 1997).
For given capacity, the demand allocation problem is specific for each scenario s ∈ S and can therefore be
solved independently for each scenario. As proposed by Štádlerová et al. (2023), the problem can be written
as:

Ks
ikt(λ) = min

∑
b∈Bk

Fikbtµ
s
ikbt +MQqsit +

∑
j∈J

(Tij − λsjt)xsijkt, (17)

subject to:

xsijkt ≤ LijDs
jt, j ∈ J , (18)∑

j∈J
xsijkt + qsit =

∑
b∈Bk

Qblµ
s
ikbt, (19)

∑
b∈Bk

µsikbt = 1, (20)

qsit ≥ 0, (21)

xsijkt ≥ 0, j ∈ J , (22)

µsikbt ≥ 0, b ∈ Bk. (23)

4.2 Solution of the Lagrangian dual problem

By solving the relaxed problem (15), subject to Constraints (3) – (14), for given multipliers λsjt, we obtain a
lower bound on the Objective (1). To find the best possible lower bound, we have to solve the Lagrangian
dual problem LD = maxλ LR(λ), which aims at identifying the optimal multipliers λ. We first use the
cutting planes method (Section 4.2.1) with box constraints before switching to the subgradient method
(Section 4.2.2), since the cutting planes method becomes time-consuming in later iterations.
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4.2.1 Cutting planes method

The Lagrangian dual problem can be solved by several methods. Štádlerová et al. (2023) use a cutting planes
method with box constraints, an adoption of its deterministic version (see, e.g., Marsten et al., 1975; Schütz
et al., 2009; Štádlerová et al., 2024) that converges quickly and requires a reasonable computational effort
during the first iterations. However, in later iterations, the computational effort increases as the problem
contains more cutting planes. As a result, updating the multipliers takes about 99% of the computing time
when solving for the lower bound, while solving the relaxed problem accounts for only 1%. In contrast, the
classical subgradient method (see, e.g., Polyak, 1969) has a slower convergence, but the computational effort
remains relatively stable throughout the iterations. We therefore use the cutting planes method with box
constraints for the first 200 iterations to converge quickly, and then further improve the lower bound by
computing further iterations with the subgradient method.

Adopting the cutting planes method with box constraints from Štádlerová et al. (2023), we calculate the
elements of the subgradient matrix ∇ as ∇msjt = Ds

jt −
∑
i∈I x

sm
ijt at each iteration m and for each scenario

s, where xsmijt is the solution to the Lagrangian subproblem obtained for variables x in iteration m. We
then define Lm = LR(λm) −

∑
j∈J

∑
t∈T

∑
s∈S p

sλmsjt ∇msjt . To find the updated multipliers, we solve the
following linear optimization problem:

maxφ (24)

φ ≤ Lg +
∑
j∈J

∑
t∈T

∑
s∈S

ps∇gsjtλ
m+1,s
jt , g = 1, ...,m, (25)

λmsjt −∆ms
jt ≤ λ

m+1,s
jt ≤ λmsjt + ∆ms

jt , j ∈ J , t ∈ T , s ∈ S, (26)

φ ∈ R, λm+1,s
jt ∈ R. (27)

Constraints (26) are the box constraints and control the changes of the Lagrangian multipliers. Marsten
et al. (1975) show that the ideal box size depends on the problem and cost structure and the convergence
can be further improved if the box size is adjusted dynamically. We choose an initial box size of 100 and
decrease the box size using the coefficient 0.85 each time the sign of of ∇msjt changes.

4.2.2 Subgradient method

While the subgradient method has a rather slow convergence (Jena et al., 2017), it is fast to compute and
can find new multipliers that improve the lower bound. We therefore switch to the subgradient method after
200 iterations to reduce the computational effort. The approach to update the multipliers is adopted from
Van den Broek et al. (2006) and Jena et al. (2017). In each iteration m, the step size θm is calculated as:

θm = ηm
UB − LR(λ)m

‖∇msjt ‖
2 ,

where UB represents the best upper bound found so far and ηm is a scalar. The new Lagrangian multipliers
λm+1,s
jt for the (m+ 1)th iteration are obtained as:

λm+1,s
jt = λmsjt + θm∇msjt , j ∈ J , t ∈ T , s ∈ S.

We follow the suggestion by Shulman (1991) to choose the initial scalar value ηm = 2 and then divide
it by 2 each time the lower bound does not improve for n consecutive iterations. Based on initial tests, we
choose n = 5.

4.3 Calculating feasible upper bounds

In general, the solution to the Lagrangian relaxation does not provide a feasible solution to the original
problem. We present a heuristic in Section 4.3.1 that generates a feasible solution from the solutions to the
Lagrangian subproblems and therefore provides an upper bound to the original problem. In Section 4.3.2,
we present a restricted MIP approach to further improve this solution.
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4.3.1 Lagrangian heuristic

Since the solution to the relaxed problem is obtained separately for each facility, it is usually not feasible for
the original problem. We therefore use an heuristic approach to find a feasible solution, and thus an upper
bound, to the original problem. The main idea of our heuristic is depicted in Figure 3.

Adjust capacity
- satisfy all customers
- try to reduce capacity

For each time period
For each scenario

Solve min cost flow
problem for given capacity

Try to reduce capacity

No

Yes

All demand
satisfied?

All facilities above min.
utilization limit?

Binary
solution to the

relaxed problem

No

Yes
All facilities

above min. production
requirements?

For each time period
For each scenario

Solve min cost flow
problem for given capacity

Save the
solution

Save the
solution

Save the
solution

For each time period
For each scenario

Solve min cost flow
problem for given capacity

Figure 3: Heuristic for finding an upper bound

We first find an allocation of demand that ensures that demand is at most satisfied once. We use the
locations and capacities proposed by the solutions to the Lagrangian subproblems, and find the optimal
demand allocation for each time period and scenario by solving a minimum cost flow problem. During this
initial allocation of demand, we relax minimum production requirements. To ensure relatively complete
recourse, we introduce an artificial facility with sufficiently large capacity (in case the available capacity is
insufficient) and an artificial customer with sufficiently large demand (in case of overproduction).

The solution to the minimum cost flow problem provides valuable information about capacity utilization
at given facilities, as well as about demand satisfaction. We use this information to modify the capacities in
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an attempt to find an optimal flow without the artificial facility or customer. Note that all capacity changes
in period tn in scenario s ∈ S(n) must be replicated for all other scenarios in the set S(n).

Using the artificial facility or artificial customer implies penalty costs. In an attempt to improve the
planning solutions, we aim to satisfy all customer demand from real facilities. If customer demand is
unsatisfied (i.e., served from the artificial facility) or facilities overproduce (i.e., they deliver to the artificial
customer), we can distinguish between two strategies:

� Delivering from the artificial facility: Increase capacity to satisfy the demand of all customers in all
time periods and scenarios from existing facilities. We iteratively increase the size of the facility that
can satisfy most of the unsatisfied customers and reallocate customers from the artificial facility. In
case of a tie, we choose the facility with the lowest sum of distribution costs to customers.

� Delivering to the artificial customer: Reduce capacity of all facilities with overproduction. We calculate
the lowest capacity that is needed to satisfy the flow to real customers and decrease the capacity
accordingly.

After changing the capacity, we resolve the minimum cost flow problem to find a new demand allocation
using the updated facility capacities. We repeat this procedure until all customer demand is satisfied.
However, some facilities may operate below the minimum utilization limit. In an iterative process over all
time periods, we verify the minimum production requirements for each facility in each scenario. In case a
facility operates below the minimum utilization limit in time period tn and at least one scenario s ∈ S(n),
we verify whether or not the facility has been opened in period tn: If time period tn is the opening period of
the facility, we remove the facility for time period tn and all scenarios in set S(n). As a result, the heuristic
postpones the opening to tn + 1. If the facility has been opened prior to period tn, we reduce its capacity
using a similar logic as for removing the facility. In case we remove or reduce the capacity of a facility, the
minimum costs flow problem is solved once again.

4.3.2 Restricted MIP

To further improve the quality of the solution, we use a restricted MIP approach (R-MIP) (see, e.g., Jena
et al., 2017; Štádlerová et al., 2024). To this end, we store the n best solutions found with our upper bound
heuristic and fix all binary variables y to 1, if 1

n

∑
y ≥ 0.8. With these variables being fixed, we use Gurobi

to solve the original problem (1) – (14). Note that the optimal solution to the restricted MIP provides an
upper bound to the optimal solution of the original problem. Based on preliminary testing, we set n = 5.

5 Case study

We consider the case of locating hydrogen production for the Norwegian transport sector. The production
facilities are to be located throughout Norway to satisfy customer demand during the planning horizon. Our
case study builds on Štádlerová et al. (2023) that uses uncertain hydrogen demand (monotonically increasing
over time) from maritime passenger transportation, road-based transportation and offshore operations in the
oil and gas sector. We use the same data for technology, costs and demand, but change how the demand
scenarios are generated.

We first present how we generate the demand scenarios for the multi-stage model presented in this paper.
For the sake of completeness, we also provide an overview of the costs used in our case study. Finally, we
summarize the characteristics of the resulting set of problem instances.

5.1 Customer locations and demand

We consider up to 70 customer locations and a planning horizon represented by 14 time periods. For
each customer location j, the demand Ds

jt at time period t and scenario s is composed of a deterministic
component and two independent stochastic components: The deterministic component represents demand
from maritime passenger transportation, where public contracts specify operations and schedules over long
periods of time. We therefore consider maritime demand as deterministic and present in all demand scenarios.
The two stochastic components represent demand from land-based transportation and the offshore sector.
These sectors are more difficult to predict and thus scenario-dependent.
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In all instances, the overall demand is non-decreasing over time for each scenario. However, there might
be some structural changes in customer locations over time. We therefore generate two different types of
scenario trees, each of which represents different tendencies of demand evolution over time:

� Increasing: Demand is non-decreasing at all customer locations and for all scenarios, similar to
Štádlerová et al. (2023).

� Mixed: During the first time periods t = 1, . . . , t′ − 1, demand is non-decreasing at all customer
locations and in all scenarios. Starting in period t′, demand may decrease at some customer locations.
This decrease is compensated by a demand increase at some other customer locations in the particular
scenario. Overall demand is still non-decreasing in all scenarios.

Additional details on how maximum aggregated daily demand develops over the planning horizon are given
in A.

Demand scenarios for the “Increasing” scenario trees are generated as follows: Demand quantities Ds
jt for

customer location j at time period t in scenario s ∈ S are computed as Ds
jt = DD

jt +w1
t (s)D

S1
jt +w2

t (s)D
S2
jt ,

where DD
jt represents the deterministic component. DS1

jt and DS2
jt are the maximum demands of the stochastic

demand components given by demand forecasts for the land-based sector (DNV GL, 2019) and the offshore
sector (Ocean Hyway Cluster, 2020; Aglen and Hofstad, 2022), respectively. Coefficients w1

t (s) and w2
t (s) are

the scaling factors of the first and second stochastic demand component, respectively. The scaling factors of
the two stochastic components are computed as follows: For each scenario s ∈ S, we first uniformly sample
W i(s) between 0 and 1, representing the maximum share of Di

jt, i ∈ {1, 2}. In the first period, t = 1, the

scaling factor wi1(s) is a random number between 0 and W i(s). For all subsequent time periods, we then
independently sample the scaling factor wit(s) such that wit−1(s) ≤ wit(s) ≤W i(s).

To generate scenarios for the “Mixed” scenario trees, we first create an “Increasing” scenario tree. We
then randomly choose 30% of the scenarios. In each of the selected scenarios s′, we randomly select 30%
of the customers. Demand for time periods 1, . . . , 7 for those customers remain unchanged, while demand
starting at time period t′ = 8 is modified as follows. For each of the customer locations, we sample a
random number V ij (s′), i ∈ {1, 2}, between 0 and wit′−1(s′). We then sample the reduced share vijt(s

′) for

each period t ≥ t′ such that V ij (s′) ≤ vijt(s
′) ≤ wit−1(s′). Demand for this location is then updated as

Ds′

jt = DD
jt + v1jt(s

′)DS1
jt + v2jt(s

′)DS2
jt , ∀t ≥ t′. Finally, we sample a customer location whose demand is

increased by this demand reduction.
We generate scenario trees with 6, 12, 30, 90, 120, and 300 scenarios for both types of trees.

5.2 Candidate facility locations and costs

We consider up to 17 candidate locations. The investment and capacity adjustment costs in our case study
are independent of facility location. We approximate the long-term cost function by 8 modular capacity
levels, each with its specific short-term production cost function. The short-term production cost function
is location-dependent. We distinguish between two regions: the southern region (S) with high production
costs and the northern region (N) with low production costs. Investment costs and production costs at 100%
capacity utilization are given in Table 4 in B. The candidate locations and capacity intervals are taken from
Štádlerová et al. (2023), whereas the investment and production costs are derived from Jakobsen and Åtland
(2016).

We use alkaline electrolysis as hydrogen production technology. The production range is 15%–100% (NEL
Hydrogen, 2018). We approximate the short-term production cost function by a piece-wise linear function
with 3 line pieces and 4 breakpoints at 15%, 50%, 80%, and 100% of the installed capacity level.

The costs for adjusting the capacity of facility i from capacity level k1 > 0 to capacity level k2 > 0 are
calculated as Cik1k2t = (Ci0k2t − Ci0k1t) · 1.15 if k1 ≤ k2, and as Cik1k2t = (Ci0k2t − Ci0k1t) · 0.5 if k1 > k2.
The costs of permanently shutting down a facility (i.e., k2 = −1) are equal to 50% of the investment costs.
If facility has been closed but a new one can be opened later at the location (i.e., k2 = 0′), we consider costs
equal to 60% of the investment costs.

Hydrogen is distributed by trucks. Distribution costs per kilometre and kilogram of the product are
provided in Table 5 in B. We set distribution limit equal to 1000km. Hence, distribution over distances
> 1000 km is not allowed.
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We define penalty costs for demand shortfall, MQ, as well as for overproduction, MD. The focus of the
case study is on independent production and the import or export of hydrogen is not desirable. We therefore
set high penalties of 106 AC/kg for both shortfall and overproduction.

5.3 Instances

Based on the hydrogen case study, we generate 12 main problem instances, all having 17 candidate facility
locations, 70 customers, and 8 capacity levels. However, they differ in the number of scenarios and the type
of scenario tree. Based on these main problem instances, we further derive smaller instances with only 7
or 10 facilities and 10, 20, or 50 customers, using a subset of the original candidate facility and customer
locations. For testing purposes, we run the smaller instances and instances with higher capacity adjustment
costs and/or limited distribution range. We also test the performance of the Lagrangian method on the case
study instances with 16 and 20 capacities where we also consider lower distribution costs (divided by 10).

We denote the instances by indicating the number of candidate facility locations (F), customer demand
points (D), available capacity levels (C) and scenarios (S). We further distinguish samples with only increasing
demand at all customer locations (I) and samples with decreasing as well as increasing demand (M).

6 Computational results

In this section, we present and discuss our computational results. All experiments have been carried out on
a computer with two 3.6 GHz Intel Xeon Gold 6244 CPUs and 384 GB RAM, running Linux kernel 3.10. We
use Gurobi Optimizer 10.0 for solving the deterministic rolling horizon problem and smaller instances of the
three-stage problem to optimality as well as for solving the restricted MIP problem. We further use HiGHS
solver (Huangfu and Hall, 2018) to solve the minimum cost flow problem to optimality. We implement our
algorithm in Julia 1.8.2 and enable parallelization on up to 32 threads.

We first analyze the value of the 3-stage stochastic programming solution as opposed to solving the
deterministic expected value problem in Section 6.1. We then explore the difficulty of solving the problem
with a general-purpose solver and by means of the proposed Lagrangian heuristic in Section 6.2.

6.1 Value of multi-stage stochastic programming

The value of the stochastic solution (VSS) measures the quality of the stochastic solution compared to a so-
lution derived from a simpler deterministic problem, often the expected value problem (Birge and Louveaux,
2011). While VSS for two-stage stochastic programming problems is well-defined, different approaches exist
for estimating VSS in multi-stage stochastic programming problems (see e.g., Escudero et al., 2007; Nickel
et al., 2012). In this paper, we adopt the approach used by Nickel et al. (2012) to determine the value of
the multi-stage stochastic solution (VMSS). We first solve the deterministic expected value problem for the
entire planning horizon. We then fix the first-stage decisions and solve another expected value problem for
each of the possible realizations in the second stage. We continue to fix decisions and to solve expected
value problems for all subsequent stages until we have solved the expected value problem for the last stage.
This procedure is illustrated in Figure 4 for a three-stage problem, where blue nodes indicate decisions for
time periods that lie ahead, while red nodes indicate fixed decisions. The VMSS is then given (for a min-
imization problem) as the difference between the objective function values of the sequence of deterministic
expected value problems, vD, and the objective function value of the multi-stage stochastic solution, vS , i.e.
VMSS = vD − vS . The relative value of the multi-stage stochastic solution (RVMSS) can be expressed as

RVMSS = vD−vS
vD

.
To analyze the value of multi-stage stochastic solution, we use a set of instances that varies in number of

candidate locations, capacity adjustment costs and distribution limits. Table 1 summarizes the results for
such instances considering samples with decreasing as well as increasing demand. All instances are solved
with Gurobi. The deterministic problems are all solved to optimality, whereas we provide the results after 24
hours for the three-stage stochastic problem (3-stage). Given that the optimal solution to the the multi-stage
problem is generally unknown, we use the objective function value of the best known stochastic solution to
estimate the RVMSS, providing a lower bound on the true RVMSS.
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Figure 4: Solving the sequence of deterministic expected value problems. Each node represents one time
period. Red nodes correspond to fixed decisions, whereas blue nodes correspond to future decisions.

Instance Adj. Dist. Objective [106] Gap [%] RVMSS [%]
costs limit Det. 3-stage 3-stage

F10D10C8S12 1 1 2194.2 2179.6 0.30 0.67
F10D10C8S12 2 1 2307.4 2212.7 0.45 4.10
F10D10C8S12 5 1 2392.9 2212.7 0.26 7.53
F10D10C8S12 10 1 2477.8 2213.9 0.26 10.65
F17D10C8S12 1 1 2095.6 2095.1 0.25 0.02
F17D10C8S12 2 1 2201.2 2119.0 1.10 3.73
F17D10C8S12 5 1 2209.6 2117.7 1.08 4.16
F17D10C8S12 10 1 2209.3 2117.1 1.03 4.17
F17D10C8S12 1 0.5 2115.8 2113.2 0.34 0.12
F17D10C8S12 2 0.5 2252.6 2152.2 1.64 4.46
F17D10C8S12 5 0.5 2397.5 2154.4 1.62 10.14
F17D10C8S12 10 0.5 2636 2154.7 1.55 18.26

Table 1: Comparison of solutions to the deterministic and three-stage formulations

Note that “Adj costs” and “Dist limit” in Table 1 refer to the scaling factor used, where a scaling factor
of 1 corresponds to the original adjustment costs in the case study and a distribution limit of 1000km,
respectively. The RVMSS varies quite a lot across the different instances. For instances with relatively
low costs of adjusting capacities, the RVMSS is less than 1%. In case of high capacity adjustment costs
(scaling factor 5 and 10) however, the RVMSS increases to more than 18%, indicating that revising decisions
throughout the planning horizon can be highly beneficial. We also see that a reduced distribution limit
tends to increase the RVMSS, while an increased number of candidate locations lowers the RVMSS. Both
adjustment costs, distribution limits and number of candidate locations impact the flexibility inherent in
the production system as they affect to which degree decisions made in earlier stages can be adapted to
observed demand. Solving the stochastic problem, and thus explicitly accounting for uncertainty, becomes
more important with reduced flexibility in the system, i.e., high adjustment costs, lower distribution limits,
and/or a small number of facility locations. These results are in line with the observations made by Schütz and
Tomasgard (2011) who use a two-stage stochastic programming model for operational supply chain planning
problem and report a low VSS when the underlying production system has a high level of flexibility.

6.2 Solution quality

To assess the performance of our Lagrangian-based method, we solve instances of different sizes and with
different types of scenario trees and compare our results to the results obtained from Gurobi. The results are
shown in Table 2. We report the optimality gap from the Lagrangian relaxation after a maximum of 6 hours
computing time (“LR 6h”). As the Lagrangian relaxation converges faster for smaller instances, we also
provide the actual run time for the Lagrangian relaxation. Once the Lagrangian relaxation terminates, we
proceed with the R-MIP approach, allowing an additional 6 hours run time to further improve the solution.
We only report a gap for the R-MIP in Table 2 if the R-MIP finds a new best solution. Gurobi is limited to
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a run time of 24 hours.
To analyze the performance of our Lagrangian-based method, we show the results after 6 hours run time

(“LR 6h”). For smaller instances, the Lagrangian multipliers stop changing within 6 hours. If the Lagrangian
multipliers have not changed for 5 consecutive iterations, we terminate the algorithm and report the time to
convergence (“Converge”). After 6 hours or if terminating the Lagrangian relaxation due to convergence, we
run the R-MIP to further improve the solution allowing additional 6 hours for Gurobi’s branch-and-bound
method. If the R-MIP does not find a new best solution, we report no optimality gap for the R-MIP. The
results from our approach are compared to the optimality gap obtained by running Gurobi for 24 hours. All
optimality gaps are calculated using the best known bound (see column “Best bound”). In general, Gurobi
provides the best known bound for small instances, whereas our Lagrangian relaxation provides best known
bounds for the larger instances. Note that Gurobi fails to solve the linear relaxation for all instances where
we report the best known bound from the Lagrangrian relaxation. For smaller instances, the Lagrangian
bound deviates only on average of 0.26% from the best Gurobi bound, indicating that the bounds provided
by the Lagrangian heuristic are likely to be tight.

Gurobi can find feasible solutions for only 23 instances, even when provided a large time limit of 24 hours.
The two smallest instances are solved to optimality within 3 hours. For instances with 90 or more scenarios,
Gurobi cannot find a feasible solution. In contrast, the Lagrangian-based method provides solutions of good
quality already after 6 hours for all instances. The deviations to the best known bounds tend to be between
2% and 4%, while the proven optimality gap is consistently smaller than 5% for all tested instances. In
combination with the R-MIP, we can reduce the optimality gap for 37 of the 61 instances. In general, the
R-MIP works well for smaller instances where the average improvement is 1.36%, while for large instances,
the R-MIP may fail to find new improving feasible solutions.

We also study how scaling the adjustment costs and the distribution limit affect the quality of the
solutions. We therefore solve the instances shown in Table 1 using our Lagrangian-based approach. In
addition, we solve instances with 16 and 20 capacity levels instead of 8. The results for all of these instances
are shown in Table 3. Note that all instances use a scenario tree with decreasing as well as increasing demand
demand and that the distribution costs in instances marked with an asterisk are reduced using the factor of
0.1.

When solving instances F(·)D10C8S12 with higher adjustment costs and stricter distribution limits with
our Lagrangian-based approach, the optimality gaps show a tendency to increase. This applies both to the
Lagrangian relaxation and the R-MIP. The time for the Lagrangian relaxation to converge however, appears
less affected by the change in adjustment costs and distribution limits. Increasing the number of candidate
locations from 10 to 17 has a small impact on the time to convergence, increasing the computing time by
only 1.5 minutes on average. The R-MIP approach can generally improve the optimality gap, but does not
terminate within the runtime limit of 6 hours for any but the smallest instance without scaling of adjustment
costs or distribution limit.

Using Gurobi to solve these instances, we first see a slightly different pattern in the behaviour of the
optimality gap: With a small increase in adjustment costs, the gap starts to increase, before the gap starts
decreasing with even higher adjustment costs. This might be due to the problem becoming more complex
when the adjustment costs increase as correcting a decision becomes more expensive in subsequent stages.
Once adjustment cost are sufficiently high, certain solution structures seem to be dominated, facilitating the
solution of the planning problem.

An increase in the number capacity levels reduces the overall optimality gaps produced by our Lagrangian
relaxation. Having more capacity levels for the facilities allows the model to better match observed demand
with installed capacities, thus reducing the need for costly capacity adjustments. The gap for the instances
with reduced distribution costs is a bit higher, resulting from a more complex problem instance. The added
complexity is due to the increased relative importance of determining the right locations and capacities for
the facilities. The disadvantage of the added capacity levels is that due to the size of the problem, our
approach does no longer converge within the time limit of 6 hours. However, neither Gurobi nor the R-MIP
can solve such large problem instances within their respective time limits.
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Instance Scen. Gur 24h LR 6h Best Converge R-MIP
tree Gap [%] Gap [%] bound Time [s] Gap [%] Time [s]

F10D10C8S6 I 0 1.78 Gur 301 0.51 1056
F10D10C8S6 M 0 2.63 Gur 325 0.95 328
F10D10C8S12 I 0.10 2.77 Gur 533 0.64 21600
F10D10C8S12 M 0.18 3.53 Gur 537 1.51 4689
F10D10C8S30 I 0.43 3.33 Gur 1118 2.65 1672
F10D10C8S30 M 0.75 4.26 Gur 1084 2.21 4605
F10D10C8S90 I - 2.48 Gur 5658 2.40 2254
F10D10C8S90 M - 4.76 Gur 5483 4.49 1046
F10D10C8S120 I - 4.28 LR 4715 1.66 21600
F10D10C8S120 M - 4.28 LR 7087 4.28 21600
F10D10C8S300 I - 3.65 LR 12919 - 21600
F10D10C8S300 M - 3.31 LR 7521 - 21600
F10D20C8S6 I 0.25 2.77 Gur 487 1.28 1497
F10D20C8S6 M 0.08 1.23 Gur 494 0.66 306
F10D20C8S12 I 0.5 3.74 Gur 756 1.61 2496
F10D20C8S12 M 0.39 2.31 Gur 710 0.87 10761
F10D20C8S30 I 0.9 4.04 Gur 2568 3.75 870
F10D20C8S30 M - 2.18 Gur 2621 1.56 7649
F10D20C8S90 I - 3.67 Gur 8013 2.85 21600
F10D20C8S90 M - 2.70 Gur 8326 2.07 21600
F10D20C8S120 I - 3.90 LR 11439 3.77 21600
F10D20C8S120 M - 2.66 LR 11808 2.66 21600
F10D20C8S300 I - 4.03 LR 21600 - 21600
F10D20C8S300 M - 2.96 LR 21600 - 21600
F17D50C8S6 I 0.46 2.39 Gur 225 0.92 5838
F17D50C8S6 M 0.28 3.03 Gur 198 0.74 21600
F17D50C8S12 I - 1.83 Gur 1539 1.24 21600
F17D50C8S12 M - 2.25 Gur 1186 1.74 2426
F17D50C8S30 I - 2.36 LR 3316 1.40 21600
F17D50C8S30 M - 2.28 LR 3458 - 21600
F17D50C8S90 I - 2.50 LR 9367 - 21600
F17D50C8S90 M - 3.31 LR 10604 - 21600
F17D50C8S120 I - 2.87 LR 12817 - 21600
F17D50C8S120 M - 3.23 LR 13453 - 21600
F17D50C8S300 I - 2.91 LR 21600 - 21600
F17D50C8S300 M - 3.60 LR 21600 - 21600
F17D70C8S6 I - 1.25 Gur 825 0.68 5475
F17D70C8S6 M 3.98 4.36 Gur 249 0.59 21600
F17D70C8S12 I - 4.46 LR 503 1.96 21600
F17D70C8S12 M - 2.33 Gur 517 0.77 21600
F17D70C8S30 I - 2.03 LR 4295 0.83 4812
F17D70C8S30 M - 2.49 LR 3923 - 21600
F17D70C8S90 I - 3.33 LR 15140 - 21600
F17D70C8S90 M - 2.69 LR 11249 - 21600
F17D70C8S120 I - 2.98 LR 18108 - 21600
F17D70C8S120 M - 2.81 LR 14191 - 21600
F17D70C8S300 I - 3.36 LR 21600 - 21600
F17D70C8S300 M - 3.46 LR 21600 - 21600

Table 2: Performance comparison of Gurobi, the Lagrangian heuristics, and the Lagrangian heuristic with
subsequent restricted MIP model. An “-” for the restricted MIP indicates that it did not improve over the
Lagrangian heuristic solution.
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Adj. Dist. Gur 24h LR 6h Best Converge R-MIP
Instance costs limit Gap [%] Gap [%] bound Time [s] Gap [%] Time [s]
F10D10C8S12 1 1 0.18 3.53 Gur 537 1.51 4689
F10D10C8S12 2 1 0.45 3.05 Gur 561 0.85 21600
F10D10C8S12 5 1 0.26 3.46 Gur 557 0.77 21600
F10D10C8S12 10 1 0.26 3.74 Gur 532 0.72 21600
F17D10C8S12 1 1 0.25 4.45 Gur 513 1.02 21600
F17D10C8S12 2 1 1.10 2.61 Gur 662 1.55 21600
F17D10C8S12 5 1 1.08 3.82 Gur 650 1.59 21600
F17D10C8S12 10 1 1.03 4.27 Gur 745 1.62 21600
F17D10C8S12 1 0.5 0.34 3.79 Gur 561 1.07 21600
F17D10C8S12 2 0.5 1.64 2.91 Gur 702 2.26 21600
F17D10C8S12 5 0.5 1.62 3.71 Gur 560 2.29 21600
F17D10C8S12 10 0.5 1.55 4.41 Gur 630 2.37 21600
F17D70C16S120 1 1 - 1.50 LR 21600 - 21600
F17D70C20S120 1 1 - 2.02 LR 21600 - 21600
F17D70C16S120* 1 1 - 2.90 LR 21600 - 21600
F17D70C20S120* 1 1 - 3.52 LR 21600 - 21600

Table 3: Computational results

7 Conclusions

We have presented a general formulation of a multi-stage stochastic facility location problem with capacity
adjustments. The RVMSS indicates the economical benefit of the multi-stage stochastic formulation over
the rolling horizon deterministic formulation if capacity adjustments become more expensive. Limiting the
distribution distance also further increases the RVMSS.

Given the difficulty of solving the multi-stage planning problem, even with state-of-the-art general-
purpose solvers, we have further presented a solution method based on Lagrangian relaxation. While Gurobi
can solve only very small problems with a low number of scenarios, the proposed Lagrangian relaxation
method is capable of solving real-world sized problems with a significantly higher number of scenarios, gen-
erally providing high quality solutions within 6 hours. For smaller instances, a subsequent restricted MIP
approach further improves the solution quality. To solve the Lagrangian dual, we present a hybrid approach,
switching from a cutting plane method with box constraints to the classical subgradient method to update
the Lagrangian multipliers after a fixed number of iterations. This enables the method to decrease the
computational time significantly, since solving the cutting planes method in later iterations becomes more
time-consuming during the iterative solution process.

In future work, different heuristics to improve solutions for larger instances can be studied. Further,
scenario reduction techniques can be applied to decrease the problem size.
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A Hydrogen demand

Figure 5 shows the maximum aggregated daily demand for each of the demand components over the planning
horizon. The deterministic component represents the demand from maritime passenger transportation in
Norway (Danebergs and Aarskog, 2020). This demand is aggregated over 51 customer locations in Norwegian
ports. Component “Stochastic 1” represents the demand from land-based transportation and is based on
DNV GL (2019). Here we consider a total of 70 customer locations: 51 demand points located in Norwegian
ports plus additional 19 municipalities with the highest road traffic volumes according to Statistics Norway
(2018). Demand from land-based transportation is then divided among the 70 customers according to
the relative traffic volume. Finally, component “Stochastic 2” represents demand from offshore operations
(Ocean Hyway Cluster, 2020; Aglen and Hofstad, 2022). This demand is distributed among the 51 maritime
customer locations.

Deterministic
Stochastic 1
Stochastic 2

Figure 5: Maximum daily demand of each demand component (Štádlerová et al., 2023)
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B Case study cost data

Table 4 shows investment and production costs for each capacity level. The production costs are considered
at 100% capacity utilization, whereas “Production S” and “Production N” refer to production costs in the
southern part of Norway and the northern part of Norway, respectively.

Discrete capacity 1 2 3 4 5 6 7 8
Capacity [tonnes/day] 0.6 3.1 6.2 12.2 30.3 61.0 151.5 304.9

Investment [mill. AC] 1.4 6.0 11.2 20.5 46.5 87.2 197.7 371.5

Production S[AC/kg] 4.26 4.21 4.20 4.18 4.16 4.14 4.13 4.11
Production N[AC/kg] 2.54 2.50 2.47 2.46 2.44 2.42 2.40 2.39

Table 4: Investment and production costs at 100% utilization (Štádlerová et al., 2023)

Table 5 shows hydrogen distribution costs per kilometre and kilogram of hydrogen, whereas the unit price
depends on the distance travelled.

Distance [km] 1-50 51-100 101-200 201-400 401-800 801-1000

Costs 0.00498 0.00426 0.00390 0.00372 0.00363 0.00360

Table 5: Distribution costs in [AC/km/kg H2] (Štádlerová and Schütz, 2021)
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