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Abstract. The two-echelon location-routing problem (2E-LRP) is a well-known problem 
in the literature that is commonly used to address applications in which deliveries occur 
at two levels. It concerns the location of facilities and the routing of vehicle fleets. Most 
studies addressing this problem and its variants rely on mixed-integer programming 
(MIP) formulations that are compact (i.e., have a polynomial number of variables and 
constraints). Although the formulations with two-index arc variables tend to perform 
better than those with vehicle index variables in vehicle routing problems, most of the 
literature on the 2E-LRP is based on the latter. In this paper, we present a comparative 
analysis of three compact formulations for the 2E-LRP: a literature-based formulation 
with vehicle index variables, and two novel formulations with two-index arc variables. 
Additionally, we propose enhancements for the literature-based formulation and 
polynomial valid inequalities for all of them. The linear programming relaxations of these 
formulations are compared, showing that those of the two-index formulations are 
stronger. Extensive computational experiments evaluate the formulations' 
performances on a general-purpose MIP solver. The results show that the formulations 
with vehicle index variables, despite being the standard approach in the literature, lead 
to poor solver performance, failing to find feasible solutions even for instances with only 
50 customers. In fact, the best performance comes from the novel formulations, one of 
which leads to feasible solutions for all benchmark instances evaluated. Valid 
inequalities can be used to improve this performance even further. These experiments 
resulted in the discovery of 125 new best-known lower bounds and 55 new optimal 
solutions (out of 131 benchmark instances evaluated). 
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1 Introduction

The continuous worsening of traffic conditions in urban centers has prompted many municipalities

to impose restrictions on the traffic of large vehicles in the cities (Enthoven et al., 2020; Friedrich and

Elbert, 2022). This, associated with a growing demand for urban deliveries, has led many companies

to develop new logistics schemes. In city logistics, one particularly popular approach is the delivery

in two echelons (Cuda et al., 2015; Senna et al., 2024). This way, larger vehicles transport goods

from central depots (platforms) to smaller facilities (satellites) closer to the urban centers, in the first

echelon (FE). From these satellites, smaller vehicles serve the customers in the second echelon (SE).

Thus, the long distances are traveled by more cost-efficient vehicles while complying with constraints

on urban traffic.

From an operational standpoint, it is important to determine the most efficient vehicle routes,

which is the concern of the well-known two-echelon vehicle routing problem (2E-VRP), as reviewed

by Sluijk et al. (2023). From a strategic and tactical perspective, one must consider both location and

routing decisions, which leads to the so-called location-routing problems (Prodhon and Prins, 2014).

In particular, the two-echelon location-routing problem (2E-LRP) studies the decisions regarding the

opening of facilities (platforms and satellites) and the routes of FE and SE vehicles, with the objective

of minimizing overall costs (Drexl and Schneider, 2015).

The idea of integrating location and routing decisions in a two-echelon scheme can be traced

back to the works of Jacobsen and Madsen (1980) and Madsen (1983). However, it was only in

2011 that Boccia et al. formally defined and formulated the 2E-LRP (Boccia et al., 2011). The

authors introduced three mixed-integer programming (MIP) formulations, two of which were compact

(i.e., with polynomial numbers of variables and constraints) and one was extensive (i.e., with an

exponential number of variables). The results of computational experiments indicated that the best

compact formulation (CF) was based on arc variables with a vehicle index, clearly outperforming

the one based on two-index arc variables. Results for the extensive formulation were not presented.

Since then, most papers dealing with CFs for the 2E-LRP and its variants have relied on this vehicle

index-based formulation.

The main difficulty in designing two-index arc variables CFs for the 2E-LRP is ensuring that the

vehicles return to the facility they left from. In formulations with a vehicle index, this is simply made

by flow conservation constraints, which ensure that the vehicle flow arriving at a node in one vehicle

must leave this node in the same vehicle. Hence, the vehicles must make closed loops. In formulations

without the vehicle index, this constraint does not work anymore in this sense because, although the

vehicle flow should be maintained, it is possible that the vehicle arriving at a facility is not the same

that left it. Thus, additional variables and constraints are required to guarantee that a vehicle starts

and ends its route at the same facility.

In this paper, we propose two novel CFs with two-index arc variables for the 2E-LRP. The main

difference between them is exactly the variables and constraints used to ensure that vehicles return to

the facilities they departed from. Both of these formulations outperform the original formulation with

vehicle index variables in general-purpose MIP solvers. Because the majority of papers addressing

the 2E-LRP rely on CFs, this may be a significant development, as it will allow future researchers

and practitioners to work with simple yet more powerful options. The contributions of this paper are

fivefold:

• A vehicle index-based formulation adapted from Boccia et al. (2011) by revising some minor
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inaccuracies and two novel formulations based on two-index arc variables;

• New valid inequalities for all of the proposed formulations;

• A theoretical comparison of the linear programming relaxations (LRs) of the different formula-

tions;

• Extensive computational experiments to assess which is the best CF for the 2E-LRP when relying

on a general-purpose MIP solver;

• 125 best known lower bounds for benchmark instances and 55 new optimal solutions (out of 131

instances evaluated).

The remainder of this paper is organized as follows. Section 2 provides an overview of the literature

on the 2E-LRP. In Section 3, we formally define the problem, present the different formulations,

and introduce the valid inequalities. Section 4 provides a theoretical comparison of the LRs of the

formulations. In Section 5, we discuss the results of the computational experiments. Finally, Section

6 presents concluding remarks.

2 Literature review

This section presents a review of the literature on the 2E-LRP and its variants, with a particular

focus on the formulations used in these publications. We restrict our review to papers that present

MIP formulations. For comprehensive reviews, we refer the reader to the works of Prodhon and Prins

(2014), Cuda et al. (2015), and Drexl and Schneider (2015).

Boccia et al. (2011) were the first to formally define and formulate the 2E-LRP. They presented

three different MIP formulations. The first is a CF that considers binary arc variables with a vehicle

index (three-index formulation). The second one is also compact and avoids the vehicle index by using

only two-index arc variables. The third one is an extensive formulation with an exponential number

of variables representing all the feasible routes for the problem. Their computational experiments

only provide results for the CFs and demonstrate empirically that the formulation with vehicle index

variables is better than the alternative, which had a significant impact on subsequent literature.

Nguyen et al. (2012a) were the first to develop metaheuristics for the 2E-LRP, while also presenting

the formulation with vehicle index variables introduced by Boccia et al. (2011). Contardo et al. (2012)

and Nguyen et al. (2012b) also worked on the 2E-LRP as defined by Boccia et al. (2011) by proposing

metaheuristics and extensive two-index arc variables-based formulations with an exponential number

of constraints. Govindan et al. (2014) extended the problem to encompass time windows in a multi-

objective approach to design a sustainable perishable food supply chain. They presented a CF based

on the three-index formulation proposed by Boccia et al. (2011). Breunig et al. (2016) extended

the problem by considering split deliveries in the FE and provided an extensive formulation with an

exponential number of variables.

Rahmani et al. (2016) and Wang et al. (2018) adapted the 2E-LRP to two beverage distribution

applications, also presenting CFs based on arc variables with a vehicle index. Pichka et al. (2018)

extended the problem for an open routing situation and Zhao et al. (2017) looked at the particularities

of heterogeneous fleets. Both papers propose CFs based on variables with a vehicle index. Darvish et al.

(2019) incorporated the notion of flexibility into the 2E-LRP, modeling it with a CF and presenting
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valid inequalities and an exact method. Dai et al. (2019) addressed the 2E-LRP as well as two other

extensions considering three and four echelons, modeling them with variables with a vehicle index.

The 2E-LRP has also been applied to model off-shore oil and gas supply chains (Amiri et al.,

2019), postal services (Mirhedayatian et al., 2021), electric vehicles applications (Wang et al., 2021),

disaster waste clean-up in humanitarian contexts (Cheng et al., 2022), cold supply chains (Wang et al.,

2023), and other city logistics situations (Agnimo et al., 2023). Sutrisno and Yang (2023) looked at

the problem with mobile satellites instead of fixed ones, and Escobar-Vargas and Crainic (2024) dealt

with synchronization constraints. All of them used variables with a vehicle index.

Yıldız et al. (2023) discussed a variant of the 2E-LRP with pickup and delivery. They relied on a

formulation with two-index arc variables based on assignment variables used for the 2E-VRP (Belgin

et al., 2018). They adapted this formulation to the 2E-LRP, but without including the platforms’

capacity constraints since the way it was modeled would create a non-linearity. In Section 3.2, we

introduce a formulation that is based on what they proposed while including these capacity constraints

by adopting a commodity flow-based formulation. We also present an improvement to this formulation.

Tian and Hu (2023) and Ben Mohamed et al. (2023) proposed branch-and-price algorithms, con-

sidering extensive formulations with an exponential number of variables. The first study considered

a variant of the 2E-LRP with satellite recommendations whereas the second analyzed a multi-period

stochastic variant.

Table 1 provides a summary of the information presented, analyzing the formulation characteristics

of each work. Of the 23 works presented, 18 of them (78%) defined their problems with CFs. Of those,

16 (89%) had vehicle index variables in their formulations. Moreover, Amiri et al. (2019) worked with

vehicle index variables despite having an extensive formulation. Only four of the works presented

two-index arc variables. Of those, only two presented CFs and Boccia et al. (2011) showed that

their two-index variables formulation performed worse than the vehicle index one, while Yıldız et al.

(2023) ignored the platforms capacity constraints. It is important to note that, in the context of this

discussion, we do not refer to echelon-related indices because, in many works, the FE and SE arc

variables have different notations.

This outcome indicates the importance of CFs for the 2E-LRP because, even though most of the

papers present tailored optimization methods (exact and heuristic) for their problems, they usually

apply CFs to formally define the addressed variants and compare the performance of their methods

with that of the CF. Hence, the better the formulation, the fairer the comparison. Moreover, given

that the vast majority of formulations include vehicle index variables, it is important to assess whether

this is the best approach. The present paper aims at solving this issue by presenting novel formulations

without vehicle index variables and by comparing all of them theoretically and computationally.

3 Problem definition and mathematical formulations

The 2E-LRP is defined over a graph G = (N ,A). The node set is N = P ∪S ∪C, with P being the

set of potential platforms, S the set of potential satellites, and C the set of customers. Platforms and

satellites are also called facilities. The set of echelons is E = {1, 2}, with e = 1 representing the FE and

e = 2 the SE. We define sets N 1 = P∪S and N 2 = S ∪C. To improve notation, we shall denote by Oe

and De the sets of origins and destinations in echelon e, i.e., O1 = P, D1 = S, O2 = S, and D2 = C.
The set of arcs is A = A1∪A2, with A1 = {(i, j)|(i ∈ P, j ∈ S)∨ (i ∈ S, j ∈ P)∨ (i ∈ S, j ∈ S, i ̸= j)}
and A2 = {(i, j)|(i ∈ S, j ∈ C) ∨ (i ∈ C, j ∈ S) ∨ (i ∈ C, j ∈ C, i ̸= j)}.
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Reference
Compact

formulation
Vehicle index
variables

Two-index
arc variables

Boccia et al. (2011) ✓ ✓ ✓
Contardo et al. (2012) ✓
Nguyen et al. (2012a) ✓ ✓
Nguyen et al. (2012b) ✓
Govindan et al. (2014) ✓ ✓
Breunig et al. (2016)
Rahmani et al. (2016) ✓ ✓
Zhao et al. (2017) ✓ ✓
Pichka et al. (2018) ✓ ✓
Wang et al. (2018) ✓ ✓
Darvish et al. (2019) ✓
Dai et al. (2019) ✓ ✓
Amiri et al. (2019) ✓
Mirhedayatian et al. (2021) ✓ ✓
Wang et al. (2021) ✓ ✓
Cheng et al. (2022) ✓ ✓
Wang et al. (2023) ✓ ✓
Agnimo et al. (2023) ✓ ✓
Tian and Hu (2023) ✓ ✓
Ben Mohamed et al. (2023)
Yıldız et al. (2023) ✓ ✓
Sutrisno and Yang (2023) ✓ ✓
Escobar-Vargas and Crainic (2024) ✓ ✓

Table 1: A summary of the main formulations found for the 2E-LRP in the literature.
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In each echelon, there is an unlimited and homogeneous fleet (FE and SE vehicles may be different).

FE vehicles take goods from the platforms to the satellites, where they are transshipped and delivered

to the customers by the SE vehicles. Every vehicle route starts and ends at the same facility. In the

2E-LRP, each facility i ∈ N 1 has a fixed cost Hi associated with opening it and a capacity Bi. FE and

SE vehicles have capacities Q1 and Q2 and fixed costs f1 and f2, respectively. Each customer i ∈ C
has a demand qi. The cost of traveling in arc (i, j) ∈ Ae in echelon e ∈ E is ceij . It is worth noting

that superindex e in ceij could be suppressed, since each arc only belongs to one echelon. However, we

opted to keep it since it makes notation clearer both in this parameter and in some variables.

The goal of the 2E-LRP is to determine the optimal subset of facilities to open, along with the

least-cost FE and SE routes that can serve all customers. Figure 1 illustrates the problem by presenting

a feasible solution to an instance with three potential platforms, three potential satellites, and four

customers. This solution uses a single platform and two satellites (the shaded ones are potential

facilities that are not selected in this solution). In the FE, the vehicle serves the two satellites from a

single platform, whereas in the SE, two vehicles serve the customers.

SE

FE Customer

Satellite

Platform

Figure 1: An illustrative example of the 2E-LRP.

We present three CFs for this problem. Section 3.1 presents a formulation with vehicle index

variables proposed for the 2E-LRP (CF1) based on the one introduced by Boccia et al. (2011), and

discusses an improvement of CF1 by considering commodity flow constraints (ICF1). We do not

present the other formulations proposed by Boccia et al. (2011) since their experiments proved that

these formulations performed worse. Section 3.2 introduces a formulation with two-index arc variables

based on binary assignment variables (CF2), adapted from what is proposed by Yıldız et al. (2023),

and a possible enhancement (ICF2). In Section 3.3, another formulation with two-index arc variables

is presented, without binary assignment variables (CF3). Valid inequalities (VIs) are discussed for

all formulations. As discussed in Section 1, the main difference between the two formulations with

two-index arc variables (CF2 and CF3) is the variables and constraints that are used to ensure that

each vehicle returns to the facility it left from. In what follows, the binary variable yi is common to

all proposed formulations and indicates whether a facility i ∈ N 1 is opened.

3.1 Formulation with vehicle index variables (CF1)

In this section, we present the formulation with three-index variables for the 2E-LRP as introduced

by Boccia et al. (2011), but we fix minor errors of their presentation. This formulation requires

additional sets Ke of vehicles in echelon e ∈ E .
The binary variable w2

si indicates whether customer i ∈ C is assigned to satellite s ∈ S. Also, the
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binary variable xeijk indicates whether a vehicle k ∈ Ke travels through arc (i, j) ∈ Ae in echelon e ∈ E .
Another binary variable zk is required to indicate whether vehicle k ∈ K1∪K2 is used. Load flow from

platform p ∈ P to satellite s ∈ S in vehicle k ∈ K1 is controlled by the continuous and non-negative

variable gpsk. Finally, u
e
i is an auxiliary variable for subtour elimination that indicates the position of

node i ∈ N e in a route in echelon e ∈ E .
The formulation introduced by Boccia et al. (2011) for the 2E-LRP is:

(CF1) min
∑
i∈N 1

Hiyi +
∑
e∈E

∑
k∈Ke

fezk +
∑
e∈E

∑
k∈Ke

∑
(i,j)∈Ae

ceijx
e
ijk (1)

s.t.
∑

i:(i,j)∈Ae

xeijk =
∑

i:(j,i)∈Ae

xejik, ∀ j ∈ N e, k ∈ Ke, e ∈ E (2)

uej ≥ uei + 1− |De|

(
1−

∑
k∈Ke

xeijk

)
, ∀ (i, j) ∈ Ae, e ∈ E (3)∑

j∈Oe

∑
i:(i,j)∈Ae

xeijk ≤ 1, ∀ k ∈ Ke, e ∈ E (4)

∑
k∈K1

∑
j:(s,j)∈A1

x1sjk = ys, ∀ s ∈ S (5)

∑
k∈K2

∑
j:(i,j)∈A2

x2ijk = 1, ∀ i ∈ C (6)

∑
s∈S

w2
si = 1, ∀ i ∈ C (7)∑

j:(i,j)∈A2

x2ijk +
∑

j:(s,j)∈A2

x2sjk − w2
si ≤ 1, ∀ i ∈ C, s ∈ S, k ∈ K2 (8)

∑
k∈K1

∑
p∈P

gpsk =
∑
i∈C

qiw
2
si, ∀ s ∈ S (9)

∑
k∈K1

∑
s∈S

gpsk ≤ Bpyp, ∀ p ∈ P (10)

∑
k∈K1

∑
p∈P

gpsk ≤ Bsys, ∀ s ∈ S (11)

Q1
∑

j:(s,j)∈A1

x1sjk ≥ gpsk, ∀ p ∈ P, s ∈ S, k ∈ K1 (12)

Q1
∑

j:(p,j)∈A1

x1pjk ≥ gpsk, ∀ p ∈ P, s ∈ S, k ∈ K1 (13)

∑
p∈P

∑
s∈S

gpsk ≤ Q1zk, ∀ k ∈ K1 (14)

∑
i∈C

∑
j:(i,j)∈A2

qix
2
ijk ≤ Q2zk, ∀ k ∈ K2 (15)

xeijk ∈ {0, 1}, ∀ (i, j) ∈ Ae, k ∈ Ke, e ∈ E (16)

yi ∈ {0, 1}, ∀ i ∈ N 1 (17)

w2
si ∈ {0, 1}, ∀ s ∈ S, i ∈ C (18)

zk ∈ {0, 1}, ∀ k ∈ K1 ∪ K2 (19)

gpsk ≥ 0, ∀ p ∈ P, s ∈ S, k ∈ K1 (20)

uei ∈ [1, |De|], ∀ i ∈ N e, e ∈ E . (21)
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The objective function (1) aims to minimize facilities and vehicles fixed costs as well as distance-

related costs. Constraints (2) are vehicle flow conservation constraints for both echelons. Constraints

(3) are Miller-Tucker-Zemlin (MTZ) subtour elimination constraints for both echelons (Miller et al.,

1960). Constraints (4) ensure that each vehicle performs a single route. Constraints (5) define that

a satellite is opened if and only if an FE vehicle leaves it. Constraints (6) state that every customer

is visited exactly once. Constraints (7) define that each customer is assigned to exactly one satellite.

Constraints (8) ensure that if a customer is assigned to a satellite, the vehicle that serves it leaves the

corresponding satellite. Constraints (9) define that the amount of load transferred from a platform

to a satellite is equal to the demand of the customers assigned to this satellite. Constraints (10) and

(11) ensure that the capacities of the platforms and satellites are respected. Constraints (12) and (13)

define that there is a load flow from a platform to a satellite only if they are both served by the same

vehicle. Constraints (14) and (15) make sure that the vehicles’ capacities are respected. Constraints

(16)–(21) define the variables’ domains. This formulation has O((|P| + |S|)2|K1| + (|S| + |C|)2|K2|)
variables and O((|P|+ |S|)2 + (|S|+ |C|)2 + (|P|+ |S|)|K1|+ (|S|+ |C|)|K2|+ |P||S||K1|+ |S||C||K2|)
constraints.

It is worth noting that the original formulation has two minor issues that are corrected in CF1.

First, Boccia et al. (2011) do not consider the echelon related index of variable uei . Hence, for the

satellites, these variables become poorly defined, since they appear in the constraints of both echelons.

Additionally, in their paper, constraints (13) use Q2 instead of Q1, which is incorrect since they are

related to the FE.

3.1.1 Improved formulation

A possible improvement to this formulation is the substitution of constraints (3), (7)–(15), and

(18)–(21) by a commodity flow based formulation (Gavish and Graves, 1978). To this extent, we

define continuous variables geij that represent the flow of commodities in arc (i, j) ∈ Ae, e ∈ E . The

new formulation (ICF1) becomes:

(ICF1) min
∑
i∈N 1

Hiyi +
∑
e∈E

∑
k∈Ke

∑
i∈Oe

∑
j∈De

fexeijk +
∑
e∈E

∑
k∈Ke

∑
(i,j)∈Ae

ceijx
e
ijk (22)

s.t. (2), (4)–(6), (16)–(17)∑
i:(i,s)∈A1

g1is −
∑

i:(s,i)∈A1

g1si = −
∑
j∈C

g2js, ∀ s ∈ S (23)

∑
i:(i,j)∈A2

g2ij −
∑

i:(j,i)∈A2

g2ji = −qj , ∀ j ∈ C (24)

∑
i∈De

geij ≤ Bjyj , ∀ j ∈ Oe, e ∈ E (25)

0 ≤ geij ≤ Qe
∑
k∈Ke

xeijk, ∀ (i, j) ∈ Ae, e ∈ E . (26)

The objective function (22) is equivalent to (1) but uses a different form for calculating vehicle fixed

costs. Constraints (23) define that the difference between the load arriving and leaving a satellite is the

load transshipped through this satellite. Constraints (24) do the same for the customers. Constraints

(25) ensure that the facilities capacities are respected. Constraints (26) define the domain of the new

decision variables. The number of variables in ICF1 is of the same order as in CF1, but the number

of constraints is significantly reduced to O((|P|+ |S|)|K1|+ (|S|+ |C|)|K2|).
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3.1.2 Valid inequalities

It is well-known that vehicle index formulations for routing problems exhibit solution symme-

tries, which may negatively impact the performance of branch-and-bound-based methods (Furtado

et al., 2017; Munari and Savelsbergh, 2022). To mitigate this issue, one could add the following valid

inequalities (VIs): ∑
i∈Oe

∑
j∈De

xeijk ≥
∑
i∈Oe

∑
j∈De

xeij(k+1), ∀ k ∈ Ke \ {|Ke|}, e ∈ E (27)

∑
(i,j)∈A2:i<h

x2ij(k−1) ≥
∑

j:(h,j)∈A2

x2hjk, ∀ h ∈ C \ {1}, k ∈ K2 \ {1}. (28)

Constraints (27) state that, if a vehicle is used, a vehicle with a smaller index is also used. Con-

straints (28) ensure that, if a vehicle serves a customer, a vehicle with a smaller index serves another

customer with a smaller index.

In addition to these, the following VIs could be used to tighten the LR of the formulations:∑
i∈Oe

yi ≥ oemin, ∀ e ∈ E (29)

∑
i∈Oe

∑
j∈De

∑
k∈Ke

xeijk ≥

⌈
1

Qe

∑
i∈C

qi

⌉
, ∀ e ∈ E (30)

∑
k∈Ke

∑
j:(i,j)∈Ae

xeijk ≥ yi, ∀ i ∈ Oe, e ∈ E (31)

2
∑
k∈K1

x1psk ≤ yp + ys, ∀ p ∈ P, s ∈ S (32)

2
∑
k∈K1

x1spk ≤ yp + ys, ∀ p ∈ P, s ∈ S (33)

∑
k∈K2

x2sjk ≤ ys, ∀ s ∈ S, j ∈ C (34)

∑
k∈K2

x2jsk ≤ ys, ∀ s ∈ S, j ∈ C (35)

∑
i∈C

w2
si ≥ ys, ∀ s ∈ S (36)

w2
si ≤ ys, ∀ s ∈ S, i ∈ C. (37)

Constraints (29) define lower bounds on the number of platforms and satellites (Yıldız et al.,

2023). In these VIs, oemin are lower bounds on the number of facilities opened and can be defined by

ordering the corresponding facilities in decreasing order of capacity and taking the smallest number

of them that can serve all the customers’ demands. Constraints (30) are lower bounds on the number

of vehicles needed in each echelon. Constraints (31) define that if a facility is opened, at least one

vehicle leaves it. Constraints (32) and (33) forbid vehicles from traveling between a platform and a

satellite if one of them is not opened. Constraints (34) and (35) state that a vehicle can only leave

from or return to a satellite if it is opened. Constraints (36) state that, if a satellite is opened, at least

one customer is assigned to it. Constraints (37) forbid customers to be assigned to satellites that are

not opened. It is worth noticing that VIs (36) and (37) cannot be used with ICF1 because variables

w2 are not defined in this formulation.
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3.2 Formulation with two-index arc variables and binary assignments (CF2)

We introduce a novel formulation for the 2E-LRP with two-index routing variables. This formula-

tion is based on a 2E-VRP formulation (Belgin et al., 2018) that has been adapted to the 2E-LRP by

Yıldız et al. (2023). However, when adapting it to the 2E-LRP, they did not include the platforms’ ca-

pacity constraints since it would create nonlinearities. We have adapted it by considering commodity

flow variables in both echelons to ensure that these capacities are respected.

In this formulation, the binary variable xeij indicates whether a vehicle traverses arc (i, j) ∈ Ae in

echelon e ∈ E . As mentioned in Section 1, when avoiding the variables with vehicle index, additional

variables and constraints must be used to ensure that the vehicles end their routes in the facilities

they started from. In this formulation, this is made by the variable w2
si already employed in CF1 and

the binary variable w1
ps that indicates whether satellite s ∈ S is assigned to platform p ∈ P.

The first formulation with two-index arc variables is defined as:

(CF2) min
∑
i∈N 1

Hiyi +
∑
e∈E

∑
i∈Oe

∑
j∈De

fexeij +
∑
e∈E

∑
(i,j)∈Ae

ceijx
e
ij (38)

s.t. (7), (17), (23)–(25)∑
i:(i,j)∈Ae

xeij =
∑

i:(j,i)∈Ae

xeji, ∀ j ∈ N e, e ∈ E (39)

∑
j:(s,j)∈A1

x1sj = ys, ∀ s ∈ S (40)

∑
j:(i,j)∈A2

x2ij = 1, ∀ i ∈ C (41)

∑
p∈P

w1
ps = ys, ∀ s ∈ S (42)

xeij ≤ we
ij , ∀ i ∈ Oe, j ∈ De, e ∈ E (43)

xeji ≤ we
ij , ∀ i ∈ Oe, j ∈ De, e ∈ E (44)

xeij + we
hi +

∑
h′∈Oe\{h}

we
h′j ≤ 2, ∀ i, j ∈ De, i ̸= j, h ∈ Oe (45)

xeij ∈ {0, 1}, ∀ (i, j) ∈ Ae, e ∈ E (46)

we
ij ∈ {0, 1},∀ i ∈ Oe, j ∈ De, e ∈ E (47)

0 ≤ geij ≤ Qexeij , ∀ (i, j) ∈ Ae, e ∈ E . (48)

The objective function (38) and constraints (39)–(41) are the two-index variables equivalent of (22),

(2), (5), and (6), respectively. Constraints (42) define that if a satellite is opened, it is assigned to a

platform. Constraints (43) and (44) state that if a vehicle travels between an origin and a destination,

this destination is assigned to this origin. Constraints (45) ensure that a vehicle can only travel between

two destinations assigned to the same origin. Constrains (46)–(48) define the domain of variables. This

formulation has O((|P|+|S|)2+(|S|+|C|)2) variables and O(|P||S|2+|S||C|2+(|P|+|S|)2+(|S|+|C|)2)
constraints.

3.2.1 Improved formulation

The first possible improvement to CF2 concerns constraints (45). They were presented this way

since it is the common approach in the literature (Belgin et al., 2018; Yıldız et al., 2023). However,
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they can be improved to become sparser and provide a tighter LR. For the SE, from constraints (7),

we have that
∑

h′∈O2\{h}w
2
h′j = 1−w2

hj and this can be substituted in constraints (45) to make them

sparser. For the FE, we would have
∑

h′∈O1\{h}w
1
h′j = yh−w1

hj from constraints (42), but it is possible

to use 1−w1
hj because constraints (45) are redundant for yh = 0. Moreover, given that constraints (45)

define that a vehicle may travel between two destinations only if they are both assigned to the same

origin, we can add xeji to their left-hand side, tightening the LR. This way, we obtain the following

formulation ICF2:

(ICF2) min (38)

s.t. (7), (17), (23)–(25), (39)–(44), (46)–(48)

xeij + xeji + we
hi − we

hj ≤ 1, ∀ i, j ∈ De, i ̸= j, h ∈ Oe. (49)

3.2.2 Valid inequalities

Both CF2 and ICF2 can be enhanced by the following VIs:

(29), (36)–(37)∑
i∈Oe

∑
j∈De

xeij ≥

⌈
1

Qe

∑
c∈C

qc

⌉
, ∀ e ∈ E (50)

∑
j∈De

xeij ≥ yi, ∀ i ∈ Oe, e ∈ E (51)

2x1ps ≤ yp + ys, ∀ p ∈ P, s ∈ S (52)

2x1sp ≤ yp + ys, ∀ p ∈ P, s ∈ S (53)

x2sj ≤ ys, ∀ s ∈ S, j ∈ C (54)

x2js ≤ ys, ∀ s ∈ S, j ∈ C (55)∑
s∈S

w1
ps ≥ yp, ∀ p ∈ P (56)

2w1
ps ≤ yp + ys, ∀ p ∈ P, s ∈ S. (57)

Constraints (50)–(55) are the two-index variables equivalent to (30)–(35). Constraints (56) define

that if a platform is opened at least one satellite is assigned to it. Constraints (57) define that a satellite

can only be assigned to a platform if both the satellite and the platform are opened. Constraints (50)

and (52)–(56) can be found in Yıldız et al. (2023).

3.3 Formulation with two-index arc variables and continuous assignments (CF3)

In this section, we present a novel two-index formulation that does not require the assignment

variables w from CF2. Instead of binary assignments, this formulation is based on continuous variables

vej that indicate from which origin the vehicle visiting destination j ∈ De, e ∈ E departed. It is inspired

by the index propagation formulation of Furtado et al. (2017) for the pickup and delivery routing

problem. Formulation CF3 is defined as:

(CF3) min (38)

s.t. (17), (23)–(25), (39)–(41), (46), (48)
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vej ≥
∑
i∈Oe

ixeij , ∀ j ∈ De, e ∈ E (58)

vej ≥
∑
i∈Oe

ixeji, ∀ j ∈ De, e ∈ E (59)

vej ≤ M e
1 −

∑
i∈Oe

(M e
1 − i)xeij , ∀ j ∈ De, e ∈ E (60)

vej ≤ M e
1 −

∑
i∈Oe

(M e
1 − i)xeji, ∀ j ∈ De, e ∈ E (61)

vej ≥ vei −M e
2 (1− xeij − xeji), ∀ i, j ∈ De, i ̸= j, e ∈ E (62)

1 ≤ vej ≤ |Oe|, ∀ j ∈ De, e ∈ E . (63)

Constraints (58)–(61) impose that if a vehicle travels between an origin i and a destination j,

then vej assumes the value of i, this way indicating the origin related to node j. Constraints (62)

ensure that if a vehicle travels between two destinations i and j, then these nodes are in the same

route and, therefore, have the same origin (i.e., vei = vej ). Constraints (63) define the domain of

the new variables. M e
1 and M e

2 are sufficiently large numbers. Their tightest possible values are

M e
1 = |Oe| and M e

2 = |Oe| − 1. This formulation has O((|P| + |S|)2 + (|S| + |C|)2) variables and

O((|P|+ |S|)2 + (|S|+ |C|)2) constraints.
Formulation CF3 can be enhanced by the following VIs:

(29), (50)–(55)

vej ≥ i

(
yi −

∑
i′∈Oe:i′<i

yi′

)
, ∀ i ∈ Oe \ {1}, j ∈ De, e ∈ E (64)

vej ≤ i+
∑

i′∈Oe:i′>i

i′yi′ + (|Oe| − i)(1− yi), ∀ i ∈ Oe \ {|Oe|}, j ∈ De, e ∈ E . (65)

Constraints (64) define that destinations are assigned to an origin with an index at least equal

to the smallest index of opened origins. Analogously, constraints (65) ensure that destinations are

assigned to an origin with an index at most equal to the greatest index of opened origins.

4 Comparison of LRs

In this section, we discuss some relationships between the LRs of the different proposed formula-

tions. Propositions 1 to 6 and Corollaries 1 to 4 enunciate and prove them.

Proposition 1. The LR of ICF1 is not weaker than that of CF1.

Proof. The optimal value of the LR of ICF1 for instance “100–10MN” from set Nguyen1 is 156,294,

higher than that of CF1, which is 111,867.

Proposition 2. Formulation ICF2 has a stronger LR than formulation CF2.

Proof. The optimal value of the LR of ICF2 for instance “100–10MN” from set Nguyen is 160,148,

which is higher than that of the LR of CF2 for the same instance (156,294). Hence, CF2 does not

have a stronger LR than ICF2.

1The benchmark instances sets are properly presented in Section 5.
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The fact that the LR of ICF2 is stronger than that of CF2 comes directly from the fact that, if

constraints (49) are satisfied, constraints (45) are also satisfied. Indeed, from constraints (7) and (42),∑
h′∈Oe\{h}

we
h′j − 1 = −we

hj . Substituting this in (49) makes

1 ≥ xeij + xeji + we
hi − we

hj ≥ xeij + we
hi +

∑
h′∈Oe\{h}

we
h′j − 1, ∀ i, j ∈ De, i ̸= j, h ∈ Oe,

corresponding precisely to constraints (45).

Proposition 3. Formulation CF2 has a stronger LR than formulation ICF1.

Proof. Given a solution xeij , (i, j) ∈ Ae, e ∈ E , for the LR of CF2, it is possible to define a solution for

the LR of ICF1 by making x̃eijk = 1
|Ke|x

e
ij , (i, j) ∈ Ae, k ∈ Ke, e ∈ E . This way, we have that constraints

(39) ⇒ (2), (40) ⇒ (5), (41) ⇒ (6), (46) ⇒ (16), and (48) ⇒ (26). Moreover, (40) and (41) ⇒ (4).

In fact, from (41),

∑
j∈C\{i}

x2ij +
∑
j∈S

x2ij = 1, ∀ i ∈ C ⇒
∑
i∈C

∑
j∈S

x2ij = |C| −
∑

i,j∈C:i̸=j

x2ij ⇒
∑
i∈C

∑
j∈S

x̃2ijk ≤ |C|
|K2|

≤ 1, ∀ k ∈ K2

since the fleet is unlimited, corresponding precisely to constraints (4) for the SE. For the FE, the

derivation from (40) is analogous. Hence, it is proved that, if x is a solution to the LR of CF2, then

x̃ is a solution to the LR of ICF1.

Figure 2 represents an example of a solution of the LR of ICF1 that is not a solution of the LR of

CF2. It presents an instance with three potential satellites and two customers (the FE is not presented

since it is not needed in this demonstration). The customers in this instance have low demands, while

vehicles and facilities have large enough capacities to ensure that load and capacity constraints are

non-binding. Figure 2a portrays a solution of the LR of ICF1. The solid blue arrows represent the

positive arc variables associated with one vehicle and the dashed green ones represent another vehicle.

It is easy to see that these values respect all constraints of ICF1.

1
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1 2

0.255

0.25

0.25

0.245

0.255

0.25
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(a) Solution of the LR of ICF1.

1

2

3

1 2

0.51

0.5

0.5

0.49

0.51

0.5

Satellite

Customer

(b) Projection onto the two-index arc variables space.

Figure 2: An example for proving that ICF1 does not have a stronger LR than CF2.

The only way to project this solution onto the two-index arc variables space of CF2 while respecting

constraints (41) is by defining x2ij =
∑

k∈K2 x2ijk, ∀ (i, j) ∈ A2, yielding the solution shown in Figure

2b. However, constraints (43) and (44) would impose w2
1,1 ≥ 0.51 and w2

3,1 ≥ 0.5. This implies∑
s∈S w2

s1 ≥ 1.01, violating constraints (7). Hence, this solution of the LR of ICF1 does not have a

correspondent solution for the LR of CF2.
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Corollary 1. Formulation ICF2 has a stronger LR than formulation ICF1.

Corollary 2. The LR of CF2 is not weaker than the LR of CF1.

Corollary 3. The LR of ICF2 is not weaker than the LR of CF1.

Proposition 4. Formulation CF3 has a stronger LR than formulation ICF1.

Proof. The proof that every feasible solution for the LR of CF3 has a corresponding feasible solution

in the LR of ICF1 is the same as in the proof of Proposition 3 for CF2 and ICF1. Also, the optimal

value of the LR of ICF1 for instance “100–10MN” from set Nguyen is 156,294, while for the LR of

CF3 it is 160,146.

Corollary 4. The LR of CF3 is not weaker than the LR of CF1.

Proposition 5. The LRs of formulations CF2 and CF3 are not comparable.

Proof. The optimal value of the LR of CF3 for instance “100–10MN” from set Nguyen is 160,146 while

for the LR of CF2 it is 156,294. Hence, the LR of CF2 is not stronger than that of CF3.

Moreover, Figure 2b presents an example of a solution of the LR of CF3 that is not a solution

for the LR of CF2. Once again, assume that the customers have low demands and the vehicles and

facilities have high enough capacities. The arrows represent the value of the corresponding x2 variables.

It is easy to see that v21 = v22 = 1.5 is a solution to CF3. However, for CF2, constraints (43) and (44)

would impose w2
1,1 ≥ 0.51 and w2

3,1 ≥ 0.5. This implies
∑

s∈S w2
s1 ≥ 1.01, violating constraints (7).

Hence, this solution of the LR of CF3 is not feasible for the LR of CF2.

Proposition 6. Formulation ICF2 has a stronger LR than formulation CF3 if M e
1 = M e

2 = |Oe|(|Oe|+1)
2 .

Proof. First, we prove that a solution in the LR of ICF2 has a corresponding solution in the LR

of CF3 by defining vej =
∑

i∈Oe iwe
ij , which automatically respects constraints (63). By multiplying

constraints (43) and (44) by i and summing over Oe, we get∑
i∈Oe

iwe
ij ≥

∑
i∈Oe

ixeij , ∀ j ∈ De, e ∈ E , and∑
i∈Oe

iwe
ij ≥

∑
i∈Oe

ixeji, ∀ j ∈ De, e ∈ E ,

which correspond to constraints (58) and (59), respectively.

From constraints (41), in the SE, we have∑
s′∈S

x2is′ +
∑

j∈C\{i}

x2ij = 1, ∀ i ∈ C ⇒ x2is +
∑

j∈C\{i}

x2ij = 1−
∑

s′∈S\{s}

x2is′ , ∀ s ∈ S, i ∈ C.

From constraints (7) and (43),

x2is +
∑

j∈C\{i}

x2ij ≥ 1−
∑

s′∈S\{s}

w2
s′i = w2

si, ∀ s ∈ S, i ∈ C.
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By multiplying these inequalities by s and summing over S, we get

∑
s∈S

sw2
si ≤

∑
s∈S

sx2is +
∑
s∈S

s

 ∑
j∈C\{i}

x2ij

 , ∀ i ∈ C

⇒ v2i ≤
∑
s∈S

sx2is +
|S|(|S|+ 1)

2

(
1−

∑
s∈S

x2is

)
, ∀ i ∈ C,

which yields constraints (61) for e = 2. The derivations for constraints (60) and the FE are analogous.

Finally, by multiplying constraints (49) by h and summing over Oe, we get

|Oe|(|Oe|+ 1)

2
(xeij + xeji) +

∑
h∈Oe

h(we
hi − we

hj) ≤
|Oe|(|Oe|+ 1)

2
, ∀ i, j ∈ De, i ̸= j,

which are precisely constraints (62).

The example presented in Figure 2b along with the discussion in the proof of Proposition 5 also

works in this proposition to show that the LR of CF3 is not stronger than the LR of ICF2.

Figure 3 illustrates the properties presented in Propositions 1 to 6 and in Corollaries 1 to 4. This

figure does not explicitly represent all of these relationships since the strength of the LR is a transitive

property, i.e., if formulation A has a stronger LR than another formulation B and the LR of B is

stronger than that of C, the LR of A dominates that of C.

CF1 ICF1

CF2

ICF2

CF3

A B The LR of B is stronger than that of A

A B The LR of B is not weaker than that of A

A B The LRs of A and B are not comparable

Figure 3: A visual representation of the relationships between different 2E-LRP formulations.

5 Computational experiments

This section presents the results of the extensive computational experiments developed to assess

the performance of the presented formulations of the 2E-LRP in a general-purpose MIP solver. All

experiments were run on a computing cluster from Compute Canada, where each node is equipped

with 2xAMD Rome 7532 processors running at 2.4GHz. The formulations were implemented in C++

using Gurobi 11.0 as solver with an optimality tolerance of 10−7. All experiments were limited to one

hour of runtime and 80GB of RAM, using up to eight threads.

We performed experiments with five benchmark instance sets of the 2E-LRP and its variants. The

first of them is the Prodhon set, which contains 30 instances with the number of customers ranging

from 20 to 200, the number of potential satellites being five or 10, and the number of potential
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platforms fixed as one. The second instance set is called Nguyen and contains 24 instances with one

platform in each, five or ten potential satellites, and a range of customers that goes from 25 to 200.

These two instances sets were introduced by Nguyen et al. (2012b).

The remaining three instance sets, named I1, I2, and I3, were generated by Contardo et al. (2012)

following the procedure suggested by Boccia et al. (2011). These sets contain 31 instances each with

the number of potential platforms ranging from two to five, the number of potential satellites going

from three to 20, and the number of customers between eight and 200.

We ran our experiments using all instances in these sets, except those with 200 customers. These

instances were excluded because they are too large for CFs to handle, as few formulations found

feasible solutions and only for few instances of this size. The remaining instances were divided into

three groups: small (from eight to 25 customers), medium (from 50 to 75 customers), and large (from

100 to 150 customers).

In Section 5.1, the presented formulations are compared in terms of their LR, their performance,

and their number of constraints and variables. They are also compared with the best known solutions

(BKS) from the literature. Section 5.2 assesses how the existence or absence of multiple potential

platforms in an instance affects the performance of the formulations. Finally, Section 5.3 evaluates

the benefits of including valid inequalities for each formulation.

5.1 Comparison of CFs

The first assessment to be made is on how the different formulations compare to each other em-

pirically. We also confront these results with the BKS from the literature, considering both the best

known lower bounds (BKLBs) and the best known upper bounds (BKUBs). The BKLBs have all been

presented by Contardo et al. (2012), while the BKUBs have been reported by Contardo et al. (2012);

Nguyen et al. (2012b); Schwengerer et al. (2012), and Breunig et al. (2016). For each instance, we

computed the gap of the BKS as BKUB−BKLB
BKUB . Instances with this gap equal to zero were considered

having an optimal solution found. Although no BKUB was improved, the presented formulations

found many of the reported BKUBs and improved most of the BKLBs.

Table 2 presents the results of different metrics for each formulation. These results are aggregated

by size (small, medium, and large) and also by all instances. Detailed results are presented as supple-

mentary material. In this table, “Size” indicates the instance size, “Metric” presents the corresponding

value, “BKS” is the best known solution, and “CF1”, “ICF1”, “CF2”, “ICF2”, and “CF3” indicate

the corresponding formulation. “LR” represents the optimal value of the LR of the corresponding

model, “LB” and “UB” are respectively the lower and upper bounds reported by the solver at the

end of the runtime, “Gap (%)” corresponds to the optimality gap, “Time (s)” indicates the runtime

in seconds, and “# of optimals” indicates the number of instances with proved optimality. Except for

“# of optimals”, all reported values are averages. Moreover, for the gap, the presented value is the

average of optimality gaps, not the gap computed with the average LB and UB. For each instance, the

gap reported for the BKS is defined as BKUB−BKLB
BKUB , while for the five formulations it is the optimality

gap reported by the solver
(
UB−LB

UB

)
. For the formulations that did not find feasible solutions to one

or more instances of a given instance class, the corresponding UB and gap were reported as “N/A”,

since it is impossible to define these values for these specific instances.

Figure 4 delves deeper into the performances of the MIP solver for different CFs. In the four charts,

“# of optimals” indicates the number of optimal solutions found, “# no feasible sol.” corresponds to

the number of instances for which the solver could not find a feasible solution, “# of BKLBs improved”
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Size Metric BKS CF1 ICF1 CF2 ICF2 CF3

Small
(71 insts.)

LR – 5,139 6,715 6,715 6,924 6,921
LB 8,506 7,880 8,741 8,930 8,930 8,931
UB 8,934 9,090 8,947 8,934 8,934 8,934
Gap (%) 7.78 14.11 3.02 0.38 0.36 0.33
Time (s) – 2,651 2,097 936 911 861
# of optimals 6 20 33 56 58 59

Medium
(28 insts.)

LR – 35,855 50,174 50,174 51,308 51,303
LB 61,850 50,018 59,569 64,659 64,860 64,910
UB 67,071 N/A N/A 68,022 67,743 67,641
Gap (%) 9.88 N/A N/A 8.46 6.75 6.37
Time (s) – 3,600 3,600 3,600 3,600 3,600
# of optimals 0 0 0 0 0 0

Large

(32 insts.)

LR – 93,089 119,158 119,158 120,654 120,646
LB 133,224 109,045 123,967 136,450 136,825 139,211
UB 147,140 N/A N/A N/A N/A 153,291
Gap (%) 10.36 N/A N/A N/A N/A 13.28
Time (s) – 3,602 3,600 3,600 3,600 3,600
# of optimals 0 0 0 0 0 0

All
(131 insts.)

LR – 33,188 43,471 43,471 44,192 44,187
LB 50,373 41,599 47,752 51,991 52,126 52,720
UB 55,120 N/A N/A N/A N/A 56,745
Gap (%) 8.85 N/A N/A N/A N/A 4.78
Time (s) – 3,086 2,786 2,156 2,142 2,116
# of optimals 6 20 33 56 58 59

Table 2: Results of the MIP solver for different CFs.

and “# of BKUBs found” respectively indicate the number of instances to which the corresponding

CF found an LB that was better than the BKLB or an UB that was as good as the BKUB. Figure

5 presents the average number of constraints, variables (any kind), and binary variables for each

formulation (“# of constraints”, “# of variables”, and “# of binary variables”, respectively). The

results are aggregated by size and presented for the overall solution, as in Table 2.

Regarding the LR, it is clear that the CF1 presents the lowest values. On average, ICF1 has an LR

bound that is 30.98% higher than that of CF1. Moreover, despite having a stronger LR than ICF1,

CF2 presents the same result as ICF1 for all tested instances. The average value of the LR of CF3 is

1.65% higher than that of CF2, even though their LRs are not comparable. ICF2 has an average LR

bound that is 1.66% higher than that of CF2, but only 0.01% higher than that of CF3. This indicates

that, although ICF2 has a stronger LR than CF3, their difference may not be significant in practice,

since in the test instances they showed very similar results. Another impressive result is the fact that,

for the medium and large instances, the average optimal values of LRs of ICF1, CF2, ICF2, and CF3

are higher than the average LB found by the solver after one hour of runtime with CF1 (this is also

true for the overall average).

Comparing the number of variables and constraints, it is clear that ICF1 has a slightly larger

number of general variables and smaller number of binary variables when compared to CF1. The

number of constraints, however, is 81.21% smaller on average, significantly reducing the size of the

linear programming problem solved in each branch-and-bound node. When comparing formulations

CF2 and ICF2, the number of constraints increases again, being closer to that of CF1 and much

larger than that of ICF1. The number of variables, however, is drastically reduced, going from being

88.95% smaller for the small-sized instances to being 98.22% smaller in the large-sized instances (for

the binary variables the numbers are 93.57% and 99.07%, respectively). Finally, CF3 has the smallest

16

The Two-Echelon Location-Routing Problem: A Comparative Analysis of Novel and Existing Compact Formulations

CIRRELT-2024-15



(a) Small (71 insts.) (b) Medium (28 insts.)

(c) Large (32 insts.) (d) All (131 insts.)

Figure 4: Results of the MIP solver for different CFs and sizes.

number of variables and constraints of all formulations. Compared to ICF2, CF3 has 80.57% fewer

constraints, 4.18% fewer variables, and 9.02% fewer binary variables, being the smallest formulation,

while preserving almost all strength of the LR. This translates into the results of the MIP solver, since

this is the CF with the best overall performance.

For the small instances, CF1 allows the solver to prove optimality for only 20 out of 71 of them,

presenting an average gap of 14.11%. These results are considerably improved by ICF1, as the solver

proves optimality to a total of 33 instances, lowering the average gap to 3.02% and improving both the

lower and the upper bounds. The three formulations with two-index arc variables (CF2, ICF2, and

CF3) promote good results, with very similar UBs. The BKLB is improved in 65 instances, all of them

with unknown optimal solutions in the literature. The solver finds the BKUB for all the 71 instances

using CF2, for 69 instances using ICF2, and for 70 instances using CF3. The best LB is obtained

when using CF3, which proves optimality for 59 of the instances (83.10% of them) and presents the

best gap. The optimal solutions of 53 of these instances are not reported in the literature.

For medium and large instances, the solver can no longer find feasible solutions for all instances

when using formulations with vehicle index variables. In fact, despite leading to better LBs on average,

ICF1 results in feasible solutions for fewer instances than CF1. For medium-sized instances, the average

gap for CF2 is 8.46%, whereas for ICF2 it is 1.71% lower, as a result of attaining better LBs and UBs.

This fully justifies the modification in constraints (45) that yield ICF2 with sparser and stronger

constraints. CF3 yields even better bounds and gap, with solutions that are only 0.85% worse than

the BKUB on average, while improving the BKLB by 4.95%. CF3 also results in better BKLB for all
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(a) Small (71 insts.) (b) Medium (28 insts.)

(c) Large (32 insts.) (d) All (131 insts.)

Figure 5: Average number of constraints, variables, and binary variables for different CFs and sizes.

of these instances, while finding the BKUB for three of them.

For the large instances, only CF3 leads to feasible solutions for all instances. The performance

is not as good as for the small- and medium-sized instances, since it presents 13.28% average gap.

However, the obtained solutions are only 4.18% away from the average BKUB, which is an excellent

result for a compact formulation in large-sized instances. Furthermore, the LB obtained with CF3 is

4.49% higher than the BKLB on average. In fact, the BKLB is improved for 27 out of 32 instances.

Overall, CF3 is the best performing CF and the only one that results in feasible solutions for

all instances. The average gap is 4.78%, the UB is only 2.95% higher than the BKUB (which was

obtained by tailored metaheurisitics) and the BKLB is improved in 4.66%, which is significant since

it is a CF. It also leads to improved BKLB for 120 instances (91.60% of them), while resulting in the

BKUB for 73 instances (55.73%).

To further compare the performance of the MIP solver for different formulations, Figures 6 and 7

present performance profiles (Dolan and Moré, 2002) for the UB and optimality gap, respectively. For

the UB, for example, given a set of instances and a set of CFs, denote by UBfp the UB for instance

p when solved with formulation f . In these graphs, for a value q > 0, P (f, q) indicates the fraction of

instances for which CF f finds solutions with an UB that lies within a factor q of the best obtained

UB. Hence, the value of P (f, 0) indicates the fraction of instances for which CF f finds the best UB

among all CFs. For the gap, the definition is analogous. The graphs are presented with the horizontal

axis in logarithmic scale.

For the UB, the performance profiles indicate that ICF1 outperforms CF1 for the small instances

and is outperformed by CF1 for the medium ones, while for the large ones they are practically equiv-

alent. On the overall average, CF1 slightly outperforms ICF1, which is coherent with the results in
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(a) Small (71 insts.) (b) Medium (28 insts.)

(c) Large (32 insts.) (d) All (131 insts.)

Figure 6: Performance profile of the MIP solver for different CFs and sizes considering the UB.

Figure 4, since there are more instances for which the solver does not find any feasible solution for

ICF1 than for CF1. Nevertheless, for the gap, this behavior is not the same. Although for the small,

medium, and large instances the comparison of CF1 and ICF1 is similar for both UB and gap, on the

overall average, ICF1 outperforms CF1, since it provides much better LBs.

The performance profiles of CF2 and ICF2 for UB are very similar. They are practically the

same for the small and medium instances, and, for the large instances, ICF2 outperforms CF2 for

small values of q. For the gap, this difference is more significant. For the small instances, there is a

small difference, which did not exist for the UB performance profiles. Moreover, for the medium and

large instances, as well as for the overall average, this difference is more expressive due mostly to the

improvements in the LR and the LB documented in Table 2.

Finally, the performance profiles confirm the results presented in Table 2 that CF3 is the best

performing CF. For the UB, P (f, q) is equal to one for almost every possible value of q, greatly

outperforming the other CFs for the overall average. For the gap, the results of the MIP solver for

CF3 are also much better than those for the other CFs.

Therefore, the presented results make clear that the use of formulations with vehicle index variables

does not lead to good results in a general-purpose MIP solver. Moreover, in medium- and large-sized

instances, it may not possible to obtain even feasible solutions. The two-index arc variables are more

suited to solve the 2E-LRP, leading to much better results. Nevertheless, CF2, which is based in a
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(a) Small (71 insts.) (b) Medium (28 insts.)

(c) Large (32 insts.) (d) All (131 insts.)

Figure 7: Performance profile of the MIP solver for different CFs and sizes considering the optimality
gap.

formulation found in the literature, has too many constraints and binary variables, deteriorating the

performance of the solver. CF3 is much smaller, while preserving most of the quality of the LR and

being, therefore, the best option to represent the 2E-LRP with a compact formulation.

5.2 The impact of multiple platforms

Table 3 presents a closer look at how the number of platforms may affect the performance of

the solver according to the addressed CFs. As discussed in Section 5, there are two instance sets

with a single platform in each instance and three sets with multiple platforms. In Table 3, this

information is presented in column |P|. The results presented in the table clearly indicate that the

number of platforms significantly affects the performance of the solver. In general, instances with a

single platform are easier to solve than the ones with multiple platforms. This characteristic affects the

solver’s ability to find feasible solutions and prove optimality. For the small instances, the use of CF2,

ICF2, and CF3 leads to optimal solutions for all single-platform instances, which is not true for the

multiple-platforms ones. Likewise, for these instances, the solver performs better with both CF1 and

ICF1 in the single-platform instances. Moreover, for the large instances, both CF2 and ICF2 result

in feasible solutions for all single-platform instances, while for three multiple-platforms instances no

solution is found.
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Size |P| Metric BKS CF1 ICF1 CF2 ICF2 CF3

Small

Single

(8 insts.)

LB 69,840 64,636 71,576 73,071 73,071 73,071
UB 73,071 74,274 73,165 73,071 73,071 73,071
Gap (%) 4.06 12.44 2.00 0.00 0.00 0.00
# of optimals 0 0 2 8 8 8
# no feasible sol. 0 0 0 0 0 0

Multiple

(63 insts.)

LB 717 673 762 785 785 786
UB 790 813 793 790 790 790
Gap (%) 8.25 14.33 3.15 0.43 0.40 0.37
# of optimals 6 20 31 48 50 51
# no feasible sol. 0 0 0 0 0 0

Medium

Single

(16 insts.)

LB 107,320 86,878 103,429 112,188 112,531 112,606
UB 116,324 N/A N/A 117,915 117,455 117,277
Gap (%) 7.73 N/A N/A 4.83 4.16 3.99
# of optimals 0 0 0 0 0 0
# no feasible sol. 0 5 12 0 0 0

Multiple

(12 insts.)

LB 1,224 872 1,089 1,287 1,300 1,315
UB 1,400 N/A N/A 1,499 1,460 1,460
Gap (%) 12.73 N/A N/A 13.31 10.21 9.54
# of optimals 0 0 0 0 0 0
# no feasible sol. 0 10 12 0 0 0

Large

Single

(20 insts.)

LB 212,188 173,755 197,485 217,353 217,950 221,762
UB 234,320 N/A N/A 273,690 258,576 244,036
Gap (%) 9.28 N/A N/A 17.49 14.16 8.80
# of optimals 0 0 0 0 0 0
# no feasible sol. 0 17 20 0 0 0

Multiple

(12 insts.)

LB 1,618 1,194 1,437 1,612 1,617 1,626
UB 1,841 N/A N/A N/A N/A 2,050
Gap (%) 12.15 N/A N/A N/A N/A 20.74
# of optimals 0 0 0 0 0 0
# no feasible sol. 0 12 12 3 3 0

All insts.

Single

(44 insts.)

LB 148,173 122,324 140,390 152,878 153,274 155,034
UB 162,094 N/A N/A 180,568 173,531 166,857
Gap (%) 7.77 N/A N/A 9.71 7.95 5.45
# of optimals 0 0 2 8 8 8
# no feasible sol. 0 22 32 0 0 0

Multiple

(87 insts.)

LB 912 772 900 968 971 975
UB 1,019 N/A N/A N/A N/A 1,056
Gap (%) 9.41 N/A N/A N/A N/A 4.45
# of optimals 6 20 31 48 50 51
# no feasible sol. 0 22 24 3 3 0

Table 3: The impact of the number of potential platforms on the CFs performances.

Therefore, in addition to promoting the best overall performance, CF3 is the least sensitive to the

existence of multiple platforms. For medium-sized instances, the average gaps for CF2 and ICF2 are

8.48% and 6.05% worse in the multiple-platforms instances than in the single-platform ones, while

for CF3 this number is only 5.55%. Additionally, CF3 yields feasible solutions for the large multiple-

platforms instances that CF2 and ICF2 do not.

5.3 Experiments with VIs

We ran experiments with the VIs to assess their impact on the solver performance. These ex-

periments were performed with formulations CF1, ICF1, ICF2, and CF3. The impact of VIs in CF2

was not assessed because this formulation is very similar to ICF2. Since the impacts of the VIs on

the performances of the formulations is highly dependent on the instances sizes, the results are all
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presented aggregated by size, not the overall average.

The experiments consisted of grouping the VIs based on similar characteristics. First, the perfor-

mances were evaluated including all VIs. Then, each VI group was removed to evaluate how it affected

the performance, resulting in six different configurations. Table 4 presents which VIs are included in

each configuration. Note that ICF1 does not consider configuration VI2, since variables w are not

defined in this formulation and hence configurations VI2 and All would be the same. Also, the formu-

lations with two-index arc variables (ICF2 and CF3) do not consider symmetry breaking constraints

and, thus, do not have configuration VI5. The results of the VI experiments are summarized in Tables

5 to 8.

Configuration Meaning CF1 VIs ICF1 VIs ICF2 VIs CF3 VIs

VI1
All VIs except for the lower
bounds on the number of facilities

(27)–(28)

(30)–(37)

(27)–(28)

(30)–(35)

(36)–(37)

(50)–(57)

(50)–(55)

(64)–(65)

VI2
All VIs except for the ones that
relate assignment and opening of
facilities

(27)–(35) – (29), (50)–(55) (29), (50)–(55)

VI3
All VIs except for the lower
bounds on the number of vehicles

(27)–(29)

(31)–(37)

(27)–(29)

(31)–(35)

(29), (36)–(37)

(51)–(57)

(29), (51)–(55)

(64)–(65)

VI4
All VIs except for those that
relate the opening of facilities
with their visit

(27)–(30)

(36)–(37)
(27)–(30)

(29), (36)–(37)

(50), (56)–(57)

(29), (50)

(64)–(65)

VI5
All VIs except for those that break
symmetry

(29)–(37) (29)–(35) – –

All All VIs (27)–(37) (27)–(35)
(29), (36)–(37)

(50)–(57)

(29), (50)–(55)

(64)–(65)

Table 4: Different VI configurations for each formulation.

Table 5 presents the results for CF1 and the six VI configurations. Only the results for the small

instances are shown, since for medium and large instances no configuration of CF1 is able to find

feasible solutions for all instances. Moreover, the numbers of general and binary variables are not

included in this table since they do not change when including or removing VIs.

CF1 CF1–VI1 CF1–VI2 CF1–VI3 CF1–VI4 CF1–VI5 CF1–All

LB 7,880 8,152 8,183 7,895 8,185 8,259 8,187
UB 9,090 8,969 N/A N/A N/A 8,980 N/A
Gap (%) 14.11 10.73 N/A N/A N/A 7.44 N/A
Time (s) 2,651 2,626 2,594 2,664 2,598 2,379 2,587
# of optimals 20 21 22 20 22 27 22
# no feasible sol. 0 0 3 1 2 0 1
# of BKLBs improved 20 24 29 17 22 40 27
# of BKUBs found 34 40 38 32 35 44 37
# of constrains 4,083 4,873 4,734 4,873 4,560 4,543 4,875

Table 5: The impact of including VIs in CF1 for small instances (71 instances).

It is clear that the inclusion of all VIs is not beneficial for CF1 because the solver cannot find

feasible solutions for all instances. Indeed, the only cases in which the inclusion of VIs is beneficial

are the ones that do not include the lower bound on the number of facilities (29) or the symmetry
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breaking constraints (27)–(28). The best performing VI configuration is CF1–VI5, i.e., the one that

includes all VIs except for the symmetry breaking ones. Compared to CF1 without VIs, this CF has

11.27% more constraints, leading to 4.81% LB improvement, 1.21% UB reduction, and 6.67% decrease

in the average gap. Moreover, the number of instances proved optimal increased from 20 to 27, a

35% improvement. Configuration CF1–VI5 doubles the number of BKLBs improved and increases the

number of BKUBs found in 29.41% compared to CF1. These improvements, however, do not get to

the quality of ICF1, which outperformed them even without VIs.

Table 6 presents the results for the ICF1. The results show that only ICF1–VI5 (without the

symmetry breaking constraints) has better results than ICF1 and showing a limited improvement.

The LB increases 0.33%, the UB decreases 0.10%, the gap reduces 0.12%, the average runtime is

2.96% smaller, and two new instances have their solutions proved optimal, while four new instances

have their BKUBs found.

ICF1 ICF1–VI1 ICF1–VI3 ICF1–VI4 ICF1–VI5 ICF1–All

LB 8,741 8,675 8,645 8,729 8,770 8,684
UB 8,947 N/A N/A N/A 8,938 N/A
Gap (%) 3.02 N/A N/A N/A 2.90 N/A
Time (s) 2,097 2,397 2,349 2,317 2,035 2,352
# of optimals 33 30 31 30 35 29
# no feasible sol. 0 4 3 2 0 3
# of BKLBs improved 63 62 60 61 63 63
# of BKUBs found 51 45 45 45 55 42
# of constrains 1,319 1,968 1,968 1,655 1,639 1,970

Table 6: The impact of including VIs in ICF1 for small instances (71 instances).

Table 7 presents the results for the inclusion of VIs with ICF2 for small and medium instances.

The large instances are not presented since neither the base formulation nor any of the VI scenarios

found results for all instances.

Size Metric ICF2 ICF2–VI1 ICF2–VI2 ICF2–VI3 ICF2–VI4 ICF2–All

Small
(71 insts.)

LB 8,930 8,930 8,930 8,930 8,930 8,931
UB 8,934 8,934 8,934 8,934 8,934 8,934
Gap (%) 0.36 0.37 0.35 0.35 0.33 0.33
Time (s) 911 843 876 823 845 851
# of optimals 58 58 58 58 59 58
# no feasible sol. 0 0 0 0 0 0
# of BKLBs improved 65 65 65 65 65 65
# of BKUBs found 69 68 70 69 70 69
# of constraints 3,842 4,321 4,161 4,321 4,008 4,323

Medium
(28 insts.)

LB 64,860 65,068 65,202 65,019 65,004 65,104
UB 67,743 67,693 67,603 67,343 67,720 67,476
Gap (%) 6.75 7.08 6.84 6.66 6.54 6.21
Time (s) 3,600 3,600 3,600 3,600 3,600 3,600
# of optimals 0 0 0 0 0 0
# no feasible sol. 0 0 0 0 0 0
# of BKLBs improved 27 25 28 28 27 28
# of BKUBs found 4 4 4 6 5 3
# of constraints 34,071 35,602 35,091 35,602 34,588 35,604

Table 7: The impact of including VIs in ICF2 for small and medium instances.

For ICF2, the inclusion of VIs is overall beneficial. For the small instances, the average LB and UB

do not vary significantly. The best gaps come from ICF2–VI4 and ICF2–All, and ICF2–VI4 results in

proved optimal solutions to most instances (59 against 58 from the other approaches). The running
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times do not vary much, even though the VIs help improving them on average. For the medium-sized

instances, the best UB is achieved in configuration ICF2–VI3, the best LB in ICF2–VI2, and the best

gap in ICF2–All. The number of constraints in ICF2–All increases in 4.49% with respect to ICF2, but

this clearly pays off.

It is worth noticing that, with the inclusion of VIs, the performance related to ICF2–All is better

than that of CF3 (the best performing formulation so far) for the medium-sized instances, improving

the LB in 0.30%, the UB in 0.24%, and the gap in 0.16%. For the small instances, ICF2–All matches

CF3 in LB, UB, and gap, but loses in the number of instances with optimality proved. ICF2–VI4,

however, lead to the same number of instances with proved optimal solution as CF3.

Finally, Table 8 presents the results regarding CF3 and the different VI configurations. For the

small instances, the average LB and UB do not change significantly. However, considering the optimal-

ity gap and the number of instances with proved optimal solution, the best configuration is CF3–VI1,

which shows an improvement of 0.06% in the gap and provides proved optimal solutions for two extra

instances compared to CF3.

Size Metric CF3 CF3–VI1 CF3–VI2 CF3–VI3 CF3–VI4 CF3–All

Small
(71 insts.)

LB 8,931 8,931 8,930 8,930 8,931 8,931
UB 8,934 8,934 8,934 8,934 8,934 8,934
Gap (%) 0.33 0.27 0.34 0.33 0.32 0.31
Time (s) 861 834 820 834 834 830
# of optimals 59 61 58 58 59 58
# no feasible sol. 0 0 0 0 0 0
# of BKLBs improved 65 65 65 65 65 65
# of BKUBs found 70 70 70 69 71 70
# of constraints 1,250 1,824 1,569 1,824 1,510 1,826

Medium
(28 insts.)

LB 64,910 65,050 65,136 65,087 65,210 65,219
UB 67,641 67,532 67,513 67,647 67,658 67,412
Gap (%) 6.37 6.32 5.57 6.17 6.14 6.10
Time (s) 3,600 3,600 3,600 3,600 3,600 3,600
# of optimals 0 0 0 0 0 0
# no feasible sol. 0 0 0 0 0 0
# of BKLBs improved 28 28 28 28 28 28
# of BKUBs found 3 8 3 6 6 5
# of constraints 7,839 9,734 8,858 9,734 8,720 9,736

Large

(32 insts.)

LB 139,211 139,062 138,903 138,746 139,197 139,074
UB 153,291 N/A N/A 154,833 155,202 N/A
Gap (%) 13.28 N/A N/A 14.11 14.81 N/A
Time (s) 3,600 3,600 3,600 3,600 3,600 3,600
# of optimals 0 0 0 0 0 0
# no feasible sol. 0 1 2 0 0 2
# of BKLBs improved 27 29 31 30 28 31
# of BKUBs found 0 0 0 0 0 0
# of constraints 27,987 32,581 30,413 32,581 30,161 32,583

Table 8: The impact of including VIs in CF3.

For the medium-sized instances, the inclusion of VIs is mainly beneficial. The LB is improved in

every configuration compared to the base formulation CF3 and the UB is improved in most of them.

The best LB and UB are obtained from the inclusion of all VIs (CF3–All), improving the LB in 0.47%

and the UB in 0.34% compared to CF3. CF3–All also outperforms ICF2–All for these instances,

improving the LB in 0.18%, the UB in 0.09%, and the gap in 0.11%. Thus, the 24.20% increase in the

number of constraints compared to CF3 is worth it for these instances.

Nonetheless, for the large instances, the inclusion of VIs worsens the performance of CF3. Indeed,
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with CF3–VI1, CF3–VI2, and CF3–All it is not possible to find feasible solutions for some instances.

Furthermore, in the configurations that do find feasible solutions for all instances (CF3–VI3 and

CF3–VI4), the average LB, UB, and gap are worse than the corresponding values for CF3. Possibly

this happens because these models already have large numbers of variables and constraints due to

the instance size, and the inclusion of these VIs make it even harder for the MIP solver to process

the branch-and-bound nodes, on top of possible effects on the solver heuristics. It is worth noticing,

however, that the inclusion of VIs in CF3 for large instances allows for the improvement of another

four BKLBs.

In conclusion, the effect of including valid inequalities heavily depends on the instance size and

the base formulation. For the formulations with vehicle index variables (CF1 and ICF1), the inclusion

of VIs helped the performance of the solver depending on which VIs were included, since in some

configurations they prevented the solver from finding feasible solutions to some instances. For the

two-index arc variables formulations (ICF2 and CF3), the inclusion of VIs was beneficial for the small-

and medium-sized instances. In fact, for the medium-sized instances, the best performing approach

for both formulations was to include all of the VIs that were compatible with the corresponding

formulation. For the large instances, however, the inclusion of VIs had negative effects in the solution

quality in all evaluated scenarios.

Finally, considering all experiments performed, we have found lower bounds that are better than

the BKLBs reported in the literature for 125 out of the 131 benchmark instances evaluated, which

encompasses all instances with unknown optimal solutions in the literature so far. Furthermore, we

have proved optimality for 55 instances for the first time. The detailed results are available in the

supplementary material.

6 Conclusion

In this paper, we have compared mixed-integer programming (MIP) compact formulations for the

two-echelon location-routing problem (2E-LRP). We have discussed a formulation with vehicle index

variables from the literature and provided improvements to it. Additionally, we have introduced two

novel formulations based on two-index arc variables. From a theoretical perspective, we have demon-

strated that the formulations with two-index variables have stronger linear programming relaxations.

We have also showed, from extensive computational experiments, that these formulations perform

much better in practice when solved with a general-purposed MIP solver.

This suggests that, although the literature on the 2E-LRP is mostly based on compact formulations

with a vehicle index, the future use of two-index variables formulations would be beneficial both for

defining variants and evaluating the performance of tailored algorithms. Furthermore, for ad hoc

methods based on mathematical formulations such as branch-and-cut schemes, decomposition-based

algorithms, and matheuristics, the formulations with two-index arc variables are likely to be a better

starting point than the formulations based on variables with a vehicle index.

We have also discussed the impacts of including valid inequalities in these formulations, both novel

and literature-based. Our experiments suggest that their utility depends on the instance size and type

of formulation. On the one hand, for small and medium instances (up to 75 customers) they help the

MIP solver. On the other hand, for large instances, they actually worsen the solver performance.

Considering all experiments performed, we have improved the best known lower bounds for 125

out of the 131 benchmark instances evaluated (the other six had the optimal solution as lower bound).
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We have also obtained the optimal solutions of 55 instances for the first time.

Interesting research developments are available for future work. For instance, one may focus on

extending the addressed formulations to the numerous 2E-LRP variants present in the literature.

Moreover, the development of branch-and-cut schemes and other ad hoc solution methods on top of

these formulations could further improve the best known lower and upper bounds for these instances.
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Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance profiles.

Mathematical Programming, 91:201–213.

Drexl, M. and Schneider, M. (2015). A survey of variants and extensions of the location-routing

problem. European Journal of Operational Research, 241(2):283–308.

Enthoven, D. L. J. U., Jargalsaikhan, B., Roodbergen, K. J., uit het Broek, M. A. J., and Schrotenboer,

A. H. (2020). The two-echelon vehicle routing problem with covering options: city logistics with

cargo bikes and parcel lockers. Computers & Operations Research, 118:104919.

Escobar-Vargas, D. and Crainic, T. G. (2024). Multi-attribute two-echelon location routing: formu-

lation and dynamic discretization discovery approach. European Journal of Operational Research,

314(1):66–78.

Friedrich, C. and Elbert, R. (2022). Adaptive large neighborhood search for vehicle routing problems

with transshipment facilities arising in city logistics. Computers & Operations Research, 137:105491.

Furtado, M. G. S., Munari, P., and Morabito, R. (2017). Pickup and delivery problem with time

windows: A new compact two-index formulation. Operations Research Letters, 45(4):334–341.

Gavish, B. and Graves, S. C. (1978). The traveling salesman problem and related problems. Technical

report, Operations Research Center, Massachusetts Institute of Technology. OR 078-78.

Govindan, K., Jafarian, A., Khodaverdi, R., and Devika, K. (2014). Two-echelon multiple-vehicle

location-routing problem with time windows for optimization of sustainable supply chain network

of perishable food. International Journal of Production Economics, 152:9–28.

Jacobsen, S. K. and Madsen, O. B. G. (1980). A comparative study of heuristics for a two-level

routing-location problem. European Journal of Operational Research, 5(6):378–387.

Madsen, O. B. G. (1983). Methods for solving combined two level location-routing problems of realistic

dimensions. European Journal of Operational Research, 12(3):295–301.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960). Integer programming formulation of traveling

salesman problems. Journal of the Association for Computing Machinery, 7(4):326–329.

Mirhedayatian, S. M., Crainic, T. G., Guajardo, M., and Wallace, S. W. (2021). A two-echelon

location-routing problem with synchronisation. Journal of the Operational Research Society,

72(1):145–160.

Munari, P. and Savelsbergh, M. (2022). Compact formulations for split delivery routing problems.

Transportation Science, 56(4):1022–1043.

27

The Two-Echelon Location-Routing Problem: A Comparative Analysis of Novel and Existing Compact Formulations

CIRRELT-2024-15



Nguyen, V.-P., Prins, C., and Prodhon, C. (2012a). A multi-start iterated local search with tabu

list and path relinking for the two-echelon location-routing problem. Engineering Applications of

Artificial Intelligence, 25(1):56–71.

Nguyen, V.-P., Prins, C., and Prodhon, C. (2012b). Solving the two-echelon location routing problem

by a grasp reinforced by a learning process and path relinking. European Journal of Operational

Research, 216(1):113–126.

Pichka, K., Bajgiran, A. H., Petering, M. E. H., Jang, J., and Yue, X. (2018). The two echelon

open location routing problem: mathematical model and hybrid heuristic. Computers & Industrial

Engineering, 121:97–112.

Prodhon, C. and Prins, C. (2014). A survey of recent research on location-routing problems. European

Journal of Operational Research, 238(1):1–17.

Rahmani, Y., Cherif-Khettaf, W. R., and Oulamara, A. (2016). The two-echelon multi-products

location-routing problem with pickup and delivery: formulation and heuristic approaches. Interna-

tional Journal of Production Research, 54(4):999–1019.

Schwengerer, M., Pirkwieser, S., and Raidl, G. R. (2012). A variable neighborhood search approach

for the two-echelon location-routing problem. In Hao, J.-K. and Middendorf, M., editors, Evolution-

ary Computation in Combinatorial Optimization, pages 13–24, Berlin, Heidelberg. Springer Berlin

Heidelberg.

Senna, F., Coelho, L. C., Morabito, R., and Munari, P. (2024). An exact method for a last-mile

delivery routing problem with multiple deliverymen. European Journal of Operational Research,

317(2):550–562.

Sluijk, N., Florio, A. M., Kinable, J., Dellaert, N., and Van Woensel, T. (2023). Two-echelon vehicle

routing problems: a literature review. European Journal of Operational Research, 304(3):865–886.

Sutrisno, H. and Yang, C.-L. (2023). A two-echelon location routing problem with mobile satellites

for last-mile delivery: mathematical formulation and clustering-based heuristic method. Annals of

Operations Research, 323:203–228.

Tian, X.-D. and Hu, Z.-H. (2023). A branch-and-price method for a two-echelon location routing

problem with recommended satellites. Computers & Industrial Engineering, 184:109593.

Wang, M., Miao, L., and Zhang, C. (2021). A branch-and-price algorithm for a green location routing

problem with multi-type charging infrastructure. Transportation Research Part E: Logistics and

Transportation Review, 156:102529.

Wang, Y., Assogba, K., Liu, Y., Ma, X., Xu, M., and Wang, Y. (2018). Two-echelon location-routing

optimization with time windows based on customer clustering. Expert Systems with Applications,

104:244–260.

Wang, Y., Wang, X., Wei, Y., Sun, Y., Fan, J., and Wang, H. (2023). Two-echelon multi-depot multi-

period location-routing problem with pickup and delivery. Computers & Industrial Engineering,

182:109385.

28

The Two-Echelon Location-Routing Problem: A Comparative Analysis of Novel and Existing Compact Formulations

CIRRELT-2024-15
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