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1. Introduction
Public transit (PT) systems are becoming increasingly important in the context of urban growth, traffic con-

gestion, and sustainable development. PT networks are designed in multiple phases, including planning,

operation, and control. Implementing changes in network design or operating systems is often costly and

difficult. However, innovative control strategies can provide a cost-effective solution to enhance the perfor-

mance of PT networks.

Research indicates that transfer speed and protection are crucial factors that affect passengers’ willingness

to use PT (Ceder et al. (2013)). Although transfers are usually synchronized during the planning process,

buses operate in a stochastic environment and may deviate from their schedules, leading to missed transfers

and a decrease in ridership. Therefore, transfer synchronization strategies for PT systems, particularly in

real-time, are of increasing interest. The availability of real-time passenger and vehicle data is on the rise.

By using demand data from smart cards and bus occupancy sensors, planned transfer data from travel apps,

and vehicle locations from GPS, we can significantly improve our understanding of the state of PT networks.

Dynamic predictions offer insight into the impact that real-time control can have on users throughout all

segments of their trips.

This research proposes an arc-flow formulation for the real-time transfer synchronization problem in a

dense urban network. Three control tactics are implemented alone or simultaneously in order to synchronize

transfers and minimize passenger travel times. The hold tactic makes a bus wait at a stop after all passengers

have boarded or alighted the vehicle. To skip-stop one or more consecutive stops can help reduce bus travel

times or make up for schedule delays. Additionally, the speedup tactic can decrease bus travel times, help

catch up with schedule delays, and prevent missing synchronized transfers. These tactics are enumerated

in the arc-flow formulation where variables represent passenger flows in the network. The offline model

is tested on instances with many transfer stops from a real large-scale dataset from the city of Laval. We

implement two online stochastic optimization (OSO) algorithms using the offline arc-flow formulation in a

stochastic, event-based dynamic environment with a rolling control horizon. Predictions of future states of

the PT system are integrated using both real-time data and historical data made available by the “Société de

Transport de Laval” (STL). To the best of our knowledge, we make the following contributions:

• Designing an arc-flow formulation that enumerates all control tactics for the real-time PT transfer

synchronization problem.

• Implementing online stochastic optimization algorithms for the transfer synchronization problem for

the first time and comparing their performances.

• Testing on 29 lines from a dense PT network with real-time smart card and GPS data. In real-time,

solving large instances that contain entire bus lines and multiple transfer stops while considering all stops

as control points.
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2. Literature Review
Transfer synchronization has been discussed in multiple literature reviews on PT (Ibarra-Rojas et al. (2015),

Liu et al. (2021), Gkiotsalitis and Cats (2021)). Gkiotsalitis et al. (2022) present a review of transfer syn-

chronization during the real-time control phase, which includes at-stop control such as hold or skip-stop,

inter-stop control such as speedup, or other types of control such as adding vehicles (Eberlein et al. (1999)).

2.1. Hold Tactic

The bus hold tactic is to make the vehicle wait at a specific stop for a predetermined amount of time. This

can result in reduced operating speed and increased travel or waiting times for passengers. The literature

suggests that the hold tactic, either alone or in combination with other tactics, is the most effective and

easiest to implement (Ibarra-Rojas et al. (2015)). The impact of hold can be further improved by using

many control stops while considering future predictions. Cats et al. (2012) demonstrate that if all stops are

control points, then the propagation of disruptions is limited by control measures distributed throughout

the entire line. Furthermore, Berrebi et al. (2018) compare various hold strategies for maintaining headway

stability, both from the literature and from the industry, using historical AVL (Automatic Vehicle Location)

and APC (Automatic Passenger Counter) data. The study demonstrates that predictive methods can stabilize

headways, but at the cost of increased hold times. Additionally, the study found that the performance of

predictive methods improves as prediction accuracy increases.

The hold tactic can be used to ensure successful planned transfers. Ting and Schonfeld (2007) apply the

hold tactic using real-time bus location data to ensure that transfers synchronized at the planning phase

take place. The method is tested on an artificial network with three transfer points. Chung et al. (2020) also

apply hold times to protect planned transfers and wait for delayed buses. The authors take into account

the stochastic nature of travel times and model stochastic passenger arrivals. The model is tested using

two transfer points. Finally, Daganzo and Anderson (2016) propose a dynamic model for the hold tactic to

synchronize transfers in a multimodal transportation network. The approach is tested using simulations on

four bus instances with a total of fifteen transferring passengers.

Recent research has focused on the use of real-time passenger data, but testing instances have remained

small in size. In a study by Kieu et al. (2016), transfers between a main line and a feeder line are syn-

chronized in real-time at a single stop using dynamic predictions of passenger transfer demand. The study

uses historical data on passenger origin/destination pairs and real-time information on smart card usage.

Gavriilidou and Cats (2019) test two hold tactic strategies on a high-frequency bus line to reconcile service

regularity with transfer synchronization. Real-time passenger demand is integrated using bus occupancy or

smart card validation data from the tramway network of The Hague. The tests are conducted using Bus-

Mezzo, a traffic simulation model, on two lines with two transfer stops and a total of five control stops.
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2.2. Skip-stop and Combined Tactics

The literature also explores the use of real-time skip-stop tactic. While this tactic can reduce travel times, it

may inconvenience passengers who wish to board or alight at skipped stops, particularly for low-frequency

bus lines. Hadas and Ceder (2008) introduce the concept of transfer segments, which are consecutive stops

where two vehicles can exchange passengers. The authors present a dynamic programming model that min-

imizes total passenger travel time by applying hold and skip-stop tactics. They test it on an artificial network

with three bus lines and fourteen transfer segments. Later, Ceder et al. (2013) develop a mixed-integer

program running in exponential time using the hold and skip-stop tactics for the transfer synchronization

problem. The model is tested on an artificial network consisting of three bus lines and fourteen transfer

segments. Passenger and transfer demands are considered known and are deterministic.

In recent years, an increasing number of articles uses simulation to address the transfer synchroniza-

tion problem. Guevara and Donoso (2014) combine the skip-stop and hold tactics in a rule-based method

with polynomial running time. They use microsimulation to evaluate the performance of different rules for

applying tactics at a single transfer stop with high ridership. They use historical data on passenger demand.

Manasra and Toledo (2019) develop an event-based simulation using a rolling prediction horizon. Each

re-optimization considers only one prediction of the state of the PT network and includes approximately

forty variables. The optimization model minimizes total passenger travel time by combining the hold and

speedup tactics. The running times for a horizon of three stops and three buses average 1.25 seconds. The

authors test the model on a network with three lines and three transfer stops.

2.3. Online Stochastic Optimization Algorithms

The literature on stochastic programming initially concentrated on offline or strategic-phase problems due

to the high computational costs involved (Shapiro and Philpott (2007), Birge and Louveaux (1997), Kall and

Wallace (1994)). Nowadays, it is deemed essential to consider uncertainty to achieve practical and relevant

results (Powell (2019)). Uncertainty is often modelled by multiple scenarios of the variables describing

future states of the system. This approach provides more robust solutions and accounts for the gradual

reveal of new information. Statistical solutions are obtained by generating scenarios on future states as

demonstrated in the Sample Average Approximation method by Kleywegt et al. (2002). By solving the

offline model for multiple scenarios and computing averages over scenarios, Shapiro (2013) improves the

solutions of their online algorithm with predictions from Kleywegt et al. (2002). Algorithm EXPECTATION

(E), introduced by Chang et al. (2000), is not well-suited for online applications due to its time-consuming

nature and because it distributes optimizations across requests under time-constraints.

As stochastic optimization algorithms that use sampling require larger sample sizes to improve accuracy

(Bent and Hentenryck (2004)), some studies have focused on improving the efficiency of such methods.

Bent and Van Hentenryck (2004) introduce Algorithm CONSENSUS (C) to address the issue of applying
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E in real-time. Algorithm C chooses the statistically best decision over several scenarios. To improve this

work, Bent and Hentenryck (2004) introduce Algorithm REGRET (R), which aims to select a decision that

performs reasonably well across all scenarios. Hentenryck and Bent (2009) provide an extensive overview

of such methods and their applications. Other studies reduce the sample size by generating more relevant

scenarios and considering historical data (Philpott and de Matos (2012), Lin et al. (2013), De Filippo et al.

(2019)).

2.4. Research Gap

Many articles in recent literature focus on a single or a small number of transfer points. Passenger demand

is often generated using an average arrival rate instead of using real historical data. Additionally, the use

of real-time data is typically limited to AVL and APC, with other data sources only being used in offline

approaches. The use of smart card data in real-time provides accurate information on passenger demand

and enables improved predictions of future demand. However, this information is rarely used in the litera-

ture. Finally, the application of OSO algorithms has not been investigated for the transfer synchronization

problem.

The rest of this article is organized as follows. Section 3 presents the offline arc-flow formulation for

the transfer synchronization problem. Section 4 describes the implementation of OSO algorithms based on

the offline model. Section 5 presents the case study used to test the methodology, a sensitivity analysis of

the models, and the results of all experiments. Finally, in section 6 we present our conclusion, including a

discussion of the results and potential future works.

3. Offline Model
An arc-flow model is formulated for the offline transfer synchronization problem using control tactics. The

model minimizes total passenger travel time by improving transfer times, while also constraining deviations

from the schedule. This model is a continuation and improvement of previous work by the authors (Kolcheva

et al. 2024), refining the mathematical formulation by reducing the number of variables and computational

times.

3.1. Arc-flow Formulation

The arc-flow formulation integrates all tactics into time-expanded graphs. The model includes a main line

where tactics can be applied and feeder lines that are fixed. A control horizon is considered, ranging from a

few stops to the entire main line. Unlike in the literature, all stops are control stops, allowing tactics to be

implemented at any stop or between any two stops. This approach enables more efficient control.

The time-expanded graphs in this study use a time-space representation. Each node is associated with

a stop and a specific time. Alighting (resp. boarding) passengers are represented using a negative (resp.

positive) exogenous flow. Transfers to and from feeder lines are also represented by nodes with exogenous
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Figure 1 Mock example of a graph construction. Left-no tactics, right-with tactics.

flows and time stamps. To represent waiting times and travel times between stops, arcs are constructed

between nodes, with the weight of each arc equal to the time difference between its origin and destination

nodes. Passengers who miss their bus will wait at the stop for the next one. The implementation of hold

tactics is limited to waiting times between existing nodes, represented by arcs in the graphs. This design

choice greatly reduces the number of possible values for hold times and eliminates the need for additional

nodes. If a speedup tactic is implemented, an additional ’faster’ arc with an earlier node at the next stop will

be created, resulting in multiple possible paths for each vehicle. If a skip-stop tactic is used, an arc without

the possibility for passengers to board and alight the vehicles is added.

Figure 1 illustrates the process of constructing a graph with a mock example. The arcs are labeled with

the number of passengers using them, if non-zero. For the sake of clarity, arrival and departure nodes are

slightly offset on the y-axis. The optimization model uses the bold black arcs in the solution, while the

grey arcs represent all other possible paths. Exogenous flows are shown on the nodes. This mock example

includes two vehicles and three stops in the control horizon. In the ’no tactics’ case (left), two passengers

miss the first bus at ’stop 1’ and wait for the following bus. At ’stop 2’, a transferring bus arrives too late

causing two passengers to miss it. As a result, they are unable to catch another bus within the control horizon

(as indicated by the red dotted arrow). In the case with tactics (right), additional arcs are added to create

more possible paths for both buses. Some hold times are implemented to minimize the total passenger travel

time by enabling passengers to catch their buses.

After the time-expanded graphs integrating all possible tactics are constructed, they are used as inputs for

a minimum cost flow problem.

3.2. Mathematical Formulation

The following assumptions are made for the offline model. Street conditions allow the implementation of

the speedup tactic between stops. When faced with multiple choices, passengers choose the fastest route.
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Table 3.1 Sets, parameters and variables used in the mathematical formulation.

Sets
N b∈B, v ∈Nsink set of nodes with s the source node and t the sink node.
N - set of nodes (transfer or not) with negative exogenous flows, not including t
A set of arcs (u,v)
B set of buses
S set of stops
As

b b∈B, s∈ S set of arcs for the bus b between stops s and s+1
ANv

b b∈B, v ∈N - ANv
b is the set of arcs passengers wishing to alight at node v take to board the bus b.

There is one arc per passenger
AMv

b b∈B, v ∈N - AMu
b is the set of arcs passengers wishing to alight at node v take to board the bus b,

after missing the previous bus. There is one arc per passenger.
Parameters
cuv (u,v) ∈A passenger flow capacity on arc (u, v)
wuv (u,v) ∈A travel time between nodes u and v.
fv v ∈N exogenous passenger flow at node v
gv v ∈N bus departures or bus arrivals at node v (gv = 0,∀v ̸= s, t)
p p≥ 0 additional waiting time perceived by passengers for waiting out

of bus compared to waiting in bus.
Variables
xuv (u, v)∈A xuv ∈N, passenger flow on arc (u, v)
yuv (u, v)∈A binary variable for the bus flow on arc (u, v)
zuv (u, v)∈A zuv ∈N, indicator variable equal to xuv if yuv=0, and 0 otherwise

Passengers arrive shortly before the scheduled arrival time of buses because they have access to real-time

information. Passengers are informed about the use of skip-stop tactics prior to the first skipped stop. If

passengers are unable to alight due to a skip-stop tactic, they can get off at the nearest stop and walk to their

intended stop. Passengers who are unable to board a bus due to a skipped stop, as well as those who miss

their (transferring) bus wait for the next available bus.

The objective (1) minimizes total passenger travel time as perceived by passengers. The first part rep-

resents the total passenger travel time, while the second part describes the additional cost perceived by

passengers when waiting for a bus. Constraints (2) define the flow conservation for users. Constraints (3)

ensure that if passengers fail to board a bus, then they cannot alight from that bus. These passengers are

added to the flows of the bus they manage to board. These constraints also ensure that the solution’s flows

correspond to the actual origin/destination pairs of passengers. Constraints (4) ensure that each bus takes

only one possible path. The source node has a positive exogenous bus flow, while the sink node has a neg-

ative exogenous bus flow, both corresponding to the number of buses in the control horizon. Constraints

(5) ensure passengers can only travel between stops while aboard a bus. Constraints (6) allow the variables

zuv to measure the passenger out-of-bus waiting time. Constraints (7) define the bus flow variables and

constraints (8) ensure that passenger flows are non-negative.

Online Stochastic Optimization for Real-Time Transfer Synchronization in Public Transportation Networks

6 CIRRELT-2024-19



Objective

min
∑

(u,v)∈A

wuvxu,v +
∑

(u,v)∈A

wuvpzu,v (1)

Constraints

∑
(v,w)∈A

xvw−
∑

(u,v)∈A

xuv = fv,∀v ∈N \N -, v ̸= t (2)∑
(v,w)∈A

xvw−
∑

(u,v)∈A

xuv = fv +
∑

(u,w)∈ANv
b

(1−xuw)

−
∑

(u,w)∈AMv
b

(1−xuw),∀b∈B,v ∈N - (3)

∑
(v,w)∈A

yvw−
∑

(u,v)∈A

yuv = gv,∀v ∈N (4)

xuv ≤ cuvyuv,∀b∈B,s∈ S, (u, v)∈As
b (5)

xuv − cuvyuv ≤ zuv,∀(u, v)∈A (6)

yuv ∈ {0,1},∀(u, v)∈A (7)

xuv, zuv ≥ 0,∀(u, v)∈A (8)

4. Online stochastic optimization (OSO)
The offline model presented in the previous section does not integrate the dynamic and uncertain nature

of a PT network’s operations. We therefore formulate a corresponding online problem and implement it

in a dynamic environment. We propose two OSO algorithms (CONSENSUS and REGRET) to solve this

problem. We also implement Algorithm DETERMINISTIC and a PERFECT INFORMATION solution to

evaluate the performance of the OSO algorithms.

4.1. Real-time Data and Dynamic Environment

The offline model has information on real and planned travel times and dwell times, on bus schedules, cur-

rent bus delays, as well as on passenger and transfer demands. In contrast, real-time data only provides bus

Figure 2 Dynamic environment for the online application of the arc-flow model.
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schedules, current bus delays, passenger (and transfer) demand at past stops, as well as current bus occu-

pancy. Information on travel times and passenger flows is not available for stops that have yet to be visited,

and this information is gradually revealed each time a stop is reached. Additionally, real-time information

on passengers’ transfer demand and transfer stop choices is not available. This data is only obtained from

AFC (Automatic Fare Collection) systems after passengers have boarded their transfer bus and validated

their smart card. Therefore, we create a discrete-event dynamic environment allowing the gradual reveal of

real-time data at each stop along a bus line.

The dynamic environment, illustrated in Figure 2, allows the implementation of OSO algorithms. In this

environment, the system is re-optimized every time a bus on the main line leaves a stop (called the current

stop). During re-optimization, the state S describes the set of all buses (main and feeder lines), stops, and

passengers present within a certain control horizon h after the current stop. The first mainline stop in state

S after the current stop is denoted s0. An OSO algorithm is used to make decisions on tactics σs0 to use at

the stop s0. Tactics include hold for a transfer or for the scheduled departure time at s0, speedup between

the current stop and s0, a combination of hold and speedup tactics, or skip-stop s0. The speedup tactic is

not allowed when the travel time between two stops is too short (the driver would not have enough time

to accelerate and decelerate safely). Note that the computation time for the OSO algorithms needs to be

reasonable to apply the speedup tactic between the current stop and s0. Then tactic σs0 is applied in the real

instance. Finally, the position of the bus, the number of passengers in the bus and waiting at stops after the

use of the tactic σs0 are updated. A new re-optimization begins when the vehicle leaves s0 and s0 becomes

the current stop. All future control tactics are re-evaluated at every re-optimization. The computation times

of the OSO algorithms must be low enough to allow real-time implementation.

4.2. Online Stochastic Algorithms: CONSENSUS (C) and REGRET (R)

This section describes two OSO algorithms. Algorithms C and R both model uncertainty by generating

multiple random scenarios using sampling. They are adapted from the literature (Bent and Van Hentenryck

(2004)) for the transfer synchronization problem.

Algorithm 1 provides the general framework for the OSO algorithms used in the dynamic environment.

The OSO algorithms benefit from the reveal of real-time data every time a new stop is reached. During

each re-optimization, the OSO algorithms only have partial knowledge of the state S, limited to the real-

time information available at the current stop. Therefore, a number N of scenarios are generated to model

travel and dwell times, passenger and transfer demands, and transferring bus arrival times for the stops in S.

The scenarios are sampled using available real-time information and historical data. The way scenarios are

sampled is specific to every algorithm. For each scenario ω, a graph Gω incorporating all possible tactics T

is built. The offline model defined in section 3.2 solves the problem corresponding to graph Gω and returns

a solution in the form of a sequence of tactics σ∗=(σ∗
si
)h−1
i=0 to apply at the stops in the control horizon h.
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Algorithm 1 Online Stochastic algorithm
1: function ONLINE STOCHASTIC ALGORITHM(S,T,N,ALG)

2: score(σ)← 0, ∀σ ∈ T

3: repeat N times

4: ω← GENERATE SCENARIO(S,ALG)

5: Gω← BUILD GRAPH(ω,T )

6: σ∗← SOLVE OFFLINE MODEL(Gω)

7: score← UPDATE SCORE(Gω,σ∗,ALG, score)

8: return argmax
σ∈T

score(σ)

Considering this solution, each algorithm uses a specific function to update the scores of tactics in T . The

algorithms consider all scenarios and return the tactic with the highest score.

Algorithm C evaluates multiple scenarios and then returns the tactic that is optimal most of the time.

Whenever a tactic σ∗
s0

is optimal for stop s0, its score is increased by one (i.e., the function UPDATE SCORE

returns score(σ∗
s0
) += 1). The final score of a tactic is determined by the number of scenarios for which it

is optimal. Algorithm C then returns the tactic that is used most frequently across all scenarios. However, it

does not provide information on other tactics that perform similarly, even if slightly worse. Indeed, it does

not measure how well a tactic performs across all scenarios, and it does not recognize that a tactic may

never be optimal for any scenario but still be robust overall.

On the other hand, Algorithm R aims to select a tactic that performs well in all scenarios. Algorithm 2

describes how it updates the score of all tactics after considering each scenario. In its formulation for the

transfer synchronization problem, we evaluate the loss or ’regret’ of using sub-optimal tactics at the first stop

in the control horizon, while keeping the optimal tactics for the following stops. The ’regret’ value in this

context represents the additional travel and wait times experienced by passengers due to the change in tactics

at the first stop. For each tactic σ ̸= σ∗
s0

, the ’regret’ value of σ for the scenario ω is equal to the increase in

the objective function resulting from switching from the optimal sequence of tactics σ∗ to the sub-optimal

sequence σ′=(σ,σ∗
s1
, ..., σ∗

sh−1
). To compute ’regret’ values, the current bus in the horizon is restricted to

only one possible path corresponding to the tactics in the solution σ′. This effectively fixes all bus flow

variables and constrains passenger flows to a single possible path. The problems solved for each tactic are

much smaller compared to the problem containing all possible paths for scenario ω. Furthermore, the same

underlying graph Gω is used to compute all ’regret’ values. This allows the evaluation of the performance of

all tactics without a significant increase in computation time. Finally, Algorithm R returns the tactic with the

smallest ’regret’ across all scenarios. In this case, we use the negative of the ’regret’ values in order to align

with algorithm 1, which returns the argument of the maximum score. If a tactic performs very poorly on
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some scenario, it will accumulate a significant ’regret’ value and become non-competitive. Therefore, tactics

returned by Algorithm R should not perform badly on any scenario and tactics that perform similarly should

have close ’regret’ values. Implementing Algorithm R is more challenging than implementing Algorithm

C because it calculates a ’regret’ value for all tactics in each scenario, while Algorithm C only updates the

score of one tactic per scenario.

Algorithm 2 REGRET algorithm
1: function UPDATE SCORE(Gω,σ∗,R , score)

2: obj←GET OBJECTIVE VALUE(Gω,σ∗)

3: for σ ∈ T \ {σ∗
s0
} do

4: σ′← (σ,σ∗
s1
, ..., σs∗

h−1
)

5: obj′←GET OBJECTIVE VALUE(Gω,σ′)

6: score(σ)+ =(obj− obj′)

7: return score

4.3. PERFECT INFORMATION (PI) solution and Algorithm DETERMINISTIC (D)

This section presents two approaches using Algorithm 1 with only one scenario (N = 1). Both the PI solu-

tion and Algorithm D are implemented to evaluate the performance of the proposed OSO algorithms. First,

the PI solution is the implementation of the perfect information offline model in a dynamic environment

where decisions on tactics are made with knowledge limited to the stops in the horizon. The single scenario

used is the real state S and there is no uncertainty. The optimal tactic σ∗
s0

found by the offline model for

stop s0 is returned. When only the hold tactic is allowed, the offline model can solve large instances (three

consecutive buses for a main line with more than 80 control points, and many transferring stops and buses)

in real-time. When the speedup or skip-stop tactics are allowed, many more possible paths are created for

each bus. Solving instances with many transfers and three consecutive buses is not possible with the offline

formulation for lines with more than thirty control stops when speedup or skip-stop tactics are allowed.

This is why, the PI solution is used instead of the offline model to evaluate the performances of the OSO

algorithms implemented in this research. When only the hold is allowed, the performance of the PI solution

with a limited horizon of fifteen stops is very similar to the performance of the offline model with perfect

information and an unlimited horizon.

On the other hand, Algorithm D does not model uncertainty either. The single generated scenario ω uses

the mean historical values of all variables describing the state S and represents what the state of the system

is on average. The optimal tactic σ∗
s0

found by the offline model for stop s0 is also returned. Algorithm D is

designed to evaluate if sampling, used in Algorithms C and R, brings significant improvements compared
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to a deterministic algorithm. Note that it is easier to implement Algorithm D compared to Algorithms C

and R as it requires a single scenario using only historical data. It’s computation time is therefore lower.

More details on computation times are given in the next section.

5. Experiments
This section presents the case study used for the numerical experiments and presents a sensitivity analysis

for the OSO algorithms described above. Finally, results from tests made on 29 different lines in a dense

urban PT network are presented.

5.1. Case Study

The experiments are based on data provided by the Société de transport de Laval, a city in Canada with

a population of 436,000. The PT network of the STL includes 46 bus lines, many of which connect to

the Montreal subway network, and more than a thousand bus stops. Most passengers in this network use

phone applications to receive live updates on schedules and estimated time of arrival. The STL provided a

comprehensive dataset of bus routes, schedules, user ridership, and bus locations for a full month. This data

is collected in real-time from multiple sources including AFC and APC systems installed on all vehicles.

By using accurate smart card data and previous research on individual trip destinations (Trépanier et al.

(2007)), the STL provides all passenger origin/destination pairs and reconstructed multi-segment passenger

trips. This enables us to use real demand and real transfer flows in the experiments.

5.2. Scenario Generation

The data provided by the STL is used for testing as well as to generate scenarios on the future state of

the system used by the OSO algorithms. To efficiently generate scenarios, the full month of historical data

from the STL is pre-processed. Weekends and holidays are removed from the month of data. The remaining

days are divided into three working sets: training (80% of data), testing (10% of data) and validation (10%

of data). The training set is used to collect data on all variables that describe the state of the PT system,

including travel times between stops, dwell times at stops, the number of boarding and alighting passengers

at stops, the number of transferring passengers at stops, the number of transfers between lines, and headway

times for all lines. For every stop, each variable’s data is clustered based on the time of occurrence, resulting

in clusters corresponding to rush-hours or lower-ridership periods. Extreme data points are removed from

the clusters. Secondly, the testing set is used to test the scenario generation, and to conduct a sensitivity

analysis of the algorithms. To generate a scenario we require four inputs: a main line, a starting time, the first

stop to be considered in the scenario and a control horizon of h stops. For each stop in the horizon, travel

times, dwell times, and passenger (and transfer) demands are independently and randomly sampled from

the corresponding clusters. Feeder line delay information available at the starting time is used to generate

the arrival times of transfer vehicles in the horizon. The sampled data is used to form bus trips for the main
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Figure 3 Computation times per re-optimization for different control horizon lengths, algorithms and tactics.

line and to allocate passenger flows along the main and feeder lines, resulting in a scenario ω. Sampling

enables the generation of various random scenarios using the same inputs. Finally, the validation set is used

to conduct all numerical experiments.

5.3. Sensitivity Analysis

This section discusses the sensitivity of the OSO algorithms to changes in the control horizon length, the

price of out-of-bus waiting time for passengers and the number of scenarios at each re-optimization.

Figure 3 shows the average computation time per re-optimization in the dynamic environment for Algo-

rithms C and R when using various control horizon lengths. The re-optimization computation time includes

scenario generation, creating a time expanded graph for each scenario, computation times for the under-

lying problems and updating the state S. Computations are performed with twenty scenarios at each stop.

Algorithm D and the PI solution are not shown in this picture as they are faster than Algorithms C and

R, solving only one scenario per re-optimization. Computation time is linear with respect to the number of

scenarios, and the length of the control horizon when using the hold tactic alone or hold with skip-stop tac-

tics. However, when the speedup tactic is allowed, the computation time becomes exponential with respect

to the length of the control horizon. In particular, when all tactics are allowed, it becomes too large to allow

implementation in real-time for control horizons with more than twelve stops (when all stops are control

points). Computation times indicate that all algorithms can be executed in real-time for a control horizon

with ten stops which is sufficient for operational needs.

Figure 4 shows the performance of Algorithm R for different lengths of the control horizon and different

allowed tactics. When only the hold tactic is allowed, increasing the control horizon leads to less missed

transfers and improvements in total passenger travel time. For the cases with the speedup and/or skip-stop

tactics, the same phenomenon is observed up to a horizon of ten stops. For a horizon of twelve stops there
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Figure 4 Total passenger travel times and percentage of passengers with missed transfers for different

lengths of the control horizon for Algorithm R .

Figure 5 Total passenger travel times and percentage of passengers with missed transfers for different out-

of-bus waiting time costs for Algorithm R .

is a slight increase in passenger travel times compared to the case with a horizon of ten stops. In this case,

Algorithm R overuses the speedup and skip-stop tactics to try to catch up transfers at much later stops in

the scenarios. This can result in arriving at some stops before the scheduled time or before a transferring

bus. Similar results are observed for Algorithm D .
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Figure 6 Total passenger travel times and percentage of passengers with missed transfers for different

numbers of scenarios solved at each re-optimization with Algorithm R.

Figure 5 shows passenger travel times and the percentage of passengers with missed transfers for different

out-of-bus waiting time costs for Algorithm R. Tests are performed with a control horizon of ten stops.

There is an improvement in travel times and successful transfers when moving from a cost equal to one to

a cost of two. In this case, out-of-bus waiting times (associated with waiting for transfers) are prioritized

over time spent in-bus for passengers. However, for a cost greater than two, the model will make decisions

that minimize out-of-bus wait times by using larger hold times, many skip-stop or speedup tactics in the

generated scenarios. The ’mistakes’ made by Algorithm R are more costly in this case because the applied

tactics are more extreme. For example, let hold for two minutes be the optimal tactic to use at the first

stop for some scenario. Using any other tactic at this stop will result in missing a transfer and will induce

significant ’regret’ values for all other tactics due to the large out-of-bus cost. If there is no transferring

passenger in the real instance, the bus will wait for nothing and may miss future transfers. Therefore, a very

large out-of-bus cost deteriorates both passenger travel times and the number of successful transfers for

Algorithm R . This also suggests that some improvements can be made in the scenario generation.

Figure 6 shows passenger travel times for different numbers of scenarios solved for each re-optimization

with Algorithm R. Increasing the number of scenarios improves total passenger travel time and lowers the

percentage of passengers with missed transfers. However, these improvements stagnate between 20 and 30

scenarios.

Finally, Figure 7 shows passenger travel times when using a control horizon of ten stops and different

numbers of scenarios solved at each re-optimization with Algorithm C . Total passenger travel time and the

percentage of passengers with missed transfers decrease as the number of scenarios increases. For the case
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Figure 7 Total passenger travel times and percentage of passengers with missed transfers for different

numbers of scenarios solved at each re-optimization with Algorithm C.

with hold, skip-stop and speedup tactics, Algorithm C performs worse than the case without any tactics.

This is because using a tactic may be optimal for some scenarios but can result in significant time losses for

others. It is important to note that the scenarios used for each combination of tactics with a given number

of scenarios in Algorithms C and R are the same to allow the comparison of the performance of the two

algorithms. However, the scenarios differ between combinations of allowed tactics and between different

numbers of scenarios in the sensitivity analysis.

We conclude the sensitivity analysis by selecting a horizon of fifteen stops for tests that only allow

the hold tactic and a horizon of ten stops for all tests conducted with speedup and/or skip-stop tactics.

Additionally, twenty scenarios are used for all tests using Algorithms C and R . Finally, an out-of-bus cost

of two will be used in all following numerical experiments. As shown in Figure 3, this combination of

horizons and number of scenarios enables computation times per re-optimization that are generally under

ten seconds, making it sufficiently fast for real-time operations. Moreover, this combination of parameters

results in the greatest reduction in passenger travel time and in the percentage of passengers with missed

transfers across the sensitivity analysis.

5.4. Results

This section presents results from 29 lines and provides detailed information on experiments conducted

on two lines. Line 42 has a high frequency, a high occupancy and a high transfer demand. Line 33 has a

medium frequency, an average occupancy and many transfer stops.

Figure 8 shows detailed results from computations on instances from line 42. These results consider

more than 6500 passengers with close to 2000 transfers. Algorithm C has the worst performance, even
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Figure 8 Total passenger travel times and percentage of passengers with missed transfers for different

algorithms and tactics for line 42.

Note. The figure displays fifteen boxplots, each representing the transit times of individual passengers in minutes (as seen on the

left y-axis). Outliers, which account for 0.7 percent of passengers, are not shown for clarity. The y-axis on the right shows the

percentage of passengers who missed their transfer, calculated for each boxplot. The first boxplot represents passenger travel times

without any tactics. This is what happened in real life. The next four boxplots display passenger travel times when only the hold

tactic is allowed. The following four boxplots display the case where both the speedup and hold tactics are allowed. The following

boxplots illustrate the case where the hold and skip-stop are allowed. The final group of boxplots represents the case where all three

tactics are allowed. For each group of four boxplots, each box represents an algorithm used to compute optimal tactics. The first box

from the left represents the results for Algorithm C , followed by Algorithm D , Algorithm R and the PI solution. The mean for

each boxplot is written bellow it. A line representing the median and the mean of the ’no tactics’ case is drawn across all boxplots

to facilitate the comparison between cases.

performing worse than the ’no tactics’ case when applying the hold with skip-stop tactics. It does not take

into account that a tactic optimal for some scenarios may perform very poorly for other scenarios, leading

to implementing tactics that are sometimes very costly in the real instance.

Algorithm D consistently outperforms the ’no tactics’ case and Algorithm C , resulting in a significant

reduction in the percentage of missed transfers without any negative impact on passenger travel times.

For the hold tactic only case, the small increase in travel times caused by the hold tactic is offset by the

significant improvement in travel times for passengers who successfully make their transfer. As a result,

both the mean and median passenger travel times show improvements. Similar results are observed for the

cases with speedup and skip-stop tactics. The number of passengers with successful transfers improves the

most when all three tactics are allowed.
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Figure 9 Total passenger travel times and percentage of passengers with missed transfers for different

algorithms and tactics for line 33.

Algorithm R consistently outperforms the ’no tactics’ case, as well as Algorithms C and D. When com-

paring Algorithms D and R in the hold tactic only case, Algorithm R shows greater improvements in the

percentage of successful transfers, but the passenger travel times are slightly longer because Algorithm R

applies the hold tactic more frequently. The same observation applies to the hold with speedup tactics case

where the speedup tactic does not compensate for the time lost due to the hold tactic. The number of suc-

cessful transfers is further improved when using the hold tactic in combination with the skip-stop tactic. The

skip-stop tactic can be more effective than the speedup tactic in situations where congestion prevents the

use of speedup or when the dwell time at stops is longer. In the model, we do not allow for speedup tactics

when the travel time between two stops is too short, as the driver would not have enough time to accelerate

and decelerate safely. Finally, Algorithm R shows a slightly lower percentage of passengers with missed

transfers when all three tactics are employed. This demonstrates the potential of using available real-time

data for real-time synchronization.

Figure 9 presents results from computations on instances from line 33, considering around 1000 passen-

gers who transferred close to 250 times. For a medium frequency line, each successful transfer saves more

time compared to a high frequency line. Although the percentage of passengers with missed transfers for the

’no tactics’ case of line 33 is lower compared to line 42, the difference between the performances of Algo-

rithms D and R is more pronounced. Algorithm D cannot compensate for any poor decisions when only

the hold tactic is allowed. When both the speedup and skip-stop tactics are allowed, Algorithm D performs

better but still underperforms compared to Algorithm R. This demonstrates the advantage of modelling

the future using sampling. Additionally, it shows that the models are more effective on medium and lower
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frequency lines, or lines with fewer passengers. In this case, a small number of tactics can have a significant

impact on transferring passengers while inconveniencing fewer passengers onboard the buses. Algorithm

R has the best performance when both the hold and skip-stop tactics are allowed. However, when all three

tactics are allowed, there is a slight degradation in the results due to overusing tactics.

Table 5.1 Mean percentage of missed transfers and mean change in total passenger travel
time compared to the real case for 27 lines of the STL network.

Algorithm PI
Tactics Average D R Solution

Hold Passengers with missed transfers 4.21% 3.47% 1.62%
Reduction in total passenger travel time 1.53% 2.39% 4.21%

Hold& Speedup Passengers with missed transfers 4.81% 3.41% 1.50%
Reduction in total passenger travel time 1.27% 2.89% 4.78%

Hold& Skip-stop Passengers with missed transfers 5.02% 3.35% 1.48%
Reduction in total passenger travel time 0.50% 2.49% 4.31%

THE AVERAGE PERCENTAGE OF PASSENGERS WITH MISSED TRANSFERS FOR THE ’NO TACTICS’ CASE

IS 6.09%.

Tests were conducted on 27 additional lines from the STL bus network, using the same methodology

as in figures 8 and 9. The results are summarized in Table 5.1, and the detailed results are presented in

figures 10, 11 and 12 in the Appendix. Algorithm C is not included as it did not improve the performance

of the ’no tactics’ case. Algorithm R outperforms Algorithm D for all tactics, reducing both the percentage

of passengers with missed transfers and total passenger travel time. Moreover, Algorithm R mirrors the

behaviour of the PI solution. They both achieve a lower percentage of missed transfers for the hold with

skip-stop case compared to the hold with speedup case, at the cost of a smaller reduction in total passenger

travel time. Algorithm R’s performance is closest to that of the PI solution in the case with hold and skip-

stop tactics. There is no clear correlation between ridership and the percentage of passengers with missed

transfers.

6. Conclusion
Synchronizing transfers is a crucial aspect of network planning for PT operators. The reliability of transfers

is closely linked to the quality of service and the way passengers perceive a PT network. This research

proposes a novel approach to solving the real-time transfer synchronization problem using three tactics:

hold, speedup and skip-stop. First, we propose an arc-flow formulation that integrates all possible tactics and

limits the number of variables for the offline problem. A discrete-event dynamic environment is created to

simulate real-time operations. Two OSO algorithms are adapted to the transfer synchronization problem and

tested within the dynamic environment using historical data and available real-time information. Algorithm

C generates multiple scenarios at each iteration and selects the tactic that is optimal across most scenarios.

Algorithm R selects the tactic with the smallest regret value when summed across all scenarios. Both OSO
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algorithms have low enough computation times to allow for real-time implementation. To evaluate the

performance of the OSO algorithms we implement Algorithm D and a PI solution. Algorithm D generates a

single scenario representing the ’average’ future state of the system at each re-optimization. The study tested

the two OSO algorithms with all combinations of the three control tactics on 29 lines from a large-scale real

dataset provided by the STL. The results were compared to the ’no tactics’ case, to Algorithm D and to the

PI solution. Algorithm D showed improvement in total travel times, individual travel times, and the number

of successful transfers for any combination of tactics when compared to the ’no tactics’ case. Algorithm C

’s performance is hindered by its tactic selection process. Algorithm R outperforms both Algorithm C and

Algorithm D and can significantly improve the number of successful transfers while reducing passenger

travel times. The performance of Algorithm R is closest to that of the PI solution. The STL has a modern

PT network with abundant real-time information. Passengers receive live updates on estimated bus arrival

times and occupancy when using the transit application. This enables the implementation and use of those

algorithms in real life.

The quality of scenario generation greatly affects the performance of Algorithms C and R. Additionally,

computation times are limited in dynamic environments. Future research could focus on better scenario

generation techniques and on graph compression techniques to reduce computation times. Graph sizes could

also be reduced by decreasing the number of control stops while maintaining the same control horizon.

Finally, the study of a single main line could be expanded to include multiple lines in the bus network.
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Appendix

Figure 10 Total passenger travel times, percentage of passengers with missed transfers and total ridership

for different algorithms/cases using the hold tactic for 27 lines in the STL bus network.

Note. The lines are sorted by percentage of passengers with missed transfers in the ’No tactics’ Case.
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Figure 11 Total passenger travel times, percentage of passengers with missed transfers and total ridership

for different algorithms/cases using the hold and speedup tactics for 27 lines in the STL bus

network.
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Figure 12 Total passenger travel times, percentage of passengers with missed transfers and total ridership

for different algorithms/cases using the hold and skip-stop tactics for 27 lines in the STL bus

network.
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