CIRRELT

Bureau de Montréal

Université de Montréal
C.P.6128, succ. Centre-Ville
Mentréal {Québec) H3C 307
Tél - 1-514-343- 7575
Telécopie -1-514-343-7121

Bureau de Québec

Université Laval,

2325, rue de la Terrasse

Pavillen Palasis-Prince, local 2415
Québec (Québec) GIVOAG

Tél - 1-418-656-2073

Télécopie - 1-418-656-2624

CIRRELT-2024-2]

Parallel Meta-Heuristic Search

Teodor Gabriel Crainic

July 2024

kS i TRpT— = T ww
3 MGl u-r-uru- EF_“_ UQAM §ig e HEC MONTREAL ipfencordla S0 VADC “GidhecBE FEiaeca:

Parallel Meta-Heuristic Search

Teodor Gabriel Crainic*

Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation
(CIRRELT) and School of Management, Université du Québec a Montréal

Abstract. This chapter presents and unified and up-to-date overview of the parallel
meta-heuristics field. It synthesizes, classifies, and describes the main concepts and
general parallelization strategies meta-heuristics, including their instantiation for
neighbourhood-and population-based methods, recalls the main contributions to
the field, and identifies a number of open questions and research challenges. The
presentation is structured by a three-dimensional classification of design strategies
for parallel meta-heuristics: the number of levels indicating whether decomposition
is applied once only or recursively; the decomposition strategy reflecting the sources
of parallelism in meta-heuristics, algorithm, search space, or mathematical
structure; and the search strategy, given a particular level and decomposition
approach, defined by the number of processes controlling the search, the
communication and learning mechanism, and the diversity of the individual
methods involved and their initial solutions. Six major classes of parallel meta-
heuristics strategies are thus discussed: low-level decomposition of computing-
intensive tasks with no modification to the original algorithm, explicit
decomposition of the search space, independent multi-search, as well as
synchronous, asynchronous, and knowledge-creating cooperative multi-search.

Keywords: Parallel computation, meta-heuristic search, parallelization strategies,
algorithmic design taxonomy.

Acknowledgements. While working on the project, the author was Adjunct
Professor, Department of Computer Science and Operations Research, Université de
Montréal. The author gratefully acknowledges the financial support provided by the
Natural Sciences and Engineering Council of Canada (NSERC), through its Discovery
grant program, and by the Fonds de recherche du Québec (FRQ) through their
infrastructure grants.

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne refletent pas nécessairement la position
du CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: teodorgabriel.crainic@cirrelt.net

Dépdt légal — Bibliotheéque et Archives nationales du Québec
Bibliotheque et Archives Canada, 2024

© Crainic and CIRRELT, 2024

Parallel Meta-Heuristic Search

1 Introduction

This chapter is concerned with the very broad domain of approximate solution methods,
generally identified as heuristics, developed to address optimization problems of princi-
pally a combinatorial nature. More precisely, the chapter targets meta-heuristics, that
is, heuristics involving at least two solution methods, one of which guides the global
search for good solutions while avoiding the traps of local optima. Obviously, at least
one of the solution methods involved is heuristic. The meta-heuristic term designates a
very large array of neighbourhood (the term “trajectory” is also found in the literature)
and population-based algorithmic designs, as witnessed by this handbook and several
review /synthesis books, chapters and papers, e.g., [75, 1, 71, 96, 70, 69, 80, 16, 3, 120,
61, 17, 53, 92, 88, 62, 117, 81]. We include matheuristics [91] and hyper-heuristics [18]
into the large meta-heuristic solution-method class, but do not address heuristics based
entirely on exact solution methods, such as stopping early a Branch-and-Bound search
or rounding the continuous values of the optimal solution to a linear relaxation of an
integer program.

Two major goals characterize the development of meta-heuristics that take advantage
of parallel computing. Common to all parallel computing development efforts, the objec-
tive is to solve larger problem instances, faster. That is, address larger problem instances
than what is achievable by sequential methods, and do this in reasonable computing
times. A second objective characterizes approximate solution methods and it concerns
what some authors call the robustness of the method, that is, its capability to offer a con-
sistently high level of performance over a wide variety of problem settings and instance
characteristics. The algorithmic design of the parallel meta-heuristic search, also called
parallelization strategy, correctly coded and implemented on an appropriate computing
infrastructure, is core to achieving these objectives.

Indeed, the literature shows that, in appropriate settings, parallel meta-heuristics are
more robust than sequential versions, while also generally requiring less extensive and
expensive parameter-calibration efforts. The literature also emphasizes that a somewhat
limited number of parallelization strategies may be identified, independently of their
particular problem settings, initial sequential meta-heuristics, and implementation de-
tails, It also shows that most of these parallelization strategies yield new algorithms with
behaviours different from those of their sequential counterparts.

The objective of this chapter therefore is to present an unified and up-to-date overview
of the parallel meta-heuristics field. It synthesizes, classifies, and describes the main con-
cepts and general strategies for the design of parallel meta-heuristics, including their
instantiation for neighbourhood- and population-based methods, recalls the main contri-
butions to the field, and identifies a number of open questions and research challenges.
The chapter focuses on the design of parallel meta-heuristic search algorithms, rather
than on their implementation using particular coding languages and computing architec-

CIRRELT-2024-21

Parallel Meta-Heuristic Search

tures. It does, however, identify new trends, challenges, and opportunities that some of
the new computing-platform developments bring to the field.

The chapter updates and enhances the material presented previously, in particular
Crainic [29, 30]. The interested reader may further consult a number of surveys, tax-
onomies, and syntheses, e.g., [7, 35, 47, 36, 2, 27, 34, 94, 28, 120, 38, 103, 46, 29, 56, 113,
33, 4].

The chapter is organized as follows. Section 2 Meta-heuristics and Parallelism - A
Taxonomy introduces an enhanced classification of design strategies for parallel meta-
heuristics, together with a discussion of the potential for parallel computing in meta-
heuristics and a brief description of performance indicators for parallel meta-heuristics.
Section 3 Algorithm-based Parallelization Strategies addresses so-called low-level approaches
focusing on accelerating computing-intensive tasks without modifying the basic algorith-
mic design. Methods based on the explicit decomposition of the search space are treated
in Section 4 Fxplicit Search-Space Decomposition, while strategies based on the simulta-
neous exploration of the search space by several independent meta-heuristics constitutes
the topic of Section 5 Implicit SSD - Independent Multi-search. General cooperation
principles are discussed in Section 6 Cooperative Search and are detailed in Sections 7
Synchronous Cooperation and 8 Asynchronous Cooperation. Section 9 Knowledge Cre-
ation in Cooperative Search is dedicated to strategies aimed at enhancing the performance
of cooperation, by taking advantage of the exchanged data to create new information rel-
evant to both the cooperating solvers and the global search. We conclude in Section 10
Conclusions.

2 Meta-heuristics and Parallelism - A Taxonomy

Parallel computing for meta-heuristics means decomposing the total task of finding the
“best” solution to a given problem, that is the global computing work associated to the
search for that solution, into smaller/simpler computing tasks. These tasks are then
assigned to a number of available processors, to be performed concurrently (as much as
possible, hopefully completely given sufficient computing resources). In the following, we
refer to the process which performs a given task (one process per task), as well as to the
solver, that is the solution method, associated to that process.

This section introduces the taxonomy used to define, describe, and analyze the par-
allelization strategies for meta-heuristics and the resulting main classes of parallel meta-
heuristics proposed in the literature. The taxonomy unifies and enhances previous ver-
sions, in particular Crainic, Gendreau, and Toulouse [40], Crainic and Hail [34], and
Crainic [29, 30]. This classification is sufficiently general to encompass the principal par-
allel meta-heuristic classes, while avoiding a level of detail incompatible with the scope

2 CIRRELT-2024-21

Parallel Meta-Heuristic Search

and dimension limits of the chapter. We conclude the section with a brief discussion of
performance indicators for parallel meta-heuristics.

The taxonomy is structured along three main dimensions, compactly presented in
Figure 1. The Number of Levels indicates whether decomposition is applied once only
or recursively. Most parallel meta-heuristics found in the literature implement a single-
level decomposition, noted 1L, that is, the decomposition and search strategy are defined
for the complete problem, yielding a number of tasks to be addressed concurrently (at
each iteration of the parallel meta-heuristic). Multiple levels (nL) of decomposition are
defined when one or several of those tasks may be further decomposed, the number of
levels corresponding to the depth of the resulting task tree. Thus, for example, a 2L
strategy means some initially obtained (first level) tasks are further decomposed, while
a a 3L strategy implies a further decomposition of some of the 2nd-level tasks.

Number of Levels

nL = Multiple Levels (Tree of trees)
1L = Single Level

Independent Cooperation 1C=Single pC = Multiple

N 7

Partition Overlaps Implicit

Explicit SPSS

Communications SPDS

Search Space
and Learning

Math Prog Attributes

MPSS
MPDS

Mathematical Structure

Decomposition Search Strategy
Figure 1: Parallel meta-heuristic taxonomy

The Decomposition dimension, detailed in Section 2.1 Decomposition strategies: Sources
of Parallelism, reflects the sources of parallelism in meta-heuristics, in other words, what
is decomposed in order to obtain the tasks to be addressed simultaneously. The decom-
position may concern either the Algorithm (Figure 1) being parallelized, or the Search
Space one associates to the formulation, or the Mathematical Structure of the problem
and formulation.

The Search Strategy dimension focuses on the main parallelization strategies for meta-

heuristics, given a particular level and decomposition approach. (Notice that previous
versions of the taxonomy include this dimension only, the other two dimensions being ad-

CIRRELT-2024-21 3

Parallel Meta-Heuristic Search

dressed separately.) Section 2.2 Search strategies presents the three components defining
a parallel meta-heuristic according to 1) Control of the global search with respect to the
number of processes involved (one or multiple); 2) Communication and Learning, that
is, how inter-process communications are handled Synchronous or Asynchronous) and
whether those communications are used to gather information and build search-guidance
Knowledge; and 3) Diversity, i.e., how the algorithms targeting the individual tasks
are individually defined and instantiated: Same or Multiple initial Points and Same or
Different Search algorithms.

The parallel meta-heuristic design and literature survey and synthesis of the next sec-
tions is based on this taxonomy. The characterization of the methods and contributions
is captured through labels of the general form L/Dec/C/CEL/Div, where

L: Number of levels

Dec = Decomposition approach (see Section 2.1 Decomposition strategies: Sources of
Parallelism)
A: Algorithm
SE: Search Space explicit decomposition
SI: Search Space implicit decomposition - Independent multi-search
SC': Search Space implicit decomposition - Cooperative multi-search
MM : Mathematical structure decomposition - Mathematical programming

MA: Mathematical structure decomposition - Attributes
Search Strategy (see Section 2.2 Search strategies):

C = 1C, pC: Type of control of the search strategy
Cé6L = S, A, K: Communication and learning mechanism
D = SPSS, SPDS, MPSS, MPDS'" Solver and starting-point diversity

2.1 Decomposition strategies: Sources of parallelism

Parallel/distributed /concurrent computing means that several processes work simultane-
ously on several processors to address a given problem instance, aiming to identify the
best possible solution for that instance. Parallelism thus follows from a decomposition
of the total computational load and the distribution of the resulting tasks to available
processors, which run in parallel, possibly exchanging information. According to how
“small” or “large” the tasks are in terms of algorithmic work or search space, the paral-
lelization is called fine- or coarse-grained, respectively. The decomposition may concern
the algorithm, the search space, or the problem and formulation mathematical structure.

4 CIRRELT-2024-21

Parallel Meta-Heuristic Search

Also called “functional parallelism”, algorithm-based decomposition focuses on computing-
intensive parts of the algorithm. The goal is to separate the corresponding work into a
number of tasks (processes or threads), working on the same data or on dedicated parts
of the data, which are then allocated to different processors. The concurrent execution
of the innermost loop iterations, e.g., evaluating neighbours, computing the fitness of
individuals, or having ants forage concurrently, provides the main source of functional
parallelism for meta-heuristics. In fact, this is often also the only source of readily
available parallelism in meta-heuristics. Indeed, the execution of most other steps in a
meta-heuristic algorithm depends on the status of the search, e.g., what has been per-
formed so far and the values of the decision variables, which requires the computation
of the previous steps to be completed. Even when this may be performed in parallel,
the corresponding computational tasks must be synchronized to wait for the slowest one
to complete, which generally yields significant delays, making such parallel computation
non relevant. Section Algorithm-based, Low-Level Parallelization Strategies reviews the
main developments and trends based on this decomposition approach.

Search space separation (SSD) constitutes a second major class of decomposition
strategies, as parallelism for meta-heuristics may also be found in the domain of the
problem formulation or the corresponding search space (for brevity reasons and without
loss of generality, the term search space is used in this chapter).

The fundamental idea of the explicit SSD (the term “domain decomposition” is also
found in the literature) is to create as many tasks as the number of resulting subspaces.
Each task then addresses the original problem/formulation on its particular subspace.
Notice that, theoretically, the parallelism present in the search space is as large as the
space itself, provided a processor is assigned to each solution. Obviously, this is not
practical. Hence a coarser decomposition is used in most cases of interest, and an exact
or heuristic search method has to be assigned to each task.

As discussed in Section 4 Ezplicit Search-Space Decomposition reviews the main de-
velopments and trends based on this decomposition approach. The explicit SSD may
proceed through a partition of the space, i.e., there is no intersection between any two
subspaces created, or through a separation that allows overlaps between two or more
subspaces. Both cases raise a number of issues with respect to the overall meta-heuristic
search strategy, e.g., how to separate to create the tasks; how to create a complete solu-
tion out of the ones obtained on each subspace; how to allocate resources for an efficient
exploration avoiding, for example, regions with poor-quality solutions. Trade offs must
be examined and decided. Thus, for example, partitioning may simplify the treatment
of some of these issues, e.g., reconstruction of complete solutions, due to its assurance
that no data dependencies exist between the optimization processes of the various tasks,
which may therefore be fully performed in parallel, yielding unique solutions for each sub-
space. Partitioning may hinter exploration, however, as solution transformations (e.g.,
moves and combinations of individuals) performed close to subspace boundaries overlook

CIRRELT-2024-21 5

Parallel Meta-Heuristic Search

possibilities involving solutions on the “other” side of the border. Allowing overlapping
subspaces addresses this flaw, but requires a more careful construction of a complete
solution out of partial solutions involving a certain number of the same variables with
possibly different values.

Implicit SSD is performed through concurrent explorations of the search space by sev-
eral solvers, which could implement the same solution method but start their exploration
from different points of the search space. The final complete solution to the problem at
hand is then selected when all solvers have completed their explorations. Implicit SSD
belongs to the larger class of multi-search meta-heuristics (the terms “multiple walks” is
also to be found in the literature), which also includes the algorithms produced through
the attribute-based decomposition of the mathematical structure of the problem and
model introduced below.

Two classes of implicit SSD strategies are defined. Independent search involves sev-
eral solvers that do not exchange any information, except at the very end when the
best solution is extracted. As discussed in Section 5 Implicit SSD - The Independent
Multi-search, independent search strategies are very easy to implement and may display
interesting performances. They are generally outperformed, however, by well-designed
and implemented parallelization strategies based on Cooperation. Cooperative search is
based on inter-process communication and information-exchange mechanisms. A rather
broad spectrum of cooperation strategies may be defined, from the simple exchange of
the current best solutions, to learning mechanisms based on exchanged data that yield
new information to guide the global and individual searches. Cooperative strategies are
at the core of the most successful developments in parallel meta-heuristics and are the
object of the last three sections (preceding the Conclusions section).

Parallelism may also be obtained by decomposing along the mathematical structure of
the problem and formulation. The tasks generated through such mathematical structure-
based decomposition strategies address partial problems (called subproblems by a num-
ber of authors) obtained either through mathematical programming or attribute-based
heuristic approaches. Mathematical-programming decomposition implicitly defines how
a complete solution is built out of partial ones. In the latter case, some tasks work on
the partial problems corresponding to the particular sets of attributes defined in the de-
composition, while others combine the resulting partial solutions into complete solutions
to the original problem. As described in Section 9 Knowledge Creation in Cooperative
Search, attribute-based mathematical structure decomposition belongs to the class of
multi-search strategies and is largely based on cooperation.

6 CIRRELT-2024-21

Parallel Meta-Heuristic Search

2.2 Search strategies

We build upon and enhance the classification of [34], generalizing that of [40], to describe
the parallel search strategies for meta-heuristics and their characterizations in terms of
how the global problem-solving parallel search is controlled, how information is exchanged
among processes creating, eventually, new information, and the diversity of searches
involved.

Control makes up the first characteristic (called “Search Control Cardinality” in pre-
vious versions). It specifies whether the global search is controlled by a single process or
by multiple processes, which may collaborate or not. The two categories are identified
as 1-control (1C) and p-control (pC), respectively. A process involved in the control of
the global parallel search is named controller or master. The term collegial is used to
designate a multiple-process control with collaborating masters, that is, when the con-
trolling masters exchange information while the search proceeds and collectively steer
the search path and determine its termination moment. (Recall that this chapter ad-
dresses the design of parallel meta-heuristics, not their implementation on particular
computing-infrastructures, which always identifies a particular process in charge of dis-
tributing the initial work and collecting the appropriate information to determine that
the search ends.)

The second search characteristic, Communications and Learning, addresses the issue
of information exchanges among processes and the utilization of those exchanges to build
new information, which may be used to control and guide the search (this characteristics
was previously named “Search Control and Communications”). Two types of communi-
cations are generally identified in parallel computing: synchronous and asynchronous. In
the former case, all concerned processes stop and engage in some form of communication
and information exchange at moments exogenously determined (number of iterations,
time intervals, specified algorithmic stages, etc.), either hard-coded or imposed by a con-
trol (master) process. In the latter case, each process is in charge of its own search and
of establishing communications with other processes according to its own internal rules
and status.

Learning in this context refers to the integration of mechanisms to 1) store all or
part of the information exchanged, 2) derive/extract additional information from these
exchanges and the stored data, and 3) use this enhanced knowledge to build a global view
of the status of the parallel search and guiding information for the individual searches
involved and, hence, for the global search.

Three categories are defined to reflect the communication type and the learning ca-
pabilities offered by a search strategy:

e Synchronous (S) communications with no learning (“Rigid Synchronization”, RS,

CIRRELT-2024-21 7

Parallel Meta-Heuristic Search

previously)
e Asynchronous (A) communications with no learning (“Collegial”, C, previously)

e Knowledge (K; replaces the previous “Knowledge Synchronous”,; KS, and “Knowl-
edge Collegial”, KC, categories)

More than one solution method or variant may be involved in a parallel meta-heuristic,
and the methods may be meta-heuristics or exact. The third component of the Search
Strategy dimension of the taxonomy describes the degree of Diversity of the global par-
allel search with respect to the nature of the methods involved and the corresponding
starting solutions, the same or different in both cases (this dimension was identified as
“Differentiation” in previous versions). Note that one characterizes two solvers as “dif-
ferent” even when based on the same methodology (e.g., Tabu Search, TS, or Genetic
Algorithm, GA), provided they use different search strategies in terms of components
(e.g., neighbourhoods or selection mechanism) or parameter values. The four classes are:

SPSS: Same initial Point/Population, Same search Strategy

SPDS: Same initial Point/Population, Different search Strategies;

MPSS: Multiple initial Points/Populations, Same search Strategies;

MPDS: Multiple initial Points/Populations, Different search Strategies

where “point” relates to neighbourhood-based single-solution methods, while “popula-
tion” is used for population-based ones.

2.3 Performance measures

The traditional goal when designing parallel solution methods is to reduce the time re-
quired to “solve”, exactly or heuristically, given problem instances or to address larger
instances without increasing the computational effort. For exact solution methods run-
ning until the optimal solution is obtained, this translates into the well-known speedup
performance measure, computed as the ratio between the wall-clock time required to solve
the problem instance in parallel with p processors and the corresponding solution time of
the best-known sequential algorithm. A somewhat less restrictive measure replaces the
latter with the time of the parallel algorithm run on a single processor. See Barr and
Hickman [10] and Schryen [114] detailed discussions of this issue, including additional
performance measures.

8 CIRRELT-2024-21

Parallel Meta-Heuristic Search

Speedup measures are difficult to define, however, when the optimal solution is not
guaranteed, including when the exact method is stopped before optimality is reached,
which is obviously the case for meta-heuristics, in all senses of the term. Moreover,
most strategies designing parallel meta-heuristics yield solutions that are different in
value, composition, or both, from those of the sequential versions (when they exist).
Hence, other than the acceleration of the search and the computational efficiency given
the computing power committed to it, an equally important objective for parallel meta-
heuristics is to what extend they outperform their sequential counterparts in terms of
solution quality or, at least, support the claim of quality through a broader exploration
of the search space. In other words, the parallel method should not require a higher
overall computation effort than the sequential method or should justify the effort by
higher quality solutions.

Search robustness is another characteristic increasingly expected of parallel heuristics.
Here, robustness is defined with respect to a problem setting, in the sense of providing
“equally” good solutions to a large and varied set of problem instances, without excessive
calibration, neither during the initial development, nor when addressing new instances.
As discussed by Crainic and Toulouse [35, 36], multi-search methods, particularly those
based on cooperation, are noticeable in this respect. They display a behaviour quite
different from those of the sequential methods involved, and offer enhanced performances
compared to sequential methods and other parallelization strategies in terms of solution
quality and method robustness. They are thus generally acknowledged as proper meta-
heuristics in their own right [2].

3 Algorithm-based Parallelization Strategies

Functional-parallelism-based strategies, exploiting the potential for task decomposition
within the inner-loop computations of meta-heuristics, aim to accelerate the search with-
out modifying the algorithmic logic, the search space, and the behaviour of the sequential
meta-heuristic. Hence the label low level often associated with such strategies, and the
still prevalent utilization as the lowest level of hierarchical parallelization strategies, or
when addressing problem settings requiring a significant part of the computing effort to
be spent in inner-loop algorithmic components or in function evaluations. The utilization
of “recent” computing elements increasingly ubiquitous within most computers, such as
the graphical processing units (GPU), is reviving the interest in this class of strategies,
as impressive reductions in computing times may be obtained.

Most low-level parallel strategies belong to the 1/A/1C/S/SPSS class, and are usually
implemented according to the classical master-worker parallel programming model (the
term “slave” is also abundantly found in the literature, particularly when the task con-
cerns computing only, without any search). Typically, the exploration is initialized from

CIRRELT-2024-21 9

Parallel Meta-Heuristic Search

a single solution or population, and the “master” process executes the single-control
sequential meta-heuristic, decomposing computation-intensive tasks into subtasks dis-
patched to “worker” processes. Worker subtasks are obtained from the same unique
point, solution or population, and are essentially of the same type. Hence, the SPSS
characterization of such strategies. Workers receive their tasks from the master, execute
them in parallel, and return the results to the master which, once all the results are
in, resumes the normal logic of the sequential meta-heuristic. The master has thus a
complete view and control of the search status and execution; it decides the work alloca-
tion for all other processes and initiates communications. No communications take place
among worker processes. Figure 2 illustrates this strategy (for a very limited number of
processes, as in all figures in the chapter).

Perform meta-heuristic

l

Select & decompose the task
Distribute subtasks to workers

— T

Execute Execute Execute
received work received work received work
Return best results Return best results Return best results

L

Recuperate worker results

Master process

Worker process l
Communications | Continue meta-heuristic |

Figure 2: Low-level 1/A/1C/S/SPSS parallelization strategy

The neighbourhood-evaluation procedure of the local search heuristics, used alone
or as component of neighbourhood- or population-based meta-heuristics (the latter im-
plementing advanced “schooling” for offspring) is generally parallelized according to
1/A/1C/S/SPSS designs. The master groups the neighbours into tasks and sends them
to workers. Each worker then executes the neighbour evaluation and, possibly, lim-
ited exploration (a few moves only out of each received neighbour or best-valued among
them) procedure on its respective part of the neighbourhood, and sends back the best,
or first improving, neighbour found. The master waits for all workers to terminate their
computations, selects the best move, and proceeds with the search.

The appropriate decomposition granularity, that is, the size of the tasks, depends
upon the particular problem and computer architecture, but is generally computation-
ally sensitive to inter-processor communication times and work-load balancing. The most

10 CIRRELT-2024-21

Parallel Meta-Heuristic Search

approach most often encountered in the literature partitions the set of neighbours, uni-
formly (sequentially) distributing them into subsets of same cardinality, determined by
the number of processes available. Such an uniform-partition approach is appropriate
when the work associated to each neighbour evaluation is similar and the processors
are homogeneous. This is not always the case, however, even when processors are of
the same type. [49] illustrates this issue for the permutation-based local search neigh-
bourhood (which performs very well within a sequential meta-heuristic) applied to the
problem of scheduling dependent tasks on homogeneous processors. The dependency
yields neighbourhoods of unequal sizes, requiring different evaluation efforts. Compu-
tational results then show that the uniform partition methods is not appropriate, the
performance worsening with the amplitude of the variance in evaluation effort. A fixed
coarse-grained non-uniform decomposition, based on the estimated computational effort
of each subset, offers superior results, but it is not robust as it requires calibration each
time the problem size or the number of processors changes. The best performing strat-
egy, called dynamic fine-grained by the authors, defines each neighbour evaluation as
a single task, the master dynamically dispatching these on a first-available, first-served
basis to workers as they complete their tasks. The master still waits until all evaluations
are completed, but the dynamic fine-grained strategy provides maximum flexibility and
good load balancing.

Similar observations may be made regarding population-based meta-heuristics. In
theory, all GA operators may be addressed through a 1/A/1C/S/SPSS design, and the
degree of possible parallelism is equal to the population size. In practice, the compu-
tations associated to most operators are not sufficiently heavy to warrant paralleliza-
tion, while overhead costs may significantly reduce the degree of parallelism and increase
the granularity of the tasks. Consequently, the fitness evaluation is often the target of
algorithm-based parallelism for genetic-evolutionary methods, usually implemented using
the master-worker model. The master partitions the individuals among workers, which
compute and return the fitness of each individual, as well as aggregate figures to facili-
tate the computation by the master of the average population fitness once it receives the
reports of workers.

The algorithm-based parallelism for Ant-Colony Optimization (ACO) and, generally,
swarm-based methods lies at the level of the individual ants. Ants share information
indirectly through the pheromone matrix, which is updated once all solutions have been
constructed. There are no modifications of the pheromone matrix during a construction
cycle and, thus, each individual ant performs its solution-construction procedure without
data dependencies on the progress of the other ants. Many parallel ant-colony methods
proposed in the literature implement some form of 1C/S/SPSS strategy according to the
master-worker model (e.g., [52] and references herein). The master builds tasks consisting
of small colonies of one or a few ants, and distributes them to the available processors.
Workers perform the construction heuristic and return their solution(s) to the master,
which updates the pheromone matrix, returns it to the workers, and so on. To further

CIRRELT-2024-21 11

Parallel Meta-Heuristic Search

speed up computation, the pheromone update can be partially computed at the worker
level, each worker computing the update associated to its solutions. This fine-grained
version with central matrix update outperformed the sequential version of the algorithm
in most cases. It is acknowledged, however, that it does not scale when implemented on
“traditional” processors (i.e., exploiting the central processing units - CPUs), and that,
similarly to other meta-heuristics, it is outperformed by more advanced multi-search
methods.

Scatter Search (SS) and Path Relinking (PR) implement different population-based
evolution strategies, where a restricted number of elite solutions are combined, the
result being enhanced through a local search or a full-fledged meta-heuristic, usually
neighbourhood-based. Consequently, the 1/A/1C/S/SPSS strategies discussed above
apply straightforwardly, as in [58, 59, 57] for the p-median and the feature-selection
problems. A different algorithm-based SS decomposition strategy may be obtained by
running concurrently the combination and improvement operators on several subsets of
solutions in the reference set. Here, the master generates tasks by extracting a number of
solution subsets, which are sent to workers. Each worker then combines and improves its
solutions, returning the results to the master for the global update of the reference set.
Each subset sent to a worker may contain the exact or higher number of solutions required
by the combination operator. In the former case, the worker performs an “iteration” of
the SS algorithm [58, 59, 57]. In the latter case, several combination-improvement se-
quences could be executed and solutions could be returned to the master as they are
found or all together at the end of all sequences. Load-balancing capabilities should be
added to the master to avoid differences in work quantity and computing times between
workers.

To conclude, algorithm-decomposition with 1-control parallel strategies are particu-
larly attractive when neighbourhoods or populations are large, or when the neighbour
or individual evaluation is costly. Computing time gains may then be obtained, as il-
lustrated by many early contributions to the field (discussed in the surveys indicated in
the Introduction), as well as in the parallelization of the Variable Neighbourhood Search
(VNS) meta-heuristic proposed by [24]. The proposed parallel algorithm runs a single
VNS, which executes in parallel the computations related to three steps: 1) identification
of the initial solution: each process runs the local search out of a given starting solu-
tion; 2) the randomization (“shaking” in VNS vocabulary) of the solution provided by
the local-search run: copies of the solution are distributed and each process performs a
random modification; 3) the local search: the neighbourhood evaluation is distributed.
Each time, the master selects the best alternative.

Impressive gains may be obtained by taking advantage of the current computing plat-
forms integrating multi-core central processing units (CPUs - the “traditional” processor)
and more recent types of computing units, graphical processing units (GPUs), in par-
ticular. Enhanced with data streaming capabilities, the latter provide hardware data

12 CIRRELT-2024-21

Parallel Meta-Heuristic Search

parallelism and the means for each processor to perform the same task on different (but
rather small) parts of the distributed data [14, 15]. This hardware technology offers the
possibility of extensive very low-level parallelization reminiscent of the work performed
by the massively parallel computers of the late nineteen eighties. Neighbourhood evalu-
ations, population fitness computation, and, even, the evolution of individuals in swarms
may benefit from such a hardware-oriented parallelization, significant speedups having
been observed (e.g., [95, 14, 15, 50, 23, 130, 121, 56, 108, 74]. A number of remarks are
in order, however. First, the utilization of this technology is not straightforward, and
work must be dedicated to its conceptual, technical and experimental aspects (see, e.g.,
[93]). Second, there is also the need to examine the sequential and parallel meta-heuristic
designs to identify and valuate where this technology would bring the most benefits, be-
sides those already identified. The work of [109] is a step on this research path. Finally,
as discussed in the following sections, more advanced multi-search strategies outperform
low-level strategies in most cases, in particular with respect to solution quality. Con-
sequently, hierarchical settings combining multi-search strategies and 1/A/1C/S/SPSS
evaluation procedures, all on CPU-based architectures, are generally used currently. More
research is needed in this area to account for the massively parallel possibilities of new
types of computing units.

4 Explicit Search-Space Decomposition

The basic idea of this class of strategies is intuitively simple and appealing: separate the
search space into smaller subspaces, address the resulting subproblems by applying the
sequential meta-heuristic on each, collect the respective partial solutions, and reconstruct
an entire solution out of the partial ones. This apparently simple idea may take several
forms, however, according to the type of separation performed, the permitted links among
the resulting subproblems, the possible iterative modification of the separation, and the
type of control of the parallel meta-heuristic.

As indicated in the taxonomy, the decomposition may yield partition or a cover of
the complete search space. In the former case, the resulting subspaces are disjoint, while
some overlaps are allowed among groups of subspaces in the latter. Thus, for example,
the customer nodes, and the corresponding arc-design variables, of a Vehicle Routing
Problem (VRP) may be partitioned into customer subsets (including the depot in each
subset), while a cover would allow customers in a subset located “close by” another subset
to belong to both. Note that covers may be defined implicitly by allowing the search
within a given subspace to reach out to some part of one or several other subspaces
through, e.g., neighbourhood moves or individual crossovers. The union of the subspaces
makes up the complete space in all cases.

Strict partitioning restricts the solvers to their subspaces, resulting in part of the

CIRRELT-2024-21 13

Parallel Meta-Heuristic Search

Decompose the search space
Distribute subspace to workers

— T

Perform meta-heuristic Perform meta-heuristic Perform meta-heuristic
on received subspace on received subspace on received subspace
Return best results Return best results Return best results

Recuperate worker results
Build complete solution

1

Worker process Verity STOP conditions
Continue with new decomposition

Communications
= 3

Figure 3: Explicit search-space single-control decomposition L/SE/1C/S/ strategy

search space being unreachable and the loss of exploration quality for the parallel meta-
heuristic. Covers, through explicit or implicit overlapping, partially address this issue.
Indeed, to guarantee that all potential solutions are reachable, one must make overlapping
cover the entire search space, which would negate the benefits of decomposition. To avoid
these drawbacks, one can change the separation and start again. This idea translates into
a strategy encountered quite frequently, where the separation is modified periodically, and
the search is restarted using the new decomposition. A complete-solution reconstruction
feature is almost always part of the procedure. Note that, this approach also provides the
opportunity to define non-exhaustive separations, i.e., where the union of the subspaces
is smaller than the complete search space.

This strategy is naturally implemented using master-worker L/SE/1C/S schemes,
with MPSS or MPDS search differentiation (Figure 3). The master determines the sep-
aration and sends partial subsets (or information to define them out of the initial space
- this reduces the communication overhead) to workers, synchronizes them and collects
their solutions, reconstructs complete solutions, modifies the separation, and determines
when stopping conditions are met. Workers concurrently and independently perform
the search on their assigned subsets. Most implementations addressed problem settings
for which a large number of iterations can be performed in a relatively short time and
restarting the method with a new decomposition does not require an unreasonable com-
putational effort (see, e.g., [65] for real-time ambulance fleet management), a full-fledged
meta-heuristic being generally used on each subspace.

Explicit space separation may also be performed in a multi-control decision-making
framework with MPSS or MPDS search-differentiation (Figure 4). According to a L/S/pC/S

14 CIRRELT-2024-21

Parallel Meta-Heuristic Search

/ \>

Decompose the search space | «— Decompose the search space — Decompose the search space

Perform meta-heuristic Perform meta-heuristic Perform meta-heuristic

on own subspace on own subspace on own subspace
Synchronize Synchronize Synchronize

Exchange best results — Exchange best results — Exchange best results

Build complete solution Build complete solution Build complete solution

Verify STOP condition Verify STOP condition Verify STOP condition
Decompose the search space Decompose the search space Decompose the search space

Continue search on new subspace Continue search on new subspace Continue search on new subspace

| Master process | |C0mmunications|

Figure 4: Explicit search-space multiple-control decomposition L/SE/pC/S strategy

strategy, the separation is collegially decided and modified following information-exchange
phases (round-robin bilateral or many-to-many exchanges) activated at given synchro-
nization points. Solvers may exchange their best solutions only (e.g., routes in a VRP),
or add so-called context information that may be used when modifying the separation
(e.g., unserviced customers and empty vehicles in a VRP [118]), respectively.

We conclude this section with two observations. First, we notice that explicit search-
space decomposition corresponds to imposing restricted value ranges to all the decision
variables of the formulation. In practice, this is rather performed by identifying a subset
of variables, and corresponding constraints, eventually, and discarding or fixing the other
variables and constraints, the goal being to obtain smaller, easier to address subproblems.
However, it is not always possible, or even desirable, to discard. To illustrate, consider
an explicit search-space decomposition according to subsets of demands for the VRP
and the Multicommodity Capacitated Network Design problem (MCND). VRP demand
is defined at customer nodes, and the decomposition separates those into subsets. One
may then easily eliminate the VRP customers that do not belong to a given subspace, as
well as the network links connecting them (the depot and depot-customer nodes must be
included), and solve the resulting restricted VRP. MCND demand is defined by origin-
destination pairs of nodes. Partitioning the set of OD demands is straightforward. But,
eliminating the OD pairs not part of a given subset, as well as the links making up the
paths connecting them, would result in unconnected networks and infeasible subproblems.
Separation by variable fixing (and projection of the corresponding constraints) is thus
preferable. It yields the desired search-space decomposition into smaller subproblems.
It is also more general, offering increased flexibility, as variables may be fixed at values
other than zero, and considering the complete vector of decision variables, provides the
opportunity of a more thorough evaluation of solutions and possible changes.

CIRRELT-2024-21 15

Parallel Meta-Heuristic Search

The second observation is that explicit search-space decomposition strategies induce
different search behaviour and solution quality compared to those of the sequential meta-
heuristic. Their performance appears tributary to how well and efficiently one avoids
overlooking important regions of the search space, while purposely advancing toward
good complete solutions. The effort to achieve these goals if often too high compared to
the final benefits, particularly with respect to the performance of an efficient cooperation-
based meta-heuristic. Hence, using explicit search-space decomposition as stand-alone
strategy does not present significant interest.

On the other hand, one observes a continuous increase in the complexity of the prob-
lem settings and the dimensions of the instancse one needs to address. In this context,
combining search-space decomposition (through variable fixing, principally) and cooper-
ative search appears very promising. The Integrative Cooperative Search [82] is a step
in this direction (see Section 9 Knowledge Creation in Cooperative Search).

5 Implicit SSD - Independent Multi-search

We dedicate a section to the independent multi-search search-space decomposition strat-
egy as it was among the first to be proposed in the literature, and is also the most simple
and straightforward p-control parallelization strategy, generally offering an interesting
performance.

Independent multi-search seeks to accelerate the exploration of the search space to-
ward a better solution, compared to the classical multi-start sequential search. It proceeds
by initiating simultaneous solvers,with or without different search strategies, from differ-
ent initial points, and selecting at the end the best among the best solutions obtained by
all searches (Figure 5).

Initiate solver

Initiate solver

Initiate solver

|

l

|

Perform search
&
Output best solution

Perform search
&
Output best solution

Perform search
&
Output best solution

\

|

Select overall best solution

Master process Communications
—_—

Figure 5: Implicit search-space multiple-control decomposition L/SI/pC/S strategy

16 CIRRELT-2024-21

Parallel Meta-Heuristic Search

Independent multi-search methods belong to the L/SI/pC/S class of the taxonomy,
with any of the SPDS, MPSS, and MPDS diversity strategies. They do not change
the behaviour of the corresponding multi-start heuristic. No attempt is made to take
advantage of the multiple solvers running in parallel other than to identify the best
overall solution at the final synchronization step. The efficiency of independent multi-
search follows from the sheer quantity of computing power it allows one to apply to a given
problem. The references identified in the Introduction describe numerous contributions of
applying the independent multi-search strategy to a variety of combinatorial optimization
problems.

Independent multi-search offers an easy access to parallel meta-heuristic computation,
offering a tool when looking for a “good” solution without investment in methodological
development or coding. Such methods are generally outperformed by cooperative strate-
gies, however, through mechanisms enabling the independent solvers to share, during
the search, the information their exploration generates. As explained in the following
sections, this sharing and the eventual creation of new information out of the shared one,
yields in most cases a collective output of superior solutions compared to independent
and sequential search.

6 Cooperative Search

Cooperative (multiple or multi) search has emerged as one of the most successful classes of
meta-heuristic methodologies to address hard optimization problems. While independent
multi-search seeks to accelerate the multi-start sequential heuristic, search strategies
based on cooperation go further and integrate cooperation mechanisms to share, while
the search is in progress, the information obtained from this diversified exploration of
the same problem instance. The global search behaviour of a cooperative meta-heuristic
emerges from those interactions and sharing, including, eventually, the creation of new
information out of the exchanged data. (The similarity between this behaviour and
that of systems where decisions emerge from interactions among autonomous and equal
“colleagues” has inspired the name “collegial control” associated to cooperative-search
strategies in earlier versions of the taxonomy.) This behaviour is different compared to
those of the solvers acting individually or in sequence (as in the multi-start case). It
actually makes cooperative search a “new” meta-heuristic class in its own right, which
provides in many cases better performances and solutions compared to sequential and
parallel independent search [37].

Cooperative-search strategies are defined by the multiple solvers engaged in coop-
eration (pC control) and the information-sharing cooperation mechanism defining their
interactions. The solvers define trajectories in the search space from possibly different
initial points or populations, by using possibly different meta-heuristic or exact search

CIRRELT-2024-21 17

Parallel Meta-Heuristic Search

strategies. The goals of the cooperation mechanism are 1) to improve the performance of
the solvers involved, and 2) to create as much as possible a global, “complete” image of
the status of the cooperative search to enable guiding it, through participating solvers,
toward a better performance, in terms of solution quality and computational efficiency,
than the simple concatenation of results obtained by non-cooperating solvers.

A list of questions related to addressing this challenge that was initially proposed by
Crainic, Gendreau, and Toulouse [123], and refined in later contributions, is still relevant
today:

What information to exchange?

Between what processes to exchange?

When to exchange?

How to exchange?

How to use/act on imported/received data?

What knowledge to create and use out of exchanged data?

More than implementation details, answers to these questions constitute the core
design parameters of a cooperative meta-heuristic. Thus, for example, a (not very good)
cooperative mechanism has all solvers stop and synchronize periodically, exchange their
best local solutions, and re-start their individual searches from the newly-identified best
overall solution. Cooperation mechanisms proposed in the literature to answer these
questions are described in the next sections, following a number of general observations.

Exchanged information must be meaningful and exchanges must be timely. “Good”
solutions make up the most often exchanged type of information, usually taking the form
of the overall best solution or the current-best solution of a solver being sent to the
others. Broadcasting all the new best solutions a solver identifies is counter productive
in most cases, however. This is particularly true when the solver performs a series of
improving moves or generations, as solutions are generally “similar” (particularly for
neighbourhood-based procedures), and the receiving solvers either have no chance to act
on the in-coming information (unless special receiving mechanisms are embedded in all
solvers) before receiving a new solution, or may embark on explorations similar to that
of the sending solver. It was also observed that always broadcasting the overall best
solution to all cooperating solvers is generally bad as it rapidly decreases the diversity
of the search, increasing the amount of worthless computational work (many solvers
will search in the same region) and bringing an early “convergence” to a not-so-good
solution. Sending out the local optima after a series of improving moves, exchanging
groups of solutions, and implementing random selection procedures for the solutions to

18 CIRRELT-2024-21

Parallel Meta-Heuristic Search

send out, the latter generally biased toward good or good-and-different solutions, are
among the strategies aimed at addressing these issues.

Context information may also be shared profitably when embedded in the mecha-
nisms used to guide the search. Context information refers to data collected by a solver
during its own exploration, such as the statistical information relative to the presence
of particular solution elements in improving solutions (e.g., the medium and long-term
Tabu Search memories), the impact of particular moves on the search trajectory (e.g.,
the scores of moves of a Large Adaptive Neighbourhood Search), population diversity
measures, individual resilience across generations, etc. A limited number of studies indi-
cate the interest of context-information exchanges, but more research is needed on this
topic.

Cooperating solvers may exchange information directly or indirectly. Direct exchanges
of information occur either when the concerned solvers agree on a meeting point in
time to share information, or when a solver broadcasts its information to one or several
other solvers without prior mutual agreement. The latter case is to be avoided as it
requires solvers to include capabilities to store received information without disturbing
their own search trajectories until they are ready to consider it. Failure to implement such
mechanisms generally results in bad performances, as observed for strategies combining
uncontrolled broadcasting of information and immediate acceptance of received data.

Indirect exchanges of information are performed through independent data structures
that become shared resources of data. Solvers may access them asynchronously and ac-
cording to their own internal logic to post and retrieve information. Such data structures
are called blackboard in the computer-science and artificial-intelligence vocabulary, while
memory, pool, and data warehouse (reference and elite set are also sometimes used) are
equivalent terms found in the parallel meta-heuristic literature. The term memory is
used in this chapter.

Centralized-memory mechanisms have been used in most parallel meta-heuristic con-
tributions. They receive, eventually process, and post information received from co-
operating solvers, which, in turn, may retrieve this information independently. Dis-
tributed memory mechanisms may be contemplated, where a number of memories are
inter-connected, each servicing a number of solvers. Such hierarchical structures, with
several layers of solvers and memories, appear interesting when a large number of pro-
cessors is involved, when computations are to take place on grids or loosely coupled
distributed systems, and for integrative cooperation strategies. Issues related to data
availability, redundancy, and integrity must then be addressed, as well as questions rel-
ative to the balancing of workloads and the volume of information exchanged. More
research is needed on this topic.

Communications proceed according to an interaction topology represented by a com-

CIRRELT-2024-21 19

Parallel Meta-Heuristic Search

Figure 6: Interconnection communication graphs

munication graph specifying the processes that may engage in direct exchanges and, thus,
directing the flow of information within the cooperative search. Each node of the graph
represents a solver or a memory. Edges define pairs of solvers or a solver-memory pair,
which may engage in direct communications. Figure 6 illustrates two communications
graphs involving solvers only, a complete graph on the left, and a grid on the right, while
communications pass through a central memory in the setting of Figure 7. The projec-
tion of this graph on the physical interconnection topology of the computer or computers
executing the parallel program is generally part of the implementation design.

&
ol
g O

O ©®
N\

Figure 7: Indirect memory-based communication graph

When and how information is shared specifies the frequency of cooperation activities,
who initiates them and when, and whether the concerned solvers must synchronize, i.e.,
each stopping its activities and waiting for all others to be ready, or not. These two cases

20 CIRRELT-2024-21

Parallel Meta-Heuristic Search

correspond to the synchronous and asynchronous characteristics of the Communications
and Learning component of the taxonomy, and are discussed in the following sections. A
general observation for both cases, however, is that exchanges should not be too frequent

to avoid excessive communication overheads as well as premature “convergence” to local
optima [125, 128, 124, 127].

Two observations to conclude this general discussion about cooperation. First, it is
worth noticing that cooperation is somewhat biased toward intensifying the search in re-
gions of the space that have already been explored and where interesting solutions have
been identified. This is particularly true for “simple” cooperation mechanisms based
on synchronization or on exchanging current-best solutions only. It is thus important to
equip the cooperation strategies with diversification capabilities, such as, solver “welcom-
ing” mechanisms to adapt incoming solutions to the local search environment and status
(e.g., a crossover operator applied to the incoming and local solutions [90]), probabilistic
or diversity-driven selection of exchanged solutions [131], or creation of new solutions
and guidance information [82].

Second, the main principles of cooperative parallelization are the same for neighbourhood-
and population-based meta-heuristics, even though denominations and implementation
approaches may differ. We thus structure the presentation that follows based on these
principles and general strategies, rather than by meta-heuristic class.

7 Synchronous Cooperation

Synchronous cooperation follows a p-control synchronous communication without knowl-
edge creation (L/SC/pC/S) strategy, with any of the SPDS, MPSS or MPDS search
differentiation approaches. We dedicate this section to recalling the main concepts of
synchronous cooperation, some of which found their way into more advanced strategies,
encouraging interested readers to consult the references indicated in the Introduction for
details and references.

All the solvers involved in the cooperation stop their activities at particular moments
and engage in an information-exchange phase, which must be completed before any solver
can restart its exploration from that synchronization point. Synchronization moments
may be determined by conditions imposed exogenously to all solvers (e.g., number of
iterations from the last synchronization point), or detected by an a priori designated
solver. Synchronization may use a complete communication graph or a more restricted,
less densely connected topology (e.g., ring, torus, and grid graph; Figure 6). Global
exchanges of information among all cooperating solvers take place in the former case,
while information follows a diffusion process through local exchanges among neighbouring
processes in the latter. In all cases, one aims to re-create a state of complete knowledge at

CIRRELT-2024-21 21

Parallel Meta-Heuristic Search

particular points in the global search and, thus, to hopefully guide it into a coordinated
evolution toward the problem solution.

In a restricted view of the concept, most early 1/SC/pC/S cooperative search meta-
heuristics based on global exchanges use a designated master process, which may or
not include one of the participating solvers. The master manages the synchronization
mechanism in a master-worker implementation. It initiates the global search starting
the solvers, stops all solvers at synchronization points, gathers the information, updates
the global data, verifies the termination criteria of the search and, either effectively
terminates it or distributes the shared information (a good solution, generally, the overall
best solution in many cases) and sends a signal to the solvers to continue the search. For
coarse-grained island (each island corresponding to a sub-population) implementations of
cooperating genetic methods, synchronization means the communication master initiates
the migration operator to exchange among the islands the best or a small group of
some of the best individuals in each. A similar approach is seen for ACO systems,
dividing the colony into sub-colonies individually assigned to solvers, the master updating
the pheromone matrix, and starting a new search phase, based on the received solver
results [54]. A more sophisticated approach is proposed in [98] (and alluded to in [6]),
where the master dynamically adjusts the search parameters of cooperating TS solvers
according to the results each had obtained so far. The method performed well on the
0-1 Multi-dimensional Knapsack Problem, which is encouraging, as the idea of dynamic
adjustment of the search parameters may be generalized to other problem settings and
more sophisticated cooperation mechanisms.

A truer global pC/S cooperative scheme empowers solvers to initiate synchronization.
Once it reaches a pre-determined status, a solver sends the stopping signal, broadcasts
its data (current best solution or group of solutions, in most cases), followed by similar
broadcasts performed by the other solvers. Once all information is shared, each solver
performs its own import procedures on the received data and proceeds with its exploration
of the search space until the next synchronization event. Most synchronous coarse-grained
island parallelizations of GA-based evolutionary methods fall under this category, where
migration operators are applied at regular intervals. Similarly, global synchronization for
ACO applications where each colony evolves its own pheromone matrix, generally means
that, after a fixed number of iterations, colonies exchange elite solutions that are used to
update the pheromone matrix of the receiving colony. Expanding this idea to hierarchical
designs, a 2/SC/pC/S strategy for genetic methods may have the fitness computation
performed at the second level through a master-worker low-level parallelization [73]. Note
that, the associated overhead due to the latter parallelization may became significant for
larger numbers of processors.

Synchronization based on global exchanges of information generally incurs an exces-

sive communication overhead and computing-time inefficiency as exchanges are initiated
only when the slowest search thread is ready to start. The overhead may further increase

29 CIRRELT-2024-21

Parallel Meta-Heuristic Search

in hierarchical parallel contexts. A second main drawback of synchronous cooperation is
that solvers relying heavily on the same information end up exploring the same search-
space regions, which results in loss of diversity and favours premature “convergence” to
local optima. Two approaches have been proposed to overcome this drawback.

The first approach is to avoid sharing local-best solutions only. The 1/SC/pC/S/MPDS
iterated Tabu Search proposed for the VRP by [25] illustrates this approach, where solvers
synchronize after a number of consecutive iterations without improvement within each
individual search. Solvers then exchange a number of the good solutions obtained and,
then, each individual solver builds a new starting solution by selecting routes probabilisti-
cally among those received and its own. Computational results showed this method to be
flexible and efficient for several classes of routing settings with several depots, periodicity
of demands, and time windows.

The second approach is based on diffusion, supported by sparse communication graphs
(e.g., the grid in Figure 6). Then, direct communications at synchronization points are
possible only with neighbouring solvers, i.e., with adjacent nodes in the graph. The quan-
tity of information each solver processes and relies upon is thus significantly reduced. In-
formation is still shared between non-adjacent solvers, but at the reduced diffusion speed
of chains of local exchanges and data modifications by the intervening solvers. This idea
was less explored compared to the global-exchange strategy, even though synchronous
cooperative mechanisms based diffusion have a less negative impact on the diversity of
the exploration and have yielded good results (e.g., [122, 97]).

To conclude, synchronous-cooperation strategies generally outperform the sequential
versions and independent multi-search parallelization strategies. Yet, they also display
a number of inherent drawbacks. Asynchronous information sharing addresses these
challenges and, indeed, cooperation strategies based on asynchronous exchanges generally
outperformed synchronous methods. We discuss these strategies in the next two sections.

8 Asynchronous Cooperation

Historically, multi-search independent and synchronous cooperative methods were the
first to be developed. The focus has shifted to asynchronous cooperation, which may be
considered as defining the “state-of-the-art” in parallel multi-search meta-heuristics.

A L/SC/pC cooperation strategy, with SPDS, MPSS, or MPDS search diversity, is
asynchronous when solvers initiate exchange activities according to their own internal
logic, without coordination with other solvers. Thus, e.g., a solver may make available
its current best solution by posting it on a memory, or may ask for an external solution
when it fails to improve the quality of its best solution for a certain number of iterations.

CIRRELT-2024-21 23

Parallel Meta-Heuristic Search

Asynchronous cooperative strategies follow either pC/A or pC/K communication-and-
learning principles, the main difference being that the latter create new knowledge based
on the information exchanged between solvers; pC/K strategies are addressed in the next
section.

Asynchronous communications provide the means to build cooperation and informa-
tion sharing among solvers without incurring the overheads associated with synchroniza-
tion. They also bring adaptability to parallel cooperative meta-heuristics, which may
more easily react and dynamically adapt to the exploration of the search space than in-
dependent or synchronous searches. These benefits come with potential issues one must
care for, however. Two major ones are:

e The information related to the global search available to a solver performing its
search may be less “complete” than in a synchronous environment; This implies that
some solvers might explore more or less the same regions; The learning mechanisms
discussed in the next section help addressing this issue.

e High data-exchange frequency may be damageable; It may disrupt the work of
receiving solvers and induce an erratic search behaviour, similar to a random walk,
particularly when the local search is altered significantly by the incoming data
(e.g., the search is restarted from the received solution); Providing solver processes
with mechanisms to “quarantine” incoming messages and data alleviate in part this
issue, but at a generally high efficiency cost.

Hence the interest in applying information-sharing principles based on quality, mean-
ingfulness, and parsimony [39, 40, 123]. With respect to the information shared, these
principles mean:

e Exchange very good solutions or individual(s) only, rather than “all” locally im-
proving ones; Many successful contributions in the literature involve sharing local
optima only;

e Diversify the shared information. A diversifying strategy, for example, 1) collects
the very good solutions sent by the solvers into a global elite set, and 2) returns to
a requesting solver a solution selected randomly, but biased by quality, among the
elite set. Such a strategy outperformed sending always the best available solution
in the elite set [39].

When to initiate and perform cooperation activities, as well as how to use the in-
coming information are part of the parallel design with potentially important impact on
performance. Most strategies proposed in the literature implement the same idea, to send
and request information jointly. There is no need to do this, however, even though it can

24 CIRRELT-2024-21

Parallel Meta-Heuristic Search

decrease the amount of communications. It may thus be interesting for neighbourhood-
based methods to make available right away their newly found local optima or improved
overall solutions, and not wait for the algorithmic step when requesting and examining
external information is appropriate. Similarly, population-based methods may migrate
a number of individuals when a significant improvement is observed in the quality and
diversity of their elite group of individuals.

Regarding the request for external information, it may be based on a a priory fixed
number of iterations, but this approach should be restricted to meta-heuristics without
search-diversification steps, e.g., Tabu Search based on continuous diversification. In most
other cases, the principle of parsimonious communications implies selecting moments
when the status of the search changes significantly, e.g., when the best solution or the
elite subpopulation did not improve for a number of iterations. At such moments, solvers
generally engage into some form of search diversification phase involving the choice of
a different or modification of the current solution to initiate a new phase, e.g., the TS
diversification based on long-term memories, the change of neighbourhood in VNS, and
the complete or partial re-generation of population in population-based meta-heuristics.
External information, which generally includes at least one good solution, may prove
particularity interesting at that moment. How it is to be used depends on the particular
logic of the receiving solver. It may be used, for example, to initiate a diversification
phase, or to modify the search trajectory through a combination with a “local” solution,
or to modify the solver behaviour in the long run through an insertion into an elite set.
As already mentioned, one tries to avoid frequent imports followed by a replacement of
the current solution or population, which generally results in a random search.

Direct and indirect exchange pC/A strategies may be used with any meta-heuristic.
Historically, most GA-based asynchronous cooperative meta-heuristics relied on direct
exchanges over complete [20] or sparse (e.g., ring) [89] communication graphs. These
methods generally implement a coarse-grained island model, migration being triggered
by conditions within individual island populations. The selected migrant individuals are
then directed toward either adjacent islands when the graph is sparse or, when the graph
is complete or dense, to all other populations or a dynamically-selected subset. The
work of [129] illustrates the latter case, where migration is initiated by an island that
identifies a new best solution, which it sends to all other islands. To enforce diversity,
the migrant is accepted only when different from the local population and better than
the worst individual in that population. We also mention the work of [76] who intro-
duced genetic solvers with different strategies, which was a novelty in the GA-island field
(previously, all island populations were evolved by the same algorithm), and observed
significant improvements compared to more traditional island-based pC/A models. The
parallelization of ACO methods may use the same approach, where partitions of the ini-
tial colony play the role of islands. The contribution of [87] is interesting in this context
for novel way of selecting the receiving subcolony (island). Here, a solver initiates an
exchange when the evolution of its colony becomes stagnant (no longer improving) by

CIRRELT-2024-21 25

Parallel Meta-Heuristic Search

selecting an exchange partner probabilistically based on the relative distance (the most
different best solution) and fitness (of the best solution); it then requests the current
best solution from the selected partner, and, upon reception, updates its pheromone ma-
trix and continues the search. An interesting extension of the island-cooperation idea
to 2-level strategy defines meta-heuristic-specific “archipelagos” of islands, with partic-
ular Communication-and-Learning strategies at each level [5]. The authors propose GA
and ACO archipelagos with asynchronous cooperation between them, while synchronous
exchanges are enforced among the islands of each.

Relatively little attention has been dedicated to direct exchanges for asynchronous co-
operation among trajectory-based meta-heuristics. We mention the work of [116] report-
ing encouraging results for VNS-based 1/SC/pC/A strategies over uni and bidirectional
ring topologies. More research on this topic is needed.

Historically, the sharing of information in most asynchronous cooperative search
strategies outside the genetic-evolutionary community is therefore based on some form
of indirect communications through a centralized device, the central memory illustrated
in Figure 7 [39, 40, 27]. A solver involved in such a cooperation deposits good solutions,
local optima generally, into the central memory, from where, when needed, it also re-
trieves information sent by other cooperating solvers. Classical retrieval mechanisms are
based on random selection, which may be uniform or biased to favour solutions with high
rankings based on solution value and diversity. The central memory accepts incoming
solutions for as long as it is not full, acceptance becoming conditional to the relative inter-
est of the incoming solution compared to the “worst” solution in the memory, otherwise.
Diversity criteria are increasingly considered, a slightly worse solution being preferred if
it increases the diversity of solutions in the central memory. Population culling may also
be performed (deleting, e.g., the worst half of the solutions in memory).

Central-memory-based cooperative search strategies are described in the literature for
most meta-heuristic classes. To the best of our knowledge, [39] was the first to propose
a central-memory approach for asynchronous Tabu Search in their comparative study
for a multi-commodity location problem with balancing requirements. In their proposed
parallelization, individual T'Ss send to the memory their local-best solutions when im-
proved and import a solution selected probabilistically biased by rank before engaging
in a diversification phase. This method outperformed, in terms of solution quality, the
sequential version as well as several synchronous and broadcast-based asynchronous co-
operative strategies. The same approach was applied to the fixed cost, capacitated,
multicommodity network design problem with similar results [32].

Asynchronous cooperation strategies with some form of central memory were pro-
posed for a variety of problem settings, e.g., cutting [12], container loading [13], labour-

constrained scheduling [22], and VRP with time windows (VRPTW) [84]. Another
set of studies focused on asynchronous cooperation with indirect communications ap-

26 CIRRELT-2024-21

Parallel Meta-Heuristic Search

plied to particular classes of meta-heuristics, including Simulated Annealing (SA), e.g.,
(86, 111, 9]; VNS, e.g., [41, 105], the latter proposing a self-adapting mechanism for the
main search parameters based on recent performance, and solution selection out of the
ten best present in memory; GRASP with cooperation based on applying Path Relink-
ing to solutions from memory [107]; and TS with memory hosting a reference set and
long-term global memories built on short-term local memories sent by solvers [77].

Notice that cooperating solvers need not belong to the same meta-heuristic class.
The next section presents several examples where different meta-heuristics collaborate
within pC/K strategies. In the classical pC/A case, we find contributions following
the same broad strategy described above when calling sequentially on meta-heuristics
belonging to different types. The two-phase approach of [60] for the VRP with Time
Window (VRPTW) is a typical example of such a method, where each solver first applies
an evolution strategy to reduce the number of vehicles, followed by a TS to minimize
the total distance travelled. A somewhat different two-phase pC/A parallel strategy is
proposed in [11] for the Steiner problem, where each phase, using Reactive TS and PR
respectively, implements the pC/A asynchronous central memory strategy, all processes
switching from the first to the second phase simultaneously.

Multi-level cooperative search proposes a different pC asynchronous cooperative strat-
egy based on controlled diffusion of information [126]. Solvers are arrayed in a linear,
conceptually vertical, communication graph and a local memory is associated with each.
Each solver works on the original problem but at a different level of aggregation or “coars-
ening” of the problem data (e.g., selected network arcs being collapsed into nodes that
inherit some of the arc attributes). The solver addressing the complete original problem
works at the lowest aggregation level, identified in Figure 8 as Level 0. Level L identifies
the highest coarsening defined for the problem. Solvers communicate exclusively with
the two solvers directly above and below, that is, at higher and lower aggregation levels
respectively (obviously, workers at levels 0 and L exchange with the next higher and
lower level, respectively).

Coarsening reduces the dimensions of the problem instance at hand, which becomes
easier to address. One may thus identify very good solutions faster. Moreover, one
expects that a very good solution to an aggregated version of the problem will yield at
least a good solution when projected on a more disaggregated problem setting. This
projection process is called refinement. The idea of a coarsen-refine method therefore
is to successively coarsen the instance until the desired resolution level and then to
successively refine that solution until feasible to the original problem setting. The multi-
level cooperation builds on this idea through asynchronous up and down communications
among adjacent solvers, each taking advantage of the structure and quality of the solution
received from the next lower or higher solver. The communications are regulated by the
local memories that receives the information coming from the immediate neighbours and
makes it accessible to the local solver at moments dynamically determined according to

CIRRELT-2024-21 27

Parallel Meta-Heuristic Search

its internal logic.

Level — Level — Level —_ Level
0 1 2 L
Solver — Solver — Solver — Solver

Coarsen the problem instance Refine solutions

Modify coarsened instance Interpolation (and search)
Elite solutions and memories Elite solutions and memories

Figure 8: Multi-level cooperation

In the original implementation, solvers were exchanging improved solutions, incoming
solutions not being transmitted further until modified locally for a number of iterations to
enforce the controlled diffusion of information. Excellent results were obtained for various
problem settings including graph and hypergraph partitioning [101, 102], network design
[43], feature selection in biomedical data [99], and covering design [48]. It is noteworthy
that one can implement multi-level cooperative search through a central memory by
adequately defining the communication protocols. Although not yet fully defined and
tested, this idea is interesting as it opens opportunities for richer exchange mechanisms
combining controlled diffusion and general availability of global information.

Central-memory asynchronous cooperation strategies are generally offering very good
results, yielding high-quality solutions. They are also computationally efficient as no
overhead is incurred for synchronization. No broadcasting is taking place and there is no
need for complex mechanisms to select the solvers that will receive or send information
and to control the cooperation. It has also proved efficient in handling the issue of
premature “convergence” in cooperative search, by diversifying the information received
by the solvers through probabilistic selection from the memory and by a somewhat large
and diverse population of solutions in the central memory; solvers may thus import
different solutions even when their cooperation activities are taking place within a short
time span. The central memory is thus an efficient algorithmic device that allows for a
strict asynchronous mode of exchange, with no predetermined connection pattern, where
no solver is interrupted by another for communication purposes, but where any solver
may access at all times the data previously sent out by the other solvers.

The performance of central-memory cooperation and the availability of the exchanged
information kept in the memory has brought up the question of whether one could design
more advanced cooperation mechanisms taking advantage of the information exchanged
among cooperating solvers. The pC/A strategies described in the next section are the
result of this area of research.

28 CIRRELT-2024-21

Parallel Meta-Heuristic Search

9 Knowledge Creation in Cooperative Search

Cooperation, particularly in the central-memory asynchronous form, offers many possi-
bilities for algorithm development. Particularly noteworthy are the flexibility in terms of
the different meta-heuristic and exact methods that can be combined, and the popula-
tion of elite solutions being hosted in the central memory and continuously enhanced by
the cooperating solvers. One can thus select cooperating methods that complement each
other, some of which heuristically construct new solutions, execute neighbourhood-based
improving meta-heuristics, evolve populations of solutions, or perform post-optimization
procedures on solutions in memory.

The study of [31] illustrates the interest of these ideas. The authors combine a GA
solver and several solvers executing the pC/A Tabu Search for multicommodity location-
allocation with balancing requirements of [39]. The TSs aggressively explore the search
space, building the elite solution set in the central memory, while the GA contribute
toward increasing the diversity, and hopefully the quality, of the solutions in the central
memory, to be imported by the cooperating TSs. The GA launches with a population
composed of the initial set of elite solutions generated by the TS solvers. Asynchronous
migration subsequently transfers the best solution of the genetic pool to the central mem-
ory, and solutions in the central memory toward the genetic population. This strategy
did perform well, especially on larger instances. It also yielded the interesting observa-
tions that 1) including different types of solvers in the cooperation is beneficial, and 2)
while the best overall solution might have never been found by the genetic solver, its
inclusion allowed the TS solvers to find better solutions, more diversity among solutions
in memory translating into a more effective diversification of the global search.

Following the studies on memory and learning preformed for Tabu Search and syn-
thesized in [70], several contributions in the parallel meta-heuristic literature, including
the pioneering [110] and [31], focused on the utilization of the information exchanged
among cooperating solvers to construct and continuously enhance an understanding of
the history and status of the global search. The analysis of the elite population solvers
build in memory, together with associated context data, becomes a learning mechanism
providing information relative to, e.g., regions of the search space already explored and
the relative quality of solutions identified in those regions, the performance of the coop-
erating solvers given the information received from the central memory, the behaviour of
critical decision variables (e.g., arc or node selection in network design) relative to good
solutions, etc. This information may then be used to create new knowledge to guide the
search. Such knowledge may include new and diverse solutions or components, “ideal”
target solutions, attribute-based patterns to bias probabilistic selections of solver moves,
etc.

Cooperative strategies including mechanisms to create new information belong to the
p-control, knowledge communications-and-learning pC/K class of the taxonomy. Most

CIRRELT-2024-21 29

Parallel Meta-Heuristic Search

contributions to this field have cooperating solvers work on the complete problem, a
few being dedicated to the learning mechanism. The bulk of the section is dedicated to
these strategies. We conclude the section with a discussion on developments targeting
the attribute-based decomposition of the mathematical structure of the problem at hand,
where solvers work on particular parts of the problem or on integrating the resulting
partial solutions into complete ones.

Historically, two main classes of pC/K cooperative mechanisms are found in the lit-
erature, both based on the idea of exploiting a set of elite solutions exchanged by coop-
erating solvers working on the complete problem, but differing in the information kept in
memory. Adaptive-memory methods [110, 119] store and score partial elements of good
solutions and combine them to create new complete solutions that are then improved
by the cooperating solvers. Central-memory methods exchange complete elite solutions
among neighbourhood and population-based meta-heuristics and use them to create new
solutions and knowledge to guide the cooperating solvers [27, 36, 39]. Notice that the
latter method generalizes the former and, thus, the two are becoming increasingly unified.

The adaptive-memory terminology for parallel meta-heuristics was coined in a paper
[110] proposing TS-based heuristics for routing problems (see [8] for a thorough appli-
cation of the concept to the VRPTW). More comprehensive presentations of adaptive-
memory concepts, applications, and challenges may be found in [68] and [119]. The main
idea is to keep in memory the individual components (vehicle routes in VRP) making up
the elite solutions found by the cooperating solvers, together with memories counting for
each component the frequency of inclusion in the best solutions encountered so far, as
well as its score and rank among the population in memory, computed in particular from
the objective value of its respective solutions. Solvers construct solutions out of proba-
bilistically selected (biased by rank) solution components in memory, enhance them (TS
in the initial contribution), and deposit their best solutions in the adaptive memory. The
probabilistic selection yields, in almost all cases, a new solution made up of components
from different elite solutions, thus inducing a diversification effect.

A number of early developments provided insights into algorithmic design. Apply-
ing the concept to the VRP, [115] proposes a set-covering heuristic to select from the
memory the components to generate the new initial solution of a cooperating solver. At
about the same time, [64] explores 2-level hierarchical strategies in the context of real-
time vehicle routing and dispatching. A cooperating adaptive-memory SC/pC/K/MPSS
strategy is applied at the first level, where each TS solver implements a SE/1C/S route-
decomposition with the help of several workers on the second level.

Generalizing the pC/A and adaptive-memory strategies, pC/K central-memory mech-
anisms keep full solutions, as well as attributes and context information sent by the
solvers involved in cooperation (in later versions, partial solutions may also be kept).
The central memory also keeps newly created information out of the exchanged data.

30 CIRRELT-2024-21

Parallel Meta-Heuristic Search

Classical statistics-based memories recording the performance of individual solutions,
solution components, and solvers provide part of this new knowledge. More advanced
strategies include information extraction and creation [85], machine learning mechanisms
[19], and new solution-creation procedures (population-based, generally). Search guid-
ance mechanisms based on this knowledge may thus be gradually built.

Solvers indirectly exchange complete elite solutions and context information though
the central memory. Solvers may perform constructive, improving and post-optimization
heuristics [84, 85, 82], neighbourhood-based methods like TS and GRASP [51, 78, 79,
82, 21], population-based methods like GA [84, 85, 51, 82], SS [104], and PR [42], as
well as exact solution methods [72] on possibly restricted versions of the problem. The
particular solvers to include in cooperation depend on the application. They should be
efficient for the problem at hand, of course. Additionally, they should also aim to cover
different regions of the search space in such a way that they contribute not only to the
quality but also to the diversity of the elite population being built in the central memory.

Central-memory mechanisms thus perform two main tasks: data-warehousing and
communications with solvers, on the one hand, information-creation and search-guiding,
on the other hand. To distinguish between the two, we single out the latter as the Search
Coordinator (SC). The simplest SC mechanism was used in the pC/A strategies of the
previous section, where solutions in memory were ordered and rank-biased randomly
extracted to answer solver requests. More sophisticated mechanisms are briefly described
in the following.

The cooperative meta-heuristic proposed by [84] for the VRPTW uses a simple
pC/K mechanism, involving four solvers, two GAs, with order and edge recombina-
tion crossovers, respectively, and two acknowledged TSs, Unified Tabu Search [26] and
TABUROUTE [63]. The cooperating solvers share their improved best solutions, and re-
quest solutions as needed, i.e., the GAs for crossover operations, the Unified Tabu at
regular intervals, and TABUROUTE at diversification time. The central-memory SC per-
forms post-optimization procedures to reduce the number of vehicles and the total trav-
elled distance) on the received solutions before making them available for sharing. This
algorithm, without any calibration or tailoring, proved to be competitive with the best
meta-heuristics of its day in linear speedups.

A general learning and guidance mechanism based on an atomic network-optimization
elements, the arc in particular, is proposed in [85]. The SC is thus independent of partic-
ular problem characteristics (e.g., routes in the original VRPTW application), and may
thus be broadly applied to network-based problem settings. Starting from the classical
memory concepts pioneered for TS [66, 67, 70|, the authors combined two ideas: first,
that an arc appearing often in good solutions and less frequently in bad solutions may
be worthy of consideration for inclusion in a tentative solution, and vice versa; second,
that this worthiness increases when the behaviour appear stable in time. The authors

CIRRELT-2024-21 31

Parallel Meta-Heuristic Search

thus consider the evolution of the frequency of inclusion of arcs in solutions of different
quality, that is, in the elite (e.g., the 10% best), average (between the 10% and 90% best),
and worst (the last 10%) groups of solutions in the central memory. Patterns of arcs are
then defined representing subsets of arcs (not necessarily adjacent) with similar frequen-
cies of inclusion in particular population groups. Guidance is obtained by transmitting
arc patterns to individual solvers, indicating whether the arcs in the pattern should be
“fixed” or “prohibited” to intensify or diversify the search, respectively. Solvers account
for these instructions by using the patterns to bias the selection of arcs for move or
reproduction operations. A four-phase fixed schedule (two phases of diversification at
the beginning to broaden the search, followed by two intensification phases to focus the
search around promising regions) was used with excellent results in terms of solution
quality and computing efficiency compared to the best-performing methods of the day
(see [83] for a dynamic version of this mechanism).

A different SC mechanism for a pC/K meta-heuristic with TS solvers was proposed by
[79] for the VRP. Data sharing is relatively simple; solvers periodically (after a number
of iterations or when the solution did not improve for a number of iterations) sent best
solutions to the central memory, and received a solution back from it, the search being
resumed from the received solution. The SC mechanism’s objective is to identify and
extract information from the solutions in memory to guide solvers toward intensification
and diversification phases. This is obtained by dynamically (on reception) clustering
solutions according to the number of edges in common. Thus, solutions in a given cluster
share a certain number of edges, this set of edges and solutions being assumed to represent
a region of the search space. Search history indicators are associated with clusters giving
the number of solutions in the cluster and the quality of the solutions. This information
is used to infer how thoroughly the corresponding region has been explored and how
promising it might still be. Clusters are sorted according to the average solution value
of their feasible solutions, and the cluster with the lowest value, that is, with the largest
number of very good solutions, is selected for intensification, while the solution with the
lowest number of good solutions is selected for diversification (recall that the authors
were addressing a minimization optimization problem). A solution is then selected in
the corresponding cluster and it is sent to the requesting solver. Excellent results were
obtained in terms of solution quality and computation effort (an almost linear speedup
was observed with up to 240 processors) compared to the state-of-the-art methods of the
day.

The study of [19] focuses on the issue of flexibility and adaptability of cooperative
parallel meta-heuristics. The proposed cooperation involves a number of solvers of dif-
ferent types exchanging through a central memory. An additional process is connected
to the central memory and is in charge of the SC mechanism. collecting information
from the other solvers and sending guidance instructions to modify their behaviour. The
SC is based on a set of fuzzy rules initially instantiated through a supervised knowledge
extraction process. The rules are meant to decide when to reinitialize a solver either

32 CIRRELT-2024-21

Parallel Meta-Heuristic Search

with the current best solution or a new set of parameter values. The former aims at
changing the behaviour of the currently “worst” performing solver, bringing it within a
portion of the search space closer to the overall best solution. The latter also focuses on
the “worst” performing solver, changing the parameter values which did not change for
some time. Encouraging results were obtained on {0, 1}-knapsack problem, which indi-
cates that more research is needed on this topic. The flexibility and adaptability issue
is also at the core of the work of [100]. Set within the hyperheuristic context [18, 17],
the cooperation involves three solvers based on, respectively, a GA, a SA, and an AOC.
The solvers stop after a certain number of solver-specific measures and store their best
solutions in the central memory. The SC mechanisms ranks the solvers based on per-
formance, e.g., computing time and solution value. The idling solver with the highest
ranking then receives a new intital solution from memory and restarts its search.

The pC/K/MPDS method proposed in [72] for the VRP illustrates how specialized
solvers may address different issues in a cooperative meta-heuristic, including the gen-
eration of new knowledge. Two types of solvers were defined. The so-called heuristic
solvers improve solutions received from the SC associated with the central memory. On
completing the task, the solvers return the a given number of the best solutions found
and the corresponding routes (a post-optimization procedure is first run on each route).
Simultaneously, exact solvers aim at identifying new solutions by solving series of set
covering problems, starting from a limited set of routes. Each time a set covering prob-
lem is solved, the solution is returned to the central memory and a pre-defined number
of the current best solutions is retrieved for the next run. Set-covering solvers had also
access to the ordered list of best routes in memory and they selected within to complete
their problems. The number of routes selected to set up a set covering problem is dy-
namically modified during the search to control the corresponding computational effort.
The method performed very well, both in terms of solution quality and computational
effort (an almost-linear speedup was observed).

The inclusion of specialized solvers in cooperation is also part of the algorithmic
design proposed in [112] The cooperative algorithm involves meta-heuristic solvers to
construct and improve solutions, as well as a somewhat exact solver generating new
variables (column generation of partial solutions, heuristically extended to complete ones
through) to further diversify the search. The SC mechanism guides the cooperative
meta-heuristic by sending solutions to the appropriate solvers to intensify or diversify
the search.

The parallel GRASP algorithm proposed in [21] makes use of different information-
sharing strategies at different stages of the parallel meta-heuristic. Each solver runs the
same GRASP meta-heuristic, sharing not only its best solutions, but also results of inter-
mediate computations, which reduces the computing time spent performing redundant
operations over diverse solvers. Thus, the data updates and corresponding evaluations
performed by a solver while building its initial solution are immediately stored in the

CIRRELT-2024-21 33

Parallel Meta-Heuristic Search

common central memory for access by all other solvers. Solvers also make immediately
available their improved best solutions found during their local search phases. Finally,
the parallel meta-heuristic proceeds in two phases. The first runs the solvers without
external limits for a given duration. Solvers synchronize at the end of the first phase,
their best solutions and context information are evaluated and aggregated, yielding a
restricted set of data on which solvers will work during the second phase. The parallel
meta-heuristic proved very efficient on three different problem settings.

We complete this section by reviewing developments targeting multi-attribute, “rich”,
problem settings displaying a large number of attributes characterizing their feasibility
and optimality structures. Traditionally in the literature, such problems are simplified, or
sequentially solved through a series of particular cases, where part of the overall problem
is fixed or ignored, or both. The main idea of this generation of pC/K meta-heuristics is
to decompose the mathematical structure of formulation along sets of decision variables,
called decision-set attribute decomposition in [82]. The goal of this decomposition is to
obtain simpler but meaningful problem settings, in the sense that efficient solvers can
be “easily” obtained for the partial problems either by opportunistically using existing
high-performing methods or by developing new ones. Thus, an opportunistic rule may
decompose the multi-depot periodic VRP (MDPVRP) along the depot and period deci-
sion sets to create two partial problems, a periodic VRP (PVRP) and a multi-depot VRP
(MDVRP), high-quality solvers being available in the literature for both problems. The
central-memory asynchronous cooperative search framework then brings together these
partial problems and their associated solvers, together with integration mechanisms, re-
constructing complete solutions, and search-guidance mechanisms.

According to our best knowledge, [42, 51] were the first to propose such a methodol-
ogy in the context of designing wireless networks, where seven attributes were considered
simultaneously. The proposed 1/MA /pC/K/MPDS meta-heuristic has TS solvers work-
ing on limited subsets of attributes, the others being fixed, and a GA combining the
partial solutions generated by the TS procedures into complete solutions to the initial
problem.

The general method, called Integrative Cooperative Search ICS), was introduced in
[82] (see [44, 45] for initial developments) and illustrated through an application to the
MDPVRP . As illustrated in Figure 9, the main components of ICS, which need to be
instantiated for each application, are the

e Decomposition rule;

e Partial Solver Groups (PSG) addressing the partial problems resulting from the
decomposition;

e Integrator Group (IG) selecting partial solutions from PSGs, combining them, and
sending the resulting complete solutions to the

34 CIRRELT-2024-21

Parallel Meta-Heuristic Search

e Complete Solver Group (CSG), which provides the central memory functionalities
of ICS and, possibly, enhances the complete solutions.

Notice that, in order to facilitate the cooperation, a unique solution representation, ob-
tained by fixing rather than eliminating variables when defining partial problems, is used
throughout ICS. Also notice that memories associated to the PSGs and the CSG need
not be distributed on different computing units (the display in Figure 9 is for illustration
only). As for all parallelization strategies discussed in this chapter, the implementation
is specific to the available computing infrastructure.

e < ,
PSG; @ 4_’
@ ~

Figure 9: Integrative cooperative search

A Partial Solver Group may contain one or several solvers targeting the particular
partial problem assigned to the group. When several solvers are involved, the PSG is
organized according to a pC/K strategy, with its own central memory keeping partial
elite solutions and associated context information. The PSG’s SC manages the central
memory and the exchanges with the other components of the ICS, the CSG in particular.
Two PSGs were defined in [82], one for the PVRP and the other for the MDVRP. The
same two algorithms were used as partial solvers within each PDG, the hybrid genetic
algorithm HGSADC [131] and GUTS, a generalized version of the Unified Tabu Search
26].

Integrator procedures build complete solutions by mixing partial solutions with promis-
ing features extracted from the central memories of the PSGs. The resulting complete
solutions, together with critical features extracted from the partial solutions, are trans-
mitted to the CSG. Integrators aim for solution quality and diversity, as well as compu-
tational efficiency. Because partial solutions are defined by variable fixing rather than
deletion, the simplest Integrator consists of selecting high-quality partial solutions (with
respect to solution value or the inclusion of particular decision combinations) and pass-
ing them directly to the Complete Solver Group. Population-based meta-heuristics make
natural integrators, as well as solvers of optimization formulations combining solutions or

CIRRELT-2024-21 35

Parallel Meta-Heuristic Search

solution elements (e.g., set covering for VRP) to yield complete solutions to the problem
at hand. The work of [55] belongs to the latter category, proposing particular optimiza-
tion models for rich VRP settings, which preserve desired critical variables and attributes,
present in partial solutions, when selecting and combining routes. Several Integrators can
be involved in an ICS meta-heuristic, increasing the diversity of the population of com-
plete solutions. Four Integrators were thus included in the MDPVRP application, the
simple one passing good solutions to the CSG, the HGSADC individual enhancement
operator (crossover and education), and two of the methods proposed by [55], the first
transmitting the attributes for which there was “consensus” in the input solutions, while
the second “promoted” them only through penalties added to the objective function.
The last three integrators start from pairs of partial solutions randomly selected among
the best 25% of the central memory populations of the two PSGs.

The Complete Solver Group includes the ICS central memory together with the SC
learning, guidance, and monitoring mechanism. Complete solutions, together with the
context information, are received from Integrators. When the CSG includes solvers, these
solutions are further enhanced and new ones may be created. Following the concepts
described earlier on in this section, knowledge is extracted from the solutions and context
data received and created (e.g., the frequency of appearance of each (customer, depot,
pattern) triplet in the complete solution set for the MDPVRP, together with the cost of
the best solution containing it). This new information is used to build guiding instructions
(solutions, patterns of variables to favour or avoid, etc.) sent to the appropriate PSGs
according to a monitoring process.

Monitoring is performed by following the evolution of the PSGs (e.g., the number
of improving solutions generated during a certain time period) to detect undesired sit-
uations, such as loss of diversity in the partial or complete populations, stagnation in
improving the quality of the current best solution, awareness that some zones of the
search space - defined by particular values for particular decision sets - have been scarcely
explored, etc. Whenever one of these situations is detected, the GSC sends guidance in-
structions to the particular PSG. The particular type of guidance is application specific,
but one may inject new solutions or elements, modify the values of the fixed attributes
for the PSG to orient its search toward a different area, change the attribute subset un-
der investigation (i.e., change the decomposition of the decision-set attributes), or mod-
ify /replace the solution method in a Partial Solver or Integrator. The last two should not
occur too frequently. Guidance in [82] takes the form of three solutions, either randomly
selected from the complete solution set, or built by the GSC out of promising solution
elements with respect to the search history.

Very good results are reported even when compared to the state-of-the-art meta-
heuristic for the MDPVRP [82]. The experimental results also indicated that 1) one
should use solvers with similar time performances in order to have them contributing
reasonably equally to the cooperation; 2) using the PSG central memory as population for

36 CIRRELT-2024-21

Parallel Meta-Heuristic Search

all cooperating GA solvers appears beneficial for short computation runs, while creating
solver-specific populations offers better performances for longer runs; 3) embedding good
solvers in the CSG enhances slightly the already excellent performance of the ICS parallel
meta-heuristic.

10 Conclusions

This chapter presented a synthesis and state-of-the-art survey of the main parallel meta-
heuristic ideas, discussing main parallelization concepts and general algorithm-design
principles and strategies. The presentation is structured by an enhanced three-dimensional
classification of design strategies for parallel meta-heuristics: the number of levels indicat-
ing whether decomposition is applied once only or recursively; the decomposition strategy
reflecting the sources of parallelism in meta-heuristics, algorithm, search space, or math-
ematical structure; and the search strategy, given a particular level and decomposition
approach, defined by the number of processes controlling the search, the communication
and learning mechanism, and the diversity of the individual methods involved and their
initial solutions.

Six major classes of parallel meta-heuristics strategies were discussed: low-level de-
composition of computing-intensive tasks with no modification to the original algorithm,
explicit decomposition of the search space, independent multi-search, as well as syn-
chronous, asynchronous, and knowledge-creating cooperative multi-search. It is note-
worthy that this series also reflects the historical sequence of the development of par-
allel meta-heuristics, which are now acknowledged to make up their own class of meta-
heuristics.

The literature survey reveals a rich tapestry of contributions based on one of these
strategies in wide array of applications. Two observations strongly indicate, however,
that more research is still needed.

First, let us not forget that most optimization problems of interest are complex and
computationally difficult. Addressing these problems is increasingly challenging. On the
one hand, the dimensions of the instances one faces keep increasing. On the other hand,
the problem settings are becoming more complex, illustrated by the network optimization
problems involving several layers of interwoven design decisions, the integrated hierarchi-
cal hub location and scheduled service network design problems, and the general trend
toward explicitly addressing the uncertainty inherently present in most planning and
management problems. Harnessing and developing the power of parallel meta-heuristics is
crucial to efficiently address realistically dimensioned instances of such problem settings.
To achieve these goals requires to study the behaviour of the parallelization strategies
within each particular context, and to identify the most appropriate one or combination

CIRRELT-2024-21 37

Parallel Meta-Heuristic Search

thereof.

These developments are linked to the research needs coming from the second ob-
servation. Namely, that knowledge and expertise have not progressed equally across
parallelization approaches, meta-heuristic designs, and problem settings. It must be em-
phasized that each of the strategy classes identified in the chapter fulfills a particular
type of task and all are needed in some circumstances. Thus, the idea that everything
seems to be known regarding low-level parallelization strategies is not true. Most stud-
ies on accelerating computing-intensive tasks targeted the evaluation of a population or
neighbourhood in classic meta-heuristic frameworks but, as a number of recent studies
show, the best strategy to accelerate a local-search procedure may prove less effective
when the local search is embedded into a full meta-heuristic or hierarchical solution
method. On the other hand, the evolution of computing infrastructure, in particular, the
integration of graphical processing units within computing platforms, opens up interest-
ing but challenging perspectives. In both cases, more research is needed to understand
their behaviour and identify the most appropriate combination of strategies, particu-
larly low-level and cooperative search, for various meta-heuristics, problem settings, and
computing platforms.

Search-space decomposition also seems to have been thoroughly studied, and has been
overlooked in the last years, maybe due to the rapid and phenomenal increase in the
memory available and the speed of access. Yet, the increased challenges of the evolving
combinatorial optimization problem settings, alluded to above, require more research
related, in particular, to dynamic search-space decomposition and the combination of
cooperative search and search-space decomposition (the Integrative Cooperative Search
appears as a first step in this direction).

Asynchronous cooperation, particularly when relaying on memories as communication
mechanisms, provides a powerful, flexible, and adaptable framework for parallel meta-
heuristics that consistently achieved good results in terms of computing efficiency and
solution quality for many meta-heuristic and problem classes. A number of challenging
research issues are worth investigating.

A first issue concerns the exchange and utilization of context data gathered locally
by cooperating solvers, to infer the status of the global search and generate appropriate
guiding instructions. Thus, contrasting and aggregating the information reflecting the
various search trajectories of the cooperating solvers may be used to identify regions of
the search space that were neglected or over explored. The information could also be
used to evaluate the relative performance of the solvers conducting, eventually, to adjust
the search parameters of particular solvers or even change the search strategy. So-called
“strategic” decision variables or parameters could thus be more easily identified, which
could prove very profitable in terms of search guidance.

38 CIRRELT-2024-21

Parallel Meta-Heuristic Search

A related issue concerns the learning processes and the creation of new information
out of the shared data. Important questions concern the identification of information
that may be derived from the exchanged solutions and its usefulness in inferring the
status of the global search, and determining the appropriate guiding information to be
sent to solvers. Research in this direction is still at the very beginning but has already
proved its worth, in particular in the context of the integrative cooperative methods.

A third broad issue concerns the cooperation of different types of meta-heuristics, as
well as the cooperation of meta-heuristics with exact solution methods. The so-called
hybrid, hyper, and matheuristic methods represent significant types of method combina-
tions in the sequential optimization field, but very few studies explicitly have targeted
associated parallelization strategies. How different methods behave when involved in
cooperative search and how the latter behaves given various combinations of methods is
an important issue that should yield valuable insights into the design of parallel meta-
heuristic algorithms, cooperative ones in particular. A particularly challenging but fas-
cinating direction for cooperative search and ICS is represented by the multi-scenario
representation of stochastic optimization formulations, for which almost nothing beyond
low-level scenario-decomposition has been proposed yet. The work of [106] on parallel
Benders decomposition illustrates the interest of asynchronous cooperation and the chal-
lenges of applying them for stochastic network design. Transversal studies comparing the
behaviour and performance of particular parallel meta-heuristic strategies over different
problem classes, and of different parallel strategies and implementations for the same
problem class, would be very valuable in this context, as in the broader field of parallel
meta-heuristics.

Acknowledgments

While working on the project, the author was Adjunct Professor, Department of Com-
puter Science and Operations Research, Université de Montréal. The author gratefully
acknowledges the financial support provided by the Natural Sciences and Engineering
Council of Canada (NSERC), through its Discovery grant program, and by the Fonds de
recherche du Québec through their infrastructure grants.

CIRRELT-2024-21 39

Parallel Meta-Heuristic Search

References

[1]

[10]

[11]

[12]

[13]

Aarts EHL, Korst JHM (1989) Simulated Annealing and Boltzmann Machines.
John Wiley & Sons, New York, NY

Alba E (ed) (2005) Parallel Metaheuristics: A New Class of Algorithms. John Wiley
& Sons, Hoboken, NJ

Alba E, Dorronsoro B (2008) Cellular Genetic Algorithms. Springer, New York

Almeida ALB, Lima J de C, Carvalno MAM (2022) Systematic Literature Review
on Parallel Trajectory-based Metaheuristics. ACM Computing Surveys 55(8):1-34

Ammi M, Chikhi S (2015) A Generalized Island Model Based on Parallel and Co-
operating Metaheuristics for Effective Large Capacitated Vehicle Routing Problem
Solving. Journal of Computing and Information Technology 23(2):141-155.

Arkhipov DI, Wu D, Vu T, Regan AR (2020) A Parallel Genetic Algorithm
Framework for Transportation Planning and Logistics Management. IEEE Accesss
8(106506)

Azencott R (1992) Simulated Annealing Parallelization Techniques. John Wiley &
Sons, New York, NY

Badeau P, Gendreau M, Guertin F, Potvin JY, Taillard E (1997) A Parallel Tabu
Search Heuristic for the Vehicle Routing Problem with Time Windows. Transporta-
tion Research Part C: Emerging Technologies 5(2):109-122

Banos R, Ortega J, Gil C, Fernandez A, de Toro F (2013) A Simulated Annealing-
Based Parallel Multi-Objective Approach to Vehicle Routing Problems with Time
Windows. Expert Systems with Applications 40(5):1696-1707

Barr RS, Hickman BL (1993) Reporting Computational Experiments with Parallel
Algorithms: Issues, Measures, and Experts Opinions. ORSA Journal on Computing
5(1):2-18

Bastos MP, Ribeiro CC (1999) Reactive Tabu Search with Path-Relinking for the
Steiner Problem in Graphs. In: Vo8 S, Martello S, Roucairol C, Osman, IH (eds)
Meta-Heuristics 98: Theory & Applications, Kluwer Academic Publishers, Norwell,
MA, pp 31-36

Blazewicz J, Moret-Salvador A, Walkowiak R (2004) Parallel Tabu Search Ap-
proaches for Two-Dimentional Cutting. Parallel Processing Letters 14(1):23-32

Bortfeldt A, Gehring H, Mack D (2003) A Parallel Tabu Search Algorithm for
Solving the Container Loading Problem. Parallel Computing 29(5):641-662

40 CIRRELT-2024-21

Parallel Meta-Heuristic Search

[14]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Brodtkorb AR, Hagen TR, Schulz C, Hasle G (2013) GPU Computing in Discrete
Optimization. Part I: Introduction to the GPU. EURO Journal on Transportation
and Logistics 2(1-2):129-157

Brodtkorb AR, Hagen TR, Schulz C, Hasle G (2013) GPU Computing in Discrete
Optimization. Part II: Survey Focussed on Routing Problems. EURO Journal on
Transportation and Logistics 2(1-2):159-186

Burke E, Kendall G (eds) (2005) Search Methodologies - Introductory Tutorials in
Optimization and Decision Support Techniques. Springer, New York

Burke E, Kendall G (eds) (2014) Search Methodologies - Introductory Tutorials
in Optimization and Decision Support Techniques, Second Edition. Springer, New
York

Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-
Heuristics: An Emerging Direction in Modern Search Technology. In: Glover F,
Kochenberger GA (eds) Handbook of Metaheuristics, Kluwer Academic Publish-
ers, Norwell, MA, pp 457-474

Cadenas JM, Garido MC, Munoz E (2009) Using Machine Learning in a Coopera-
tive Hybrid Parallel Strategy of Metaheuristics. Information Sciences 179(19):3255—
3267

Canti-Paz E (2005) Theory of Parallel Genetic Algorithms. In: Alba, E (ed) Par-
ralel Metaheuristics: A New Class of Algorithms, John Wiley & Sons, Hoboken,
pp 425-445

Carrabs F, Cerulli R, Mansini R, Moreschini L, Serra D (2024) Solving the Set
Covering Problem with Conflicts on Sets: A New Parallel GRASP. Computers &
Operations Research 166(106620)

Cavalcante CBC, Cavalcante VF, Ribeiro CC, Souza MC (2002) Parallel Cooper-
ative Approaches for the Labor Constrained Scheduling Problem. In: Ribeiro C,
Hansen P (eds) Essays and Surveys in Metaheuristics, Kluwer Academic Publishers,
Norwell, MA, pp 201-225

Cecilia JM, Garcia JM, Nisbet A, Amos M, Ujaldén M (2013) Enhancing Data Par-
allelism for Ant Colony Optimization on GPUs. Journal of Parallel and Distributed
Computing 73(1):42-51

Chagas GO, Lorena LAN, dos Santos RDC, Renaud J, Coelho LC (2024) A Parallel
Variable Neighborhood Search for a-neighbor Facility Location Problem. Comput-
ers & Operations Research 165(1406589)

Cordeau JF, Maischberger M (2012) A Parallel Iterated Tabu Search Heuristic for
Vehicle Routing Problems. Computers & Operations Research 39(9):2033-2050

CIRRELT-2024-21 41

Parallel Meta-Heuristic Search

[20]

[27]

[28]

[34]

[35]

[36]

[37]

Cordeau JF, Laporte G, Mercier A (2001) A Unified Tabu Search Heuristic for Ve-
hicle Routing Problems with Time Windows. Journal of the Operational Research
Society 52(8):928-936

Crainic TG (2005) Parallel Computation, Co-operation, Tabu Search. In: Rego
C, Alidaee B (eds) Metaheuristic Optimization Via Memory and Evolution: Tabu
Search and Scatter Search, Kluwer Academic Publishers, Norwell, MA, pp 283-302

Crainic TG (2008) Parallel Solution Methods for Vehicle Routing Problems. In:
Golden, BL, Raghavan, S, Wasil, EA (eds) The Vehicle Routing Problem: Latest
Advances and New Challenges, Springer, New York, pp 171-198

Crainic TG (2018) Parallel Meta-Heuristic Search. In: Marti, R, Pardalos, PM,
Resende, MGC (eds) Handbook of Heuristics, Springer, New York, pp 809-847

Crainic TG (2019) Parallel Metaheuristics and Cooperative Search. In: Gendreau
M, Potvin JY (eds) Handbook of Metaheuristics, Third Edition, Springer, pp 419-
451

Crainic TG, Gendreau M (1999) Towards an Evolutionary Method - Cooperating
Multi-Thread Parallel Tabu Search Hybrid. In: Vof§ S, Martello S, Roucairol C,

Osman, IH (eds) Meta-Heuristics 98: Theory & Applications, Kluwer Academic
Publishers, Norwell, MA, pp 331-344

Crainic TG, Gendreau M (2002) Cooperative Parallel Tabu Search for Capacitated
Network Design. Journal of Heuristics 8(6):601-627

Crainic TG, Gendreau M (2021) Heuristics and Metaheuristics for Fixed-Charge
Network Design. In: Crainic TG, Gendreau M, Gendron B (eds) Network Design
with Applications in Transportation and Logistics, Springer, Boston, chap 4, pp
91-138

Crainic TG, Hail N (2005) Parallel Meta-Heuristics Applications. In: Alba, E (ed)
Parallel Metaheuristics: A New Class of Algorithms, John Wiley & Sons, Hoboken,
NJ, pp 447 494

Crainic TG, Toulouse M (1998) Parallel Metaheuristics. In: TG Crainic, G Laporte
(eds) Fleet Management and Logistics, Kluwer Academic Publishers, Norwell, MA|
pp 205-251

Crainic TG, Toulouse M (2003) Parallel Strategies for Meta-heuristics. In: F Glover
F, Kochenberger GA (eds) Handbook in Metaheuristics, Kluwer Academic Publish-
ers, Norwell, MA, pp 475-513

Crainic TG, Toulouse M (2008) Explicit and Emergent Cooperation Schemes for
Search Algorithms. In: Maniezzo, V, Battiti, R, Watson, J-P (eds) Learning and
Intelligent Optimization, Springer-Verlag, Berlin, Lecture Notes in Computer Sci-
ence, vol 5315, pp 95-109

42 CIRRELT-2024-21

Parallel Meta-Heuristic Search

[38]

[39]

[40]

[41]

[46]

[47]

[48]

[49]

Crainic TG, Toulouse M (2010) Parallel Meta-Heuristics. In: Gendreau M, Potvin
JY (eds) Handbook of Metaheuristics, Second Edition, Springer, pp 497-541

Crainic TG, Toulouse M, Gendreau M (1996) Parallel Asynchronous Tabu Search
for Multicommodity Location-Allocation with Balancing Requirements. Annals of
Operations Research 63:277-299

Crainic TG, Toulouse M, Gendreau M (1997) Towards a Taxonomy of Parallel
Tabu Search Algorithms. INFORMS Journal on Computing 9(1):61-72

Crainic TG, Gendreau M, Hansen P, Mladenovi¢ N (2004) Cooperative Parallel
Variable Neighborhood Search for the p-Median. Journal of Heuristics 10(3):293—
314

Crainic TG, Di Chiara B, Nonato M, Tarricone L (2006) Tackling Electrosmog
in Completely Configured 3G Networks by Parallel Cooperative Meta-Heuristics.
IEEE Wireless Communications 13(6):34-41

Crainic TG, Li Y, Toulouse M (2006) A First Multilevel Cooperative Algorithm
for the Capacitated Multicommodity Network Design. Computers & Operations
Research 33(9):2602-2622

Crainic TG, Crisan GC, Gendreau M, Lahrichi N, Rei W (2009) A Concurent Evo-
lutionary Approach for Cooperative Rich Combinatorial Optimization. In: Genetic
and Evolutionary Computation Conference - GECCO 2009, July 8-12, Montréal,
Canada, ACM, CD-ROM

Crainic TG, Crisan GC, Gendreau M, Lahrichi N, Rei W (2009) Multi-thread Inte-
grative Cooperative Optimization for Rich Combinatorial Problems. In: The 12th
International Workshop on Nature Inspired Distributed Computing - NIDISC’09,
25-29 May, Rome, CD-ROM

Crainic TG, Davidovi¢ T, Ramljak D (2014) Designing Parallel Meta-Heuristic
Methods. In: Despotovic-Zrakic, M, Milutinovic, V, Belic, A (eds) High Perfor-
mance and Cloud Computing in Scientific Research and Education, IGI Global,
Hershey, PA, U.S.A., pp 260-280

Cung VD, Martins SL, Ribeiro CC, Roucairol C (2002) Strategies for the Parallel
Implementations of Metaheuristics. In: Ribeiro C, Hansen P (eds) Essays and
Surveys in Metaheuristics, Kluwer Academic Publishers, Norwell, MA, pp 263-308

Dai C, Li B, Toulouse M (2009) A Multilevel Cooperative Tabu Search Algorithm
for the Covering Design Problem. Journal of Combinatorial Mathematics and Com-
binatorial Computing 68:35-65

Davidovi¢ T, Crainic TG (2015) Parallel Local Search to Schedule Communicating
Tasks on Identical Processors. Parallel Computing 48:1-14

CIRRELT-2024-21 43

Parallel Meta-Heuristic Search

[50]

[51]

[52]

[55]

[56]

[57]

[58]

[61]

[62]

Delévacq A, Delisle P, Gravel M, Krajecki M (2013) Parallel Ant Colony Optimiza-
tion on Graphics Processing Units. Journal of Parallel and Distributed Computing
73(1):52-61

Di Chiara B (2006) Optimum Planning of 3G Cellular Systems: Radio Propaga-
tion Models and Cooperative Parallel Meta-heuristics. PhD thesis, Dipartimento
di ingegneria dell’innovatione, Universita degli Studi di Lecce, Lecce, Italy

Doerner KF, Hartl RF, Benkner S, Lucka M (2006) Cooperative Savings Based Ant
Colony Optimization - Multiple Search and Decomposition Approaches. Parallel
Processing Letters 16(3):351-369

Dokeroglu T, E S, Kucukyilmaz T, Cosar A (2019) A Survey on New Generation
Metaheuristic Algorithms. Computers & Industrial Engineering 137(106040)

Drias H, Ibri A (2003) Parallel ACS for Weighted MAX-SAT. In: Mira, J, Alvarez,
J (eds) Artificial Neural Nets Problem Solving Methods - Proceedings of the 7th
International Work-Conference on Artificial and Natural Neural Networks, Lecture
Notes in Computer Science, vol 2686, Springer-Verlag, Heidelberg, pp 414-421

El Hachemi N, Crainic TG, Lahrichi N, Rei W, Vidal T (2015) Solution Integration
in Combinatorial Optimization with Applications to Cooperative Search and Rich
Vehicle Routing. Journal of Heuristics 21(5):663-685

Essaid M, Idoumghar L, Lepagnot J, Brévilliers M (2018) GPU Parallelization
Strategies for Metaheuristics: A Survey. International Journal of Parallel, Emergent
and Distributed Systems 34(5):497-522.

Garcia-Lépez F, Melidn-Batista B, Moreno-Pérez JA, Moreno-Vega JM (2003) Par-
allelization of the Scatter Search for the p-Median Problem. Parallel Computing
29:575-589

Garcia-Lopez F, Garcia Torres M, Melian-Batista B, Moreno-Pérez JA, Moreno-
Vega JM (2005) Parallel Scatter Search. In: Alba, E (ed) Parallel Metaheuristics:
A New Class of Metaheuristics, John Wiley & Sons, Hoboken, NJ, pp 223-246

Garcia-Lépez F, Garcia Torres M, Melian-Batista B, Moreno-Pérez JA, Moreno-
Vega JM (2006) Solving Feature Subset Selection Problem by a Parallel Scatter
Search. European Journal of Operational Research 169(2):477-489

Gehring H, Homberger J (2002) Parallelization of a Two-Phase Metaheuristic for
Routing Problems with Time Windows. Journal of Heuristics 8(3):251-276

Gendreau M, Toulouse JY Potvin (2010) Handbook of Metaheuristics, Second Edi-
tion. Springer

Gendreau M, Toulouse JY Potvin (2019) Handbook of Metaheuristics, Third Edi-
tion. Springer

44 CIRRELT-2024-21

Parallel Meta-Heuristic Search

[63]

[64]

[65]

Gendreau M, Hertz A, Laporte G (1994) A Tabu Search Heuristic for the Vehicle
Routing Problem. Management Science 40(10):1276-1290

Gendreau M, Guertin F, Potvin JY, Taillard ED (1999) Tabu Search for Real-Time
Vehicle Routing and Dispatching. Transportation Science 33(4):381-390

Gendreau M, Laporte G, Semet F (2001) A Dynamic Model and Parallel
Tabu Search Heuristic for Real-time Ambulance Relocation. Parallel Computing
27(12):1641-1653

Glover F (1989) Tabu Search — Part I. ORSA Journal on Computing 1(3):190-206
Glover F (1990) Tabu Search — Part II. ORSA Journal on Computing 2(1):4-32

Glover F (1996) Tabu Search and Adaptive Memory Programming — Advances,
Applications and Challenges. In: Barr R, Helgason R, Kennington J (eds) Inter-
faces in Computer Science and Operations Research, Kluwer Academic Publishers,
Norwell, MA, pp 1-75

Glover F, Kochenberger GA (eds) (2003) Handbook of Metaheuristics. Kluwer Aca-
demic Publishers, N.Y.

Glover F, Laguna M (1997) Tabu Search. Kluwer Academic Publishers, Norwell,
MA

Goldberg, DE (1989) Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA

Groér C, Golden B, Wasil E (2011) A Parallel Algorithm for the Vehicle Routing
Problem. INFORMS Journal on Computing 23(2):315-330

Hidalgo JI, Prieto M, Lanchares J, Baraglia R, Tirado F, Garnica O (2003) Hy-
brid Parallelization of a Compact Genetic Algorithm. In: Proceedings of the 11th
uromicro Conference on Parallel, Distributed and Network-Based Processing, pp
449-455

Hijazi NM, Faris H, Aljarah I (2021) A Parallel Metaheuristic Approach for En-
semble Feature Selection Based on Multi-core Architectures. Expert Systems with
Applications 182(115290)

Holland JH (1975) Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI

Izzo D, Rucinski M, Ampatzis C (2009) Parallel Global Optimisation Meta-
heuristics Using an Asynchronous Island-model. In: CEC’09 - IEEE Congress on
Evolutionary Computation, IEEE, pp 2301-2308

CIRRELT-2024-21 45

Parallel Meta-Heuristic Search

[77]

James T, Rego C, Glover F (2009) A Cooperative Parallel Tabu Search Algorithm
for the Quadratic Assignment Problem. European Journal of Operational Research
195(3):810-826

Jin J, Crainic TG, Lgkketangen A (2012) A Parallel Multi-Neighborhood Cooper-
ative Tabu Search for Capacitated Vehicle Routing Problems. European Journal of
Operational Research 222(3):441-451

Jin J, Crainic TG, Leokketangen A (2014) A Cooperative Parallel Metaheuristic
for the Capacitated Vehicle Routing Problem. Computers & Operations Research
44:33-41

Laguna M, Marti R (2003) Scatter Search: Methodology and Implementations in
C. Kluwer Academic Publishers, Norwell, MA

Laguna M, Martinez-Gavara A, Perez-Pel6 S, Resende MGC (2023) 20 Years
of Greedy Randomized Adaptive Search Procedures with Path Relinking. DOI:
10.48550/arXiv.2312.12663

Lahrichi N, Crainic TG, Gendreau M, Rei W, Crisan CC, Vidal T (2015) An Inte-
grative Cooperative Search Framework for Multi-Decision-Attribute Combinatorial
Optimization. European Journal of Operational Research 246(2):400-412

Le Bouthillier A (2007) Recherches coopératives pour la résolution de problemes
d’optimisation combinatoire. PhD thesis, Département d’informatique et de
recherche opérationnelle, Université de Montréal, Montréal, QC, Canada

Le Bouthillier A, Crainic TG (2005) A Cooperative Parallel Meta-Heuristic for the
Vehicle Routing Problem with Time Windows. Computers & Operations Research
32(7):1685-1708

Le Bouthillier A, Crainic TG, Kropf P (2005) A Guided Cooperative Search for the
Vehicle Routing Problem with Time Windows. IEEE Intelligent Systems 20(4):36—
42

Lee SY, Lee KG (1996) Synchronous and Asynchronous Parallel Simulated Anneal-
ing with Multiple Markov Chains. IEEE Transactions on Parallel and Distributed
Systems 7(10):993-1007

Ling C, Hai-Ying S, Shu W (2012) A Parallel Ant Colony Algorithm on Massively
Parallel Processors and its Convergence Analysis for the Travelling Salesman Prob-
lem. Information Sciences 199:31-42

Lopes Silva MA| de Souza SR, Souza MJF, de Franga Filho MF (2018) Hybrid meta-
heuristics and multi-agent systems for solving optimization problems: A review of
frameworks and a comparative analysis. Applied Soft Computing 71:433-459

46 CIRRELT-2024-21

Parallel Meta-Heuristic Search

[89]

[90]

[91]

[92]

[100]

Luque G, Alba E (eds) (2011) Parallel Genetic Algorithyms: Theory and Real
World Applications. Springer

Luque G, Luna F, Alba E, Nesmachnow S (2011) Exploring the Accuracy of a
Parallel Cooperative Model for Trajectory-Based Metaheuristics. In: Moreno-Diaz
R, Pichler F, Arencibia AQ (eds) Computer Aided Systems Theory - EUROCAST
2011 Part I, Springer-Verlag, Lecture Notes in Computer Science, vol 6927, pp
319-326

Maniezzo V, Boschetti MA, Stiitzle T (2021) Matheuristics - Algorithms and Im-
plementations. Springer

Marti R, Pardalos PM, Resende MGC (eds) (2018) Handbook of Heuristics.
Springer, New York

Mehdi M, Loukil L, Bendjoudi A, Melab N (2013) Parallel GPU-accelerated Meta-
heuristics. In: Couturier R (ed) Designing Scientific Applications on GPUs, Chap-
man and Hall / CRC, pp 202-216

Melab N, Talbi EG, Cahon S, Alba E, Luque G (2006) Parallel Metaheuristics:
Models and Frameworks. In: EL-Ghazali Talbi (ed) Parallel Combinatorial Opti-
mization, John Wiley & Sons, New York, pp 149-162

Melab N, Luong TV, Boufaras K, Talbi EG (2011) Towards ParadisEO-MO-GPU:
A Framework for GPU-based Local Search Metaheuristics. In: Cabestany J, Ro-
jas I, Joya G (eds) Advances in Computtational Intelligence - Lecture Notes in
Computer Science 6691, Springer, pp 401408

Michalewicz, Z (1992) Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer-Verlag, Berlin

Middendorf M, Reischle F, Schmeck H (2002) Multi Colony Ant Algorithms. Jour-
nal of Heuristics 8(3):305-320

Niar S, Fréville A (1997) A Parallel Tabu Search Algorithm For The 0-1 Multidi-
mensional Knapsack Problem. In: 11th International Parallel Processing Sympo-
sium (IPPS ’97), Geneva, Switzerland, IEEE, pp 512-516

Oduntan 10, Toulouse M, Baumgartner R, Bowman C, Somorjai R, Crainic TG
(2008) A Multilevel Tabu Search Algorithm for the Feature Selection Problem in
Biomedical Data Sets. Computers & Mathematics with Applications 55(5):1019—
1033

Oteiza PP, Rodriguez A, Brignole NB (2018) Parallel Cooperative Optmization
Through Hyperheuristics. In: Eden MR, Ierapetritou M, Towler GP (eds) Pro-
ceedings of the 13thInternational Symposium on Process Systems Engineering —
PSE 2018, Elsevier, pp 201225

CIRRELT-2024-21 47

Parallel Meta-Heuristic Search

[101]

[102]

103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

Ouyang M, Toulouse M, Thulasiraman K, Glover F, Deogun JS (2000) Multi-Level
Cooperative Search: Application to the Netlist/Hypergraph Partitioning Problem.
In: Proceedings of International Symposium on Physical Design, ACM Press, pp
192-198

Ouyang M, Toulouse M, Thulasiraman K, Glover F, Deogun JS (2002) Multilevel
Cooperative Search for the Circuit/Hypergraph Partitioning Problem. IEEE Trans-
actions on Computer-Aided Design 21(6):685-693

Pedemonte M, Nesmachnow S, Cancela H (2011) A Survey of Parallel Ant Colony
Optimization. Applied Soft Computing 11(8):5181-5197

Penas DR, Henriques D, Gonzélez P, Doallo R, Saez-Rodriguez J, Banga JR (2017)
A Parallel Metaheuristic for Large Mixed-integer Dynamic Optimization Problems,
with Applications in Computational Biology. PLoS ONE 12(8):207-218

Polacek M, Benkner S, Doerner KF, Hartl RF (2008) A Cooperative and Adaptive
Variable Neighborhood Search for the Multi Depot Vehicle Routing Problem with
Time Windows. Business Research 1(2):207-218

Rahmaniani R, Crainic TG, Gendreau M, Rei W (2024) An Asynchronous Parallel
Benders Decomposition Method for Stochastic Network Design Problems. Com-
puters & Operations Research 162(106459)

Ribeiro CC, Rosseti I (2007) Efficient Parallel Cooperative Implementations of
GRASP Heuristics. Parallel Computing 33(1):21-35

Rico-Garcia H, Sanchez-Romero JL, Gomis HM, Rao RzV (2020) Parallel Imple-
mentation of Metaheuristics for Optimizing Tool Path Computation on CNC Ma-
chining. Computers in Industry 123(103322)

Rios E, Ochi LS, Beeres C, Coelho VN, Ceelho IM, Faria R (2017) Exploring parallel
multi-GPU local search strategies in a metaheuristic framework. Journal of Parallel
and Distributed Computing DOI: https://doi.org/10.1016/j.jpdc.2017.06.011

Rochat Y, Taillard ED (1995) Probabilistic Diversification and Intensification in
Local Search for Vehicle Routing. Journal of Heuristics 1(1):147-167

Sanvicente-Sanchez H, Frausto-Solis J (2002) MPSA: A Methodology to Paral-
lelize Simulated Annealing and Its Application to the Traveling Salesman Prob-
lem. In: Coello Coello C, de Albornoz A, Sucar L, Battistutti O (eds) MICAI
2002: Advances in Artificial Intelligence, Lecture Notes in Computer Science, vol
2313, Springer-Verlag Heidelberg, pp 89-97

Saviniec L, Santos MO, dos Santos LMR (2004) Pattern-Based Models and a Co-
operative Parallel Netaheuristic for High School Timetabling Problems. European
Journal of Operational Research 280(3):1064-10,813

48 CIRRELT-2024-21

Parallel Meta-Heuristic Search

[113]

[114]

[115]

116]

[117]

18]

119

[120]

[121]

[122]

123]

[124]

Schryen G (2020) Parallel Computational Optimization in Operations Research: A
New Integrative Framework, Literature Review and Research Directions. European
Journal of Operational Research 287(1):1-18

Schryen G (2024) Speedup and Efficiency of Computational Parallelization: A
Unifying Approach and Asymptotic Analysis. Journal of Parallel and Distributed
Computing 187(104835)

Schulze J, Fahle T (1999) A Parallel Algorithm for the Vehicle Routing Problem
with Time Window Constraints. Annals of Operations Research 86:585-607

Sevkli M, Aydin ME (2007) Parallel Variable Neighbourhood Search Algorithms
for Job Shop Scheduling Problems. IMA Journal of Management Mathematics
18(2):117-133

Shami TM, El-Saleh AA, Alswaitti M, Al-Tashi Q, Summakieh MA, Mirjalili
S (2022) Particle Swarm Optimization: A Comprehensive Survey. IEEE Access
10:10,031-10,061

Taillard ED (1993) Parallel Iterative Search Methods for Vehicle Routing Problems.
Networks 23(8):661-673

Taillard ED, Gambardella LM, Gendreau M, Potvin JY (1997) Adaptive Memory
Programming: A Unified View of Metaheuristics. European Journal of Operational
Research 135(1):1-10

Talbi EG (ed) (2009) Metaheuristics: From Design to Implementation. John Wiley
& Sons, Hoboken, NJ

Tan Y, Ding K (2016) A Survey on GPU-Based Implementation of Swarm Intelli-
gence Algorithms. IEEE Transactions on Cybernetics 46(9):2168-2267

Tongcheng G, Chundi M (2002) Radio Network Using Coarse-Grained Parallel
Genetic Algorithms with Different Neighbor Topology. In: Proceedings of the 4th
World Congress on Intelligent Control and Automation, vol 3, pp 1840-1843

Toulouse M, Crainic TG, Gendreau M (1996) Communication Issues in Designing
Cooperative Multi Thread Parallel Searches. In: Osman IH, Kelly JP (eds) Meta-
Heuristics: Theory & Applications, Kluwer Academic Publishers, Norwell, MA, pp
501-522

Toulouse M, Crainic TG, Sansé B, Thulasiraman K (1998) Self-Organization in
Cooperative Search Algorithms. In: Proceedings of the 1998 IEEE International
Conference on Systems, Man, and Cybernetics, Omnipress, Madisson, WI, pp 2379—
2385

CIRRELT-2024-21 49

Parallel Meta-Heuristic Search

[125]

[126]

[127]

[128]

[129]

[130]

[131]

Toulouse M, Crainic TG, Sansé B (1999) An Experimental Study of Systemic
Behavior of Cooperative Search Algorithms. In: Vo3 S, Martello S, Roucairol C,
Osman TH (eds) Meta-Heuristics 98: Theory & Applications, Kluwer Academic
Publishers, Norwell, MA, pp 373-392

Toulouse M, Thulasiraman K, Glover F (1999) Multi-Level Cooperative Search:
A New Paradigm for Combinatorial Optimization and an Application to Graph
Partitioning. In: Amestoy P, Berger P, Daydé M, Duff I, Frayssé V, Giraud L,
Ruiz D (eds) 5th International Euro-Par Parallel Processing Conference, Lecture
Notes in Computer Science, vol 1685, Springer-Verlag, Heidelberg, pp 533-542

Toulouse M, Crainic TG, Thulasiraman K (2000) Global Optimization Properties of
Parallel Cooperative Search Algorithms: A Simulation Study. Parallel Computing
26(1):91-112

Toulouse M, Crainic TG, Sansé B (2004) Systemic Behavior of Cooperative Search
Algorithms. Parallel Computing 30(1):57-79

Vallada E, Ruiz R (2009) A Cooperative Metaheuristics for the Permutation Flow-
shop Scheduling Problem. European Journal of Operational Research 193(2):365-
376

Van Luong T, Melab N, Talbi EG (2013) GPU Computing for Parallel Local Search
Metaheuristic Algorithms. IEEE Transactions on Computers 62(1):173-185

Vidal T, Crainic TG, Gendreau M, Lahrichi N, Rei W (2012) A Hybrid Genetic
Algorithm for Multi-Depot and Periodic Vehicle Routing Problems. Operations
Research 60(3):611-624

50 CIRRELT-2024-21

	CIRRELT-2024-21-abstract.pdf
	Bibliothèque et Archives Canada, 2024

