
 

 

      CIRRELT-2024-34 
 
 
 
 
 
 
 
 

 
A Dynamic Drone Routing Problem with 
Uncertain Demand and Energy Consumption 
 

 Patrizia Beraldi 
 Gulherme O. Chagas 
 Leandro C. Coelho 
 Demetrio Laganà 
 
 
 October 2024 

  
 
 
 

Document de travail également publié par la Faculté 
des sciences de l’administration de l’Université Laval, 
sous le numéro FSA-2024-006 

 
 

 
 

 
 

 
 



A Dynamic Drone Routing Problem with Uncertain Demand 
and Energy Consumption 

Patrizia Beraldi1, Gulherme O. Chagas2,3, Leandro C. Coelho2,3,4*,
Demetrio Laganà1,2 

1. Department of Mechanical, Energy and Management Engineering (DIMEG),
University of Calabria, Via P. Bucci, Cubo 41C, 87036 - Arcavacata di Rende (CS),
Italy

2. Interuniversity Research Centre on Enterprise Networks, Logistics and
Transportation (CIRRELT)

3. Department  of  Operations and  Decision  Systems, Université Laval, Québec,
Canada

4. Canada Research Chair in Integrated Logistics, Université Laval, Québec,
Canada

Abstract. This work addresses a drone route problem with a homogeneous fleet 
and with same-day deliveries in a dynamic and uncertain environment. We 
model this problem as a Markov Decision Process to capture the stochastic 
nature of requests' demands and the uncertainty in energy consumption due to 
varying payloads and weather conditions. To tackle this problem, we propose an 
approximate dynamic algorithm that integrates routing planning, drone usage, 
and battery management. The approach employs chance constraints to ensure 
that drone trips are completed safely, considering energy uncertainties and 
preventing premature returns to the depot. The proposed approach features a 
cost function approximation policy that accounts for a restricted number of trips 
to be assigned to drones. This ensures that the drones are ready at the depot to 
fulfill new requests that may arise during the day. Extensive computational 
experiments in 300 instances validate our method's effectiveness, 
demonstrating its superiority over a myopic strategy and highlighting its 
potential for practical applications.  
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1. Introduction

Drone delivery can redefine the shipping market as drones offer a promising alternative to

traditional delivery methods, especially in congested urban areas or locations that are difficult

to reach by conventional vehicles. Moreover, they can contribute to sustainable development as

electric-powered drones produce fewer emissions than traditional delivery vehicles (Garg et al.,

2023). Large distributors like Amazon have already tried these innovative ways to deliver goods.

These services have also emerged within the grocery and restaurant domain, e.g., Uber Eats

Drone Delivery and KFC Drone fast food delivery focusing on delivering food within tight

deadlines and time windows. Aside from commercial use, drones can deliver relief items in

humanitarian logistics and refill medicines in healthcare projects.

Ongoing improvements in drone technology, such as increased payload capacity, extended

range, and improved safety features, continue to expand the potential of drone delivery, posing

new challenges in optimizing logistic operations. In this paper, we address the problem of

optimizing a daily delivery service by exploiting a fleet of identical drones under demand and

energy consumption uncertainty. This entails designing a system that dynamically creates

trips and optimizes their assignment to drones, considering the evolving delivery requirements

throughout the day.

In optimizing drone operations, batteries represent the most critical resource. Most medium-

sized civilian drones are powered by lithium-ion batteries that can guarantee a limited airborne

time. Thus, drones should make multiple trips with frequent stops at the depot for battery

swaps, i.e., replacing the discharged battery with a fully charged one before performing another

trip. Properly addressing battery usage and fully exploiting their range ensures an efficient sys-

tem design. In our proposed approach, we build trips serving multiple requests, each delivering

a small package to a customer location. In the rest of the paper, we use the terms request,

delivery, customer, delivery request or customer request interchangeably.

The number of deliveries on a trip depends on the total payload limited by the drone ca-

pacity and energy consumption. Our approach assumes that consumption is a function of the

payload and flight time. Considering load-dependent consumption is essential for accurate en-

ergy estimates since heavier loads require more energy. In addition, drones are more sensitive to

weather conditions than traditional vehicles. For example, wind can influence the drone’s speed
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and, thus, the flight time and range. To account for uncertainty, we assume that the energy

consumption is random, and we employ the paradigm of chance constraints to build safe trips,

avoiding routing the drones back to the depot prematurely and delaying the delivery service.

We model our problem setting as a Markov decision process (MDP) to represent the dynamic

stochastic nature of the request arrival. Moreover, since we consider time-sensitive requests, we

allow customers to be served after their soft deadline. The objective of our problem is to define

routing plans that maximize the number of customers served while minimizing the total expected

cost, which is the sum of the expected routing cost and the cost of the expected lateness to

make deliveries. Finally, dynamic drone dispatching is carried out at the depot to ensure equal

battery usage.

Our work contributes to the literature on drone delivery problems, defining a decision ap-

proach that accounts for the dynamic stochastic process of request arrival, the uncertainty

affecting energy consumption, and the deterioration of batteries. More specifically, our paper

makes the following contributions to existing literature:

• From a modeling perspective, we propose a decision approach where routing decisions also

account for ground service operations, i.e., charging and assignment of the batteries to

drones;

• In a novel approach, we address two significant issues typically dealt with separately in the

existing literature. In particular, we propose an MDP model accounting for the dynamic

and stochastic nature of the arrival process and for uncertainty in energy consumption by

applying the paradigm of chance constraints;

• Methodologically, we present a tailored cost function approximation (CFA) policy to facil-

itate decision-making. The policy is defined based on decomposing decisions into simple

and sequential actions that are taken by solving mathematical formulations in which the

optimal solution of one provides the input for the next. A calibrated threshold on the

maximum number of trips assigned to each drone at each decision epoch is defined. This

represents a means of accounting for future requests when a decision is taken;

• The paper provides extensive computational experiments on instances derived from the

literature. The results demonstrate the effectiveness of our approach versus myopic strate-
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gies.

In our contribution, we focus on a same-day delivery problem, and we assume that the

delivery requests are not known in advance, but they arrive randomly during the day. Each

request is associated with a (soft) deadline, limiting the time between its realization and the

service time. This temporal dimension, reflecting the time sensitivity in the fulfillment of the

customer requests, makes our framework general and applicable in other contexts, such as in

emergency medical services, where requests with tight due dates require immediate attention

and have a higher priority in the route planning phase.

The paper is organized as follows. In Section 2, we position our work concerning the litera-

ture. Section 3 describes the problem, whereas Section 4 presents the mathematical modeling of

the problem as an MDP. The solution approach of our cost function approximation is described

in Section 5, where its steps and actions are detailed in Section 5.3. In Section 6, we outline

the data sets and present the results of computational tests of our solution approach. Finally,

Section 7 provides some conclusions and discusses future work.

2. Literature Review

Delivery problems involving drones are typically classified into pure and combined truck-

drone problems. In the first case, drones represent the sole vehicles operated by the service

provider, whereas in the second case, drones cooperate with ground vehicles to complete the

service to customers. Routing problems of the second class have been extensively studied since

the introduction of the first problem combining a truck and a drone by Murray and Chu (2015).

Later on, different variants of the problem have been investigated. We refer interested readers to

Macrina et al. (2020), where the authors provide a drone problem taxonomy and classification

according to the different cooperation models.

The drone-only problem, often framed as a variant of the vehicle routing problem (VRP),

has received comparatively less attention. Dorling et al. (2017) proposed a multi-trip vehicle

routing formulation in which a single drone at a depot executes multiple trips to satisfy the

delivery requests. A notable contribution was examining the relationship between the drone’s

energy consumption and the total payload, including the battery weight. Addressing this rela-

tionship led to the formulation of a challenging mixed-integer programming problem solved by
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a simulated annealing heuristic algorithm.

Coelho et al. (2017) studied a multi-objective routing problem where charging stations are

used to extend the limited range of drones. The proposed problem has seven different objective

functions, one of which is the minimization of the energy required by the drone batteries.

However, the energy required is estimated using a simple function that depends on the drone’s

speed instead of a realistic consumption model.

Cheng et al. (2020a) extended the multi-trip formulation proposed in Dorling et al. (2017) by

modeling the energy consumption as a nonlinear function of payload and travel distance. The

problem is solved by a specialized branch-and-cut algorithm where logical cuts and subgradient

cuts are introduced to tackle the nonlinear (convex) energy consumption function. We also refer

the reader to Zhang et al. (2021) for a review, classification, and assessment of the main drone

energy consumption models proposed in the scientific literature.

A few papers consider uncertainty in energy consumption in the drone delivery problems.

Among them, we cite Pugliese et al. (2021), where the authors acknowledged the importance

of considering uncertainty in energy consumption and model the drone and truck problem with

the robust optimization paradigm. In Cheng et al. (2020b), the authors analyze the influence of

weather conditions (mainly wind) in drone flight and propose a two-period data-driven adaptive

distributionally robust approach where wind observation data are used to improve scheduling

decisions. Specifically, the scheduling decisions for the fleet of drones are made in the morning,

with the provision for different delivery schedules in the afternoon that adapt to updated weather

information available by midday. Unlike our approach, the delivery requests are assumed to be

known in advance.

In our contribution, we explicitly deal with uncertainty in energy consumption. As in Dor-

ling et al. (2017), we assume that the energy consumption can be expressed as a function of the

travel time and the load carried out by a drone. Uncertainty in the weather conditions affects

travel time and, as a consequence, energy consumption. Moreover, considering load-dependent

energy consumption makes the delivery problem even more challenging. As packages are de-

livered, the drone gets lighter, and energy consumption changes. Thus, accounting for load

variation becomes essential for accurately estimating energy consumption. This also impacts

the assignment of the delivery requests to the available drones to reduce the overall energy

consumption during the delivery process. Unlike the contributions mentioned above, we employ
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the chance constraint paradigm (Ruszczyński and Shapiro, 2003) to build trips that satisfy the

energy requirement with a high probability level, thus avoiding drones being routed back to the

depot before completing the assigned trip.

Another stream of literature related to our problem is the stochastic dynamic VRP (SD-

VRP). Unlike static (deterministic) problems, where all information is assumed to be known at

the time of decision-making, in a dynamic setting, routing actions are taken under incomplete

information. The new logistic business models prioritize instant gratification and real-time ful-

fillment and are the main drivers of this paradigm shift. Applications range from ride-hailing

services (Gao et al., 2024) to restaurant delivery (Ulmer et al., 2021), as well as emergency

repair or health care services (van Steenbergen et al., 2023). Uncertainty is typically related

to the arrival of new requests (see, e.g., Ulmer et al. (2019) and Zhang and Woensel (2023))

and changes in the fleet size, for example, by the inclusion of crowdsourced drivers and their

behavior (Ulmer and Savelsbergh, 2020).

SDVRPs are generally modeled as MDPs, where a sequence of routing decisions is defined

in reaction and anticipation of newly revealed stochastic information. Interested readers are

referred to the recent review of Soeffker et al. (2022), where the authors analyze different con-

tributions on SDVRP in the light of prescriptive analytics, focusing on integrating information

models into decision models via computational methods. Also related to the problem considered

in this work are the contributions of Chen et al. (2022, 2023), where the authors analyze a same-

day delivery problem with stochastic customer requests. In these studies, the fleet comprises

conventional vehicles and drones.

Another work related to our study is that of Ulmer and Thomas (2018), where the authors

investigate the impact of using a heterogeneous fleet for delivery service in a dynamic routing

problem for the first time. Uncertainty is related to customer requests being revealed throughout

the day. Indeed, until the request is made, no temporal and spatial information is available.

When a new request occurs, the service provider needs to decide whether the new request is

accepted or not. If service is offered, it must be conducted before a deadline, within a predefined

time after the request is placed, and the provider should further decide if the delivery must be

performed by a vehicle or a drone. Modifications should be made to the planned trips to

accommodate new requests and maximize the expected number of deliveries per day.

Similar to these contributions, this work assumes dynamic uncertainty in customer requests,
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but we only consider a fleet of drones that may serve more than one customer per trip. More

importantly, we deal with ground services operations that affect the definition of routing plans.

Moreover, uncertainty in the energy consumption affecting the routing trip design is explicitly

accounted for by integrating probabilistic constraints. Finally, the problem is tackled using an

algorithm that iteratively and dynamically plans both the routes and drone deployment.

3. Problem description

This section formally describes the drone routing problem accounting for ground service

operations. We focus on the same-day delivery problem and assume that a delivery company

randomly receives requests during the day. The working day is discretized and represented by

the time horizon T = {0, 1, . . . , T}. Each request r is associated with a tuple of information:

the delivery location (ir), the corresponding load (qr), and a soft deadline (lr ∈ T ) representing

a time within which the request should be fulfilled after it is placed. In addition, a service time

(η), assumed to be the same for all deliveries, is also considered.

Delivery requests come from an area that can be reached by drones based at a depot, also

referred to as a charging station. The service area is represented by a complete undirected

graph G = (N ,A), where the set N includes the depot, identified by node i0, and the vertices

associated with the customer locations N ′ = {i1, i2, . . . , im}. The set of edges A includes all

possible links between pairs of vertices, and each edge {ir, ip} is associated with a travel distance

(cost) denoted as dirip , where the triangle inequality holds.

Delivery service is provided by a fleet of homogeneous drones identified by the set ∆ =

{δ1, δ2, . . . , δn}, each with the same capacity Q and self-weight v, including the weight of both

the drone itself and its battery. The batteries have limited energy capacity, thus allowing for

limited airborne time. This implies that drones must repeatedly return to the depot to swap the

battery, i.e., replacing the discharged battery with a fully charged one, before loading parcels for

the next deliveries. A limited number of batteries is assumed to be available at the depot. These

batteries and those equipped in the drones compose the set of batteries B, where |B| = b. Unlike

other contributions, e.g., Dorling et al. (2017), we do not assume that the delivery company

has enough fully charged batteries to meet the drone’s energy needs for the day. Swapped-out

batteries are charged at the depot while drones operate and are swapped into other drones in

need once fully charged. We denote by ρ the average time needed to perform the swapping
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operation and to equip drones. The recharging time depends on the residual energy of each

used battery.

It is trivial to observe that accounting for charging operations makes the drone routing

problem more challenging, as it requires the coordination of both the routing and the ground

service phases. Batteries can typically withstand only a few hundred charge-discharge cycles

in their lifetime (French, 2021), making them a consumable component in the system. When

planning delivery operations, it is therefore important to use batteries uniformly and to ensure

a balanced usage between them. In the proposed approach, the assignment of a battery to a

drone is performed in such a way as to guarantee a balanced usage, ensuring that all batteries

age equally. We aim to define trips that serve multiple requests and are compatible with the

drone’s carrying capacity and limited energy autonomy. In particular, the energy eirip a drone

requires to fly between locations ir and ip is a function of the required power, which in turn

depends on the payload qirip carried along the edge, in addition to the self-weight v, and on the

travel time expressed as the ratio between the distance dirip and the observed drone speed ξirip .

As in Dorling et al. (2017), the value of the eirip is calculated as:

eirip(qirip , ξirip) =
dirip
ξirip

·

(
(v + qirip)

3
2

√
g3

2pzm

)
, (1)

where g denotes the gravity acceleration, p is the air density, z is the area of the drone’s spinning

blade of each of its m rotors. Since the time unit used in this work for setting the drone speed

is minutes, the required energy is measured in kW/min. Looking at Equation (1), it is easy

to recognize that the energy consumption eirip is uncertain, as its speed ξirip is affected by

the weather (wind). In the following, we assume that this consumption is a random variable

following a Normal distribution. To streamline the notation, we denote it as ẽirip(qirip), omitting

the dependence on drone speed, which will be handled in Section 5.3.

The problem tackled in this paper, referred to as the Drone Routing Problem with Un-

certain Demand and Energy Consumption (DRPUDEC), aims to optimize ground and flight

operations by ensuring a balanced use of the available batteries and accounting for random cus-

tomer requests and random energy consumption in the route design. In particular, we propose

an uncertainty-aware approach based on the MDP framework and the Approximate Dynamic

Programming (ADP) methodology to deal with uncertain customer demands that may occur
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throughout the day, and on the paradigm of chance constraints to ensure the construction of

safe trips, i.e., trips that can be completed with a high probability under unfavorable conditions

that may occur, avoiding that drones might be routed prematurely back to the depot. Routing

plans are created to maximize the number of customers served while minimizing the expected

total cost composed of (a) the routing costs measured in terms of the total expected distance

traveled by drones and (b) the lateness cost due to the expected accumulated lateness as the

approach allows to serve customer’s requests after their soft deadlines. An overview of the

notation used in the description is reported in Table 1.

Table 1: Notation summary.

Problem data
b number of batteries
m number of requests (customers), where r = {1, . . . ,m}
n number of drones
N ′ set of customers nodes (locations), i.e., N ′ = {i1, i2, . . . , im}
G graph G = (N ,A), where N = N ′ ∪ {i0} is the set of customers and the depot and A is the set of edges
dirip distance between locations ir, ip ∈ N
T time horizon, where T = {0, 1, . . . , T}
B set of homogeneous batteries such that |B| = b and β ∈ B
∆ set of homogeneous drones such that |∆| = n and δ ∈ ∆
Ψ time interval between two consecutive epochs
l̄ time range such that customers whose deadline lr lies within tk + l̄ are considered urgent
µd, µl monetary cost per unit of distance and lateness, respectively
Battery data
ρ, e′β battery swapping time and recharge ratio, respectively

ωβ
k number of times, up to epoch k, battery β was swapped
Emin, Emax battery minimum and maximum energy level, respectively
Drone data
m, z, p number of rotors in a drone, area of the drone’s spinning blade, and fluid density of the air, respectively
v,Q, ξ̄ drone’s weight, capacity, and average speed, respectively
ξirip drone’s realized speed between locations ir ∈ N and ip ∈ N
ẽirip (qirip ) energy consumption of a drone carrying qirip and flying between locations ir ∈ N and ip ∈ N
M maximum number of trips that can be assigned to a drone
Trip data
c(γ), τ(γ), ψ(γ) total cost, length, and incurred lateness of a trip γ, respectively
Pγ sequence of request nodes visited by trip γ

C̃Eγ required energy to perform a trip γ
Request data
η delivery service time
ir, qr, lr request r location, demand, and soft deadline, respectively
State data and variables
K set of decision epochs, where k ∈ K
tk time of epoch k, where tk ∈ T
Sk, S

x
k pre-decision and post-decision state, respectively

τ(Sk, x) total traveled distances incurred by action x when system in state Sk at epoch k
ψ(Sk, x) lateness incurred by action x when system in state Sk at epoch k
c(Sk, x) cost incurred by action x when in state Sk at epoch k, where c(Sk, x) = µd · τ(Sk, x) + µl · ψ(Sk, x)
∆k,Bk state of each drone and battery, respectively, at epoch k
∆x

k ,B
x
k state of each drone and battery, respectively, at epoch k due to the execution of action x

X (Sk) set of feasible actions in Sk, x ∈ X (Sk)
Dk set of outstanding requests at epoch k
Dx

k set of outstanding requests due to the execution of action x at epoch k
Uk set newly arrived requests at epoch k
Γk set of trips generated by Algorithm 3 at epoch k, where γ ∈ Γk is a trip
aδ(ir) arrival time of drone δ ∈ ∆ at location ir
θδk route plan for drone δ ∈ ∆ at period k
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4. An MDP formulation

To deal with the dynamic stochastic nature of the problem, we model the DRPUDEC as an

MDP over a finite, discrete-time horizon, and we deal with uncertainty in energy consumption

by adopting the chance constraint paradigm (Ruszczyński and Shapiro, 2003). We denote the

set of decision epochs as K and by tk the time associated with epoch k ∈ K. We assume that

decision epochs occur at regular intervals Ψ. In the following, we describe the main components

of the MDP approach: the states (Section 4.1) and the MDP dynamics (Section 4.2). The

methodology falls in the ADP and it is based on a cost function approximation (Sections 5 and

5.3).

4.1. States

At each epoch k, the system occupies a pre-decision state Sk, which contains all the relevant

information to undertake routing and ground service decisions. Specifically, a state Sk comprises

the current time of day tk, the state of every request, the state of each drone, and the state of

each battery at the charging station. Requests known at epoch k are partitioned into two subsets

denoted as Dk and Uk, respectively. Requests in Dk are called outstanding and are deliveries

that already appeared in the system (before tk) but not yet served because assigned to trips

for which the loading of all the corresponding parcels scheduled in the trip to the drone have

not been started at the charging station, whereas requests in Uk represent the new customers

appearing in epoch k.

We denote by ∆k the set of information describing the state of each drone at epoch k.

Specifically, for each drone δ ∈ ∆k we know the assigned route plan θδk, which consists of a trip

schedule
{
γδk(1), γ

δ
k(2), . . . , γ

δ
k(w)

}
, where w ≤M is the last trip index assigned to the drone and

M is the maximum number of trips that can be assigned to a drone. In the following, for the sake

of simplicity, we shall omit symbols k and δ and the trip index if they are clear from the context.

During a trip, a drone δ can visit several locations before returning to the depot to perform

service tasks. We represent a generic trip γ as a sequence of nodes γ = {i0, i1, . . . , ir, . . . , ip, ip+1}

starting and ending at the depot i0 = ip+1. For each node ir in the trip, we also define the arrival

time aδ (ir). Since the weather conditions influence the flight time in our approach, we shall

consider the corresponding expected value of each trip’s total time, cost, and lateness. Note

that a deadline of lr ∈ T is associated with each delivery. Lateness in service is computed as
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[aδ (ir)− lr]+ = max {0, aδ (ir)− lr}. Once a parcel has been delivered, a drone can execute the

remaining deliveries in the trip. We note that the departure time from a node can be defined

as the sum of the arrival time and the service time η, which is assumed to be constant for all

customers. We can thus associate with each trip a total expected lateness ψ(γ). The total

expected cost of a trip γ is given by

c(γ) = µd · τ(γ) + µl · ψ(γ), (2)

where τ(γ) is the total distance traveled by the drone when performing trip γ, and µd and µl are

the coefficients representing the monetary cost per unit of distance and lateness, respectively.

When a drone δ returns to the depot, it is assigned a fully charged battery. We denote

by ρ the service time associated with the battery swapping and loading of new parcels. If no

fully charged battery is available, i.e., all batteries are being recharged, the drone has to wait

for a battery to be available and assigned to it before leaving the depot for another trip. We

denote by Bk the set of information describing the state of each battery at epoch k. Each

battery is assigned a parameter ωβk , which indicates the number of times the battery has been

swapped from the beginning of the time horizon until epoch k. This latter element guarantees

a balanced utilization when assigning a battery to a drone if several fully recharged batteries

can be assigned.

Formally, we describe a pre-decision state as Sk = (tk,Dk,Uk,∆k,Bk). In the initial state

S0, all drones are available at the depot with empty planned trips, batteries are fully charged,

and ωβ0 are set to 0 for every battery β ∈ B0.

4.2. Dynamics of the DRPUDEC

At a decision epoch k, the decision maker observes the pre-decision state Sk and selects

an action x ∈ X (Sk), where X (Sk) is the set of feasible actions corresponding to the pre-

decision state Sk. An action x consists of two components: (i) it specifies the battery-drone

assignment, and (ii) it updates the routing plan of the drones through the assignment and

routing of newly revealed requests r ∈ Uk and the possible reassignment and re-sequencing of

outstanding requests r ∈ Dk. If the number of fully recharged batteries is lower than the number

of available drones, a partial assignment is made to have some drones wait at the depot. During

trip construction, the following requirements must be met:
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a) the energy level must remain equal to or greater than a safety margin Emin to prevent

the drone from returning to the depot prematurely. Since the energy consumption is

uncertain, this condition is ensured by the chance constraint paradigm, which requires

that the energy consumption to visit all the locations along a given trip is greater than

Emin, with probability α;

b) the requests served in a trip are selected following two rules: minimizing the distance

traveled and reducing the lateness associated with serving requests beyond their stipulated

deadline;

c) drones must return to the depot no later than the end of the day, denoted by T .

Executing an action x in a pre-decision state Sk entails the application of a decision rule, re-

sulting in an immediate cost, denoted by c(Sk, x), which is a contribution from two components:

the total distance traveled by all drones (τ(Sk, x)) and the total lateness in all trips (ψ(Sk, x)).

Here, the cost c(Sk, x) is computed similarly as in Equation (2). A sequence of decision rules

defines a policy, denoted by π = (Xπ
0 (S0), X

π
1 (S1), . . . X

π
T (ST )), and Π denotes the set of all

Markovian deterministic policies. The optimal policy is defined as the one that minimizes the

total expected cost, given the initial state S0:

min
π∈Π

E

[
T∑
k=1

c(Sk, X
π
k (Sk))|S0

]
.

By using the Bellman equation, the cost structure can be recursively restated as:

V (Sk) = min
x∈X (Sk)

{c(Sk, x) + E [V (Sk+1)|Sxk ]} (3)

for k = 1, . . . , T − 1. At the end of the MDP, we have the total cost c, which is the sum of each

component k, c(Sk, x).

Algorithm 1 outlines the dynamics of the MDP. Line 1 initializes the initial state S0, where

all drones are available at the depot, all batteries are fully charged, and the first customers

are revealed. Line 2 sets the initial epoch k and the total cost c to zero. Then, in line 4, the

pre-decision state Sk transitions to post-decision Sxk by taking action x. This step is detailed

in Algorithm 2. Besides the post-decision Sxk , the procedure of line 4 also returns the drones’
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routing and the deliveries’ lateness costs incurred in the deterministic transition to the post-

decision state Sxk . These values are added to the total cost.

Following the generation of Sxk , the procedure entails the implementation of the stochastic

transition to the next pre-decision state Sk+1 at the epoch k + 1, as shown in lines 6–11, which

are detailed in Section 5.2. The steps of the while loop of lines 3–12 are repeated until the end

of the time horizon is reached, and the total cost is returned.

Algorithm 1: Dynamics of the Markov decision process for the DRPUDEC.
input : Set of drones ∆; set of batteries B.
output : Total cost c.

1 S0 = (t0,D0,U0,∆0,B0) // setup initial state S0
2 k ← 0, c← 0
3 while tk < T do

/* deterministic transition to post-decision state Sxk from Sk */

4 Sxk = (tk,Dxk , ∅,∆x
k,Bxk) , c(Sk, x)← process decision state(Sk) // call Algorithm 2

5 c← c+ c(Sk, x) // update total cost

/* stochastic transition to the pre-decision state Sk+1 from Sxk */

6 Uk+1 = {rnew = (irnew , qrnew , lrnew)} // newly revealed requests

7 Dk+1 ← Dxk // update outstanding customers set

8 ∆k+1 ← ∆x
k // update drones’ states

9 Bk+1 ← Bxk // update batteries’ states

10 tk+1 ← tk +Ψ // update next time period

11 k ← k + 1 // advance to the next epoch

12 end
13 return c

5. Solution Methodology

Identifying an optimal policy is challenging due to the three curses of dimensionality af-

fecting the DRPUDEC: (i) the state space is multi-dimensional and can grow exponentially;

(ii) the action space comprises an exponential number of options for assigning and sequencing

delivery requests, and (iii) the outcome space is vast due to the uncertainty in the arrival of the

requests and energy consumption. To overcome these challenges, one of four common strategies

is typically adopted: lookahead approximation or rollout algorithms (LA or RA), value function

approximation (VFA), policy function approximation (PFA), and cost function approximation

(CFA) (Soeffker et al., 2022). LAs or RAs may require significant online computation to assess

the future impact of an action. This may entail incorporating information about future realiza-

tions of requests in a predictive manner, particularly when a routing decision must be made,
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as in the DRPUDEC. VFAs approximate the second term of the Bellman equation (3), but

are limited by dimensionality, which can become quite large in routing problems with multiple

drones. PFAs are best suited when it is possible to design a policy that captures the structure

of the problem to provide decisions. This is a very problem-specific policy, which in the case of

the DRPUDEC means designing a pre-defined policy that decides about the routing, which is

also impractical or inefficient.

Since the DRPUDEC is affected by uncertainties regarding independent random variables

(such as requests and energy consumption of drones), defining a policy based on a state-

independent rule is challenging. CFAs modify a deterministic optimization formulation’s ob-

jective and/or constraints to better account for future uncertainty. This method can be easily

applied to the DRPUDEC where multiple optimization models are considered in sequence to

build a policy that mitigates the inherent limitations of rolling horizon optimization, namely

its tendency towards a rigid and inflexible decision-making process. In fact, in the DRPUDEC,

it is crucial to ensure that decisions account for the opportunity to have a sufficient number of

drones either at the charging station or flying back to it at crucial times. This way, they can be

routed to deliver new requests revealed at each epoch. This aim can be achieved by defining the

maximum number of trips that can be assigned to a single drone, allowing for more informed

decision-making. In the proposed approach, the feasible regions of the optimization problems

presented in Sections 5.3.3 and 5.3.4 are manipulated by the specified maximum number of trips.

These problems are solved to optimality in sequence at each state of the system, as detailed in

the following sections.

We observe that the computational resources for solving the current but manipulated deci-

sion model instances of the optimization problems described below are very limited compared

to Ψ. This motivates using an optimization problem-based CFA policy for the DRPUDEC. More

precisely, in line 3 of Algorithm 2, we specify that drones cannot be assigned more thanM trips.

This algorithm establishes a CFA policy known as πCFA (M) based on the particular value of

M . In general, let ΠCFA =
{
πCFA (M) :M ∈

{
1, . . . ,M

}}
denote the set comprising all CFA

policies for M ∈
{
1, . . . ,M

}
, where M is set large enough so that a fleet of n drones in the

depot can service all outstanding and new requests in each epoch.

Let M∗ be the value of M ∈
{
1, . . . ,M

}
for which the minimum routing and lateness cost

is obtained. When M ̸=M∗, many drones may still be busy flying at the beginning of the next
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epoch, which can lead to an accumulation of delivery lateness for new requests. As evidenced

by the computational analysis presented in Section 6.1.1, the best value ofM is a function of Ψ.

A myopic policy πCFA (M = +∞) is the one based on an unbounded number of trips that can

be assigned and executed by a drone to serve all the outstanding and newly arrived requests

in each state Sk. The trip schedule assigned to each drone is executed even if some trips of

the schedule start in the next epoch. This myopic policy fails to consider the possibility of a

limited number of scheduled trips being executed by each drone. Consequently, there is a risk

of insufficient drones being available in the depot to fly in the next epoch, which could result

in a large lateness in serving new requests in the pre-decision state Sk+1.

5.1. Deterministic transition to post-decision state

Algorithm 2 shows the deterministic transition to the post-decision state Sxk from the pre-

decision state Sk, regarding the design of the CFA policy as outlined in Section 5. Line 2 focuses

on the trip-building step, which employs chance constraints to account for uncertainty in energy

consumption. In this step, explained in Section 5.3.1, a backward heuristic is used to build trips,

greedily adding nodes by non-decreasing distance or time to deadline. The backward heuristic

generates the set Γk of trips that are not dominated, which is used as input for the procedure

of line 3 that selects up to M trips per drone from this set.

In the procedure select trips, we initially solve a set packing-based problem that seeks to

identify the set Γ′
k ⊆ Γk that serves the largest number of requests, with the highest priority

given to those that are urgent, defined as those for which the soft deadline is near to the current

epoch time. The solution of this model consists of at most M trips assigned to a drone. A

second model is then solved, this time using the set Γk specifying which customers must be

served. This model aims to select at most M trips per drone that avoid overlapping customer

visits while minimizing the total routing cost. Further details regarding the algorithm in line 3

are provided in Section 5.3.2.

Solving the previous model allows us to find the set Γ∗
k of least routing cost drone trips,

whereby the maximum number of customers are visited. This set can be partitioned into n trip

subsets, each representing a potential assignment ofM trips to a drone. When a trip schedule is

assigned to a drone, additional lateness in serving customers on a trip can be accumulated due

to the sub-optimal order in which the trips are executed in each schedule. Therefore, an optimal
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Algorithm 2: Process decision state (process decision state).

input : Pre-decision state Sk = (tk,Dk,Uk,∆k,Bk).
output : Post-decision state Sxk = (txk,Dxk , ∅,∆x

k,Bxk); cost c(Sk, x).
1 τ(Sk, x)← 0, ψ(Sk, x)← 0
2 Γk ← build trips(Dk ∪ Uk) // build set Γk by Algorithm 3

3 Γ∗
k ← select trips(Dk ∪ Uk,Γk, |∆|,M) // find set Γ∗

k by Algorithm 5

4
{
θδk : δ ∈ ∆k

}
← assign trips(Γ∗

k,∆k) // assign trips to drones by Algorithm 6

5 foreach δ ∈ ∆k do
/* execute state machine, depicted by Figure 1, of drone δ for Ψ units of

time. During this execution, update sets ∆x
k,Bxk ,Dxk and update costs

τ(Sk, x) and ψ(Sk, x) accordingly. Also, update ωβk for every battery β
swapped */

6 execute drone state machine(δ, θδk,Bxk , τ(Sk, x), ψ(Sk, x))
/* after executing drone δ state machine for Ψ units of time, its future

trips are canceled in preparation for the next epoch. Then, all

customers contained on these not performed trips are returned to set Dxk
*/

7 Dxk ← Dxk ∪ cancel scheduled trips(δ)
8 end

9 return Sxk , µ
d · τ(Sk, x) + µl · ψ(Sk, x)

permutation of the trips assigned to a drone must be identified to minimize customer service

lateness. This is achieved by exhaustively considering all possible trip orders and selecting the

schedule with the least lateness. The least lateness trip schedules are then used in a third model,

which is tasked with assigning each schedule to a drone in a manner that minimizes overall

lateness while accounting for the state of the drones at the current epoch time. These steps are

executed on line 4, where θδk is the trip schedule assigned to drone δ ∈ ∆k. We observe that

scenarios with fewer trip schedules than drones are possible. Therefore, assignment solutions

where one or more drones are not used are also valid. Further details of the algorithm referenced

in line 4 are provided in Section 5.3.5.

After the assignment step, each drone δ ∈ ∆k executes its assigned route plan θδk, if any,

following the algorithm outlined in line 6. Figure 1 depicts the dynamic of the DRPUDEC,

describing a trip schedule that could be executed by a drone in any potential scenario. This

is referred to as the drone finite-state machine. It operates for each δ ∈ ∆k over a duration of

Ψ units of time, during which it updates sets ∆x
k,Bxk ,Dxk . Additionally, it aggregates the cost

c(Sk, x) incurred by the trips executed by drone δ within the Ψ time span. Upon completing

its operation after Ψ units of time, the drone idles at its current state and position within the
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state machine and resumes from the same state and position in the subsequent epoch k + 1.

Figure 1: Drone execution finite-state machine.
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Following the execution of the drone δ state machine for a duration of Ψ, any remaining

future trips that start after the current time period tk + Ψ are canceled in preparation for the

next epoch as outlined in line 7 of Algorithm 2. We observe that trips currently underway by a

drone and the ones starting before tk +Ψ are not affected. Then, all customers associated with

the unexecuted trips are returned to the set Dxk . After executing all drones for Ψ units of time,

the post-decision state Sxk and its corresponding cost and lateness are returned.

In the context of the drone finite-state machine, starting a trip, fulfilling requests, and

replacing batteries are triggered by the respective action condition, resulting in a transition of

the state. For instance, at the beginning of Algorithm 1, once the initial decision state S0 is

initialized, all drones δ ∈ ∆ are on the state “Standby”. In this state, a drone δ waits for a trip

to be assigned to it, which is done in line 4 of Algorithm 2. Then, once the drone finite-state

machine is executed in line 6, the drone gets the first trip of the assigned schedule, and the

state transitions to “Ready to fly”.

During flight, the drone remains in this state until reaching a vertex, either a depot or a

customer location. If the vertex is a customer, then the state changes to “Delivering”, and stays

on it for the duration of the service time η. After finishing the delivery, the state transitions
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back to “Flying”, and continues until it reaches the next vertex. If the vertex is the depot,

then the drone has finished a trip, and its state transitions to “Idle”, where it waits for its

depleted battery to be swapped with a fully charged one. Once a new battery is assigned to the

idle drone, its state transitions to “Swapping battery”, which is done for the duration ρ. After

the battery swapping, the drone state returns to “Standby” wherein it awaits the loading of

all scheduled parcels before continuing with the next scheduled trip and repeats the transitions

again. If no trip is left, then the drone waits for the next trip assignment of the next epoch.

The empty state “End” is only reached at the end of the MDP execution.

5.2. Stochastic information and transition to pre-decision state

After the execution of an action x triggering the deterministic transition to the post-decision

state Sxk , the arrival of random exogenous information represented by set Uk+1 determines the

stochastic transition from Sxk to Sk+1. The time associated with the new state is defined as

tk+1 = tk + Ψ, with Ψ denoting a given time step eventually calibrated based on the process

describing the arrival of new requests during the day. Our choice differs from other contributions

that associate the new decision point with the arrival of a new request. The motivation comes

from the difference in the considered problems. During some hours of the day, the frequency of

arrival of requests can be very high, making the continuous update of the routing plans useless.

The transition to the next decision state Sk+1 starting from Sxk entails updating the sets

of requests, which is done in lines 6–11 of Algorithm 1. The set of new requests appearing

between tk and tk+1, denoted by set Uk+1, is updated in line 6 with the newly-arriving random

requests. Line 7 updates the set of outstanding requests Dk+1 with the requests from epoch

k, i.e., Dk+1 ← Dxk . Finally, the set of drones ∆k+1 is updated to include the new states of

drones for the next period encompassing their flying operations and/or recharge operations at

the depot, and Bk+1 is also updated to consider the new state of the batteries.

5.3. Algorithm components

This section provides a comprehensive, step-by-step description of the procedures invoked

in Algorithm 2 to perform the action derived from the adopted CFA policy. As previously

indicated, it is composed of four steps: a trip generation procedure, an algorithm to select trips

maximizing the number of customers served, a procedure to assign trips to drones in order to
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visit all customers previously selected while minimizing total costs (distance and delay), and

finally a battery assignment to the drones that are scheduled to fly.

5.3.1. Trip Construction Heuristic

This section details the procedure build trips called in line 2 of Algorithm 2. Let Gk =

(Nk,Ak) be the undirected subgraph of G induced by the delivery locations known at the

decision epoch tk, besides the depot i0, where Nk ⊆ N , N ′
k = Nk \ {i0}, and Ak ⊆ A. Formally,

the node set is defined as N ′
k = {ir | r = (ir, qr, lr) ∈ Dk ∪ Uk} and the set of edges is defined

as Ak = {{ir, ip} | ir, ip ∈ Nk}. To build trips, we propose a label-setting algorithm. This

algorithm relies on a backward approach and considers energy saving. Let us consider a generic

trip γ = {i0, i1, . . . , ir, . . . , ip, ip+1} visiting the sequence of customer nodes Pγ = {i1, . . . , ip},

where i0 = ip+1. We define the trip feasible if: i) the total payload is lower than the drone’s

capacity and ii) the state of charge of the battery at the end of the trip is greater than or equal

to a given threshold Emin. Given that energy consumption is random, we employ the paradigm

of chance constraints (CC) to build safe trips. In particular, we impose that:

P(C̃Eγ ≥ Emin) ≥ α,

where C̃Eγ denotes the total energy consumption random variable, and α is a probability value

in (0, 1) used to calibrate the risk attitude. In particular, the higher this value, the more risk-

averse the decision maker is and the more conservative the corresponding solutions. We deal

with the CC assuming that the random variables in calculating C̃Eγ follow a Normal distribu-

tion and are independent. Under this assumption, the CC admits a deterministic equivalent

reformulation that can be easily derived (e.g., Prékopa (1970)):

E[C̃Eγ] ≥ Emin + Φ−1(α)SDV (C̃Eγ),

where Φ−1(α) is the α-quantile of the Normal standard distribution function and SDV the

standard deviation. In the formula, the expected total energy consumption and its standard

deviation can be derived by exploiting the properties of the Normal random variables. Specifi-
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cally,

E
[
C̃Eγ

]
= E

|Pγ |−1∑
h=0

ẽih,ih+1
(qih,ih+1

) + ẽi|Pγ |,i0

 =

|Pγ |−1∑
h=0

ēih,ih+1
(qih,ih+1

) + ēi|Pγ |,i0v. (4)

Here, |Pγ| denotes the number of served requests along the trip, whereas ēih,ih+1
(qih,ih+1

) is

the expected energy consumption, that depends on the total payload qih,ih+1
on edge {ih, ih+1}

(including the drone weight). The last term in the sum accounts for the energy the drone

consumes to fly back to the depot starting from the last location, considering only the drone

weight v.

The load on a given edge {ih, ih+1} also considers the payloads of the deliveries associated

with nodes visited after ih. In our case, we assume that the energy consumption is a linear

function of the payload, and thus (4) can be rewritten as:

E
[
C̃Eγ

]
=

|Pγ |−1∑
h=0

ēih,ih+1

 |Pγ |∑
l=h+1

qil

+ ēi|Pγ |,i0v.

The standard deviation, under the independence assumption, can be written as:

SDV
[
C̃Eγ

]
=

√√√√√|Pγ |−1∑
h=0

σ2
ih,ih+1

 |Pγ |∑
l=h+1

qil

2

+ σ2
i|Pγ |,i0

v2,

with σ2
ih,ih+1

and σ2
i|Pγ |,i0

denoting the variance of the energy consumption over edges {ih, ih+1}

and {i|Pγ |, i0}, respectively. To avoid complicating the notation, the dependence of the variance

on the payload will not be explicitly displayed in the sequel.

The formulas introduced above are used in the trip construction phase. The trips are built by

implementing a dynamic programming backward label setting algorithm with different strate-

gies for node extensions by distance and urgency. In this heuristic, trips are constructed in a

backward manner because we can compute a trip’s exact payload and energy consumption while

it is being constructed without the need for additional computational burden. In particular,

for each node ir explored during the trip construction we introduce two sets, Id(ir) and I l(ir).

In the former, nodes ip connected to ir are sorted according to non-decreasing values of the
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distance from ir to ip, whereas in the latter, according to non-decreasing lp − tk values. In

the first case, we are interested in minimizing distances, while in the second one, the aim is to

prioritize the most urgent requests to minimize lateness.

The backward labeling heuristic, presented by Algorithm 3, aims to create trips fulfilling

the chance constraint P(C̃Eγ ≥ Emin) ≥ α and generate trips that are optimized for the

distance traveled or total lateness. Algorithm 3 finds a set of non-dominated trips, denoted

as Γk. The domination rule states that if two distinct trips γ(j1) =
{
i0, i

1
1, . . . , i

1
p, ip+1

}
and

γ(j2) =
{
i0, i

2
1, . . . , i

2
p, ip+1

}
are given, the latter is dominated by the former if the following

conditions hold:

a) Pγ(j1) = Pγ(j2);

b)
∑|Pγ(j1)

|−1

h=0 ēi1hi1h+1

(∑|Pγ(j1)
|

l=h+1 qi1l

)
≤
∑|Pγ(j2)

|−1

h=0 ēi2hi2h+1

(∑|Pγ(j2)
|

l=h+1 qi2l

)
, i.e., the total average

energy consumption of trip γ(j1) is not greater than that of trip γ(j2).

To build set Γ′
k, Algorithm 3 begins with a set Γ′

k, which is composed of trips that can be

extended, i.e., trips where a customer may still be inserted. At the beginning of the algorithm,

set Γ′
k starts with an empty trip γ = {i0, ip+1}. At each iteration of Algorithm 3, up to Σ nodes

adjacent to the last backward-inserted node ir are selected to be inserted in the current trip

γ, creating up to Σ new trips. The set of vertices selected to be inserted in the current trip is

denoted by V and is found in line 7 by Algorithm 4. If set V is empty, indicating that no node

was found by the procedure in line 7, and thus that trip γ can no longer be backward extended,

then γ is added to Γk, provided that γ is not dominated by any other trip in Γk. If set V is not

empty, a new trip γ′ is generated for each i ∈ V by inserting i backward into γ. Thereafter, all

non-dominated trips created by this step are inserted into Γ′
k. These steps are reiterated until

Γ′
k becomes empty, indicating that no trip can be further extended. If there are still vertices

that are not visited by any trip in Γk, then the algorithm is executed again but only considering

unvisited vertices.

The selection process for vertices to be inserted into a trip γ by the backward heuristic

is illustrated in Algorithm 4. This method finds a set of V containing up to Σ vertices to

be inserted in γ. Let ir be the last backward-inserted vertex in the trip γ, and ip ∈ Id(ir) (or

ip ∈ I l(ir)). Vertex ip is only added to V if its insertion in γ does not violate the drone’s capacity

and the maximum energy consumption, as defined by inequalities (5) and (6). We observe that
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Algorithm 3: Backward heuristic (build trips).

input : Set of outstanding and newly arrived requests Dk ∪ Uk at epoch k.
output : Set of trips Γk.

1 Define the maximum size of set V, represented by parameter Σ
2 Γk ← ∅
3 Γ′

k ← {i0, ip+1} // set of trips being build. Initially, set Γ′
k has only trip

{i0, ip+1}
4 while Γ′

k ̸= ∅ do
5 γ ← select trip(Γ′

k) // select a trip from set Γ′
k

6 Γ′
k ← Γ′

k \ γ // remove γ from Γ′
k

7 V ← select vertices to insert(γ,Σ) // select vertices by Algorithm 4

8 if V = ∅ and γ is not dominated by any trip in Γk then
9 Γk ← Γk ∪ γ // add γ to the set of trips to be returned

10 else if V ̸= ∅ then
11 foreach i ∈ V do // create |V| new trips by inserting each i in γ
12 γ′ ← γ ∪ {i} // i is inserted after the last backward-inserted vertex ir
13 Γ′

k ← Γ′
k ∪ γ′ // add γ to the set of trips being build

14 end

15 end

16 end
17 return Γk

inequality (6) also accounts for the energy needed to return to the depot. If all vertices in the

neighbor set of ir (either Id(ir) or I l(ir)) are explored or |V| = Σ, then Algorithm 4 stops and

returns the set V as it is, even if it is empty.

|Pγ |∑
l=1

qil + qip ≤ Q (5)

ēi0ip

qp + 1∑
l=|Pγ |

qil

+ ēipi|Pγ |

 1∑
l=|Pγ |

qil

+
2∑

h=|Pγ |

ēihih−1

(
1∑

l=h−1

qil

)
+ ēi1in+1v ≤

Emax − Φ−1(α)

√√√√σ2
i0ip

+ σ2
ipi|Pγ |

+
2∑

h=|Pγ |

σ2
ihih−1

+ σ2
i1in+1

.

(6)

5.3.2. Trip Selection Problem

This section provides a detailed description of the procedure select trips invoked in line 3

of Algorithm 2. As the procedure presented in Section 5.3.1 finds several trips, selecting and

assigning the most promising ones to the drones is necessary. Algorithm 5 depicts the procedure

for selecting these trips. First, as we want to serve as many (urgent) requests as possible, we
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Algorithm 4: select vertices to insert.
input : Trip γ; Σ, the maximum size of set V.
output : Set of vertices V.

1 Let ir ∈ γ be the first location to be visited by the trip γ, after the depot i0
2 V ← ∅
3 while |V| < Σ and there is a neighbor vertex of ir to be explored do

/* select ip from the correct neighbor set, following the sorting policy */

4 ip ← select first neighbor(Id(ir)) or ip ← select first neighbor(I l(ir))
5 if inequalities (5) and (6) hold when inserting ip into γ then
6 V ← V ∪ ip
7 end

8 Id(ir)← Id(ir) \ ip or I l(ir)← I l(ir) \ ip // remove ip from the correct neighbor

set

9 end
10 return V

solve a Set Packing-Based Problem (SPBP), which aims to maximize the number of (urgent)

requests selected. Second, we use the requests served in the trips of an optimal solution of the

SPBP as input for a non-overlapping ∆-Trip Set Selection Problem (DTSSP). The DTSSP aims to

minimize non-overlapping trip routing costs while ensuring that urgent requests selected in the

optimal solution of the SPBP are covered by at least one trip.

In Algorithm 5, the selected trips are not yet assigned to drones; rather, they are selected

as candidates for an assignment because they are built by ignoring which drones are flying and

which ones are idle. Instead, Algorithm 5 considers that all drones are available at the depot

to make the models simpler and easier to solve. The method used to assign the chosen trips to

the drones is detailed in Section 5.3.5. The mathematical formulations of the SPBP and DTSSP

are shown in Sections 5.3.3 and 5.3.4, respectively.

Algorithm 5: Select trips (select trips).

input : Set of outstanding and newly arrived requests Dk ∪ Uk; Set of trips Γk; number of
drones n; maximum number of trips per drone M .

output : Set of trips Γ∗
k without repeated requests.

1 Dprk ∪ U
pr
k ,D

npr
k ∪ Unprk ← split(Dk ∪ Uk) // split requests into priority Dprk ∪ U

pr
k and

non-priority Dnprk ∪ Unprk

2 D′
k ∪ U ′

k ← SPBP(Dprk ∪ U
pr
k ,D

npr
k ∪ Unprk ,Γk, n,M) // solve model (7a)−(7h) and find set

D′
k ∪ U ′

k

3 Γ∗
k ← DTSSP(Dk ∪ Uk,D′

k ∪ U ′
k,Γk, n,M) // solve model (8a)−(8b) and find set of

trips Γ∗
k

4 return Γ∗
k
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5.3.3. Set Packing-Based Problem

Let Dprk ∪ U
pr
k = {r | r ∈ Dk ∪ Uk ∧ lr ∈ [0,min{tk + l̄, T}]} be the set of priority out-

standing and newly arrived requests at epoch k, i.e., requests whose soft deadline lies within[
0,min{tk + l̄, T}

]
, where l̄ is a non-negative value in minutes. It thus follows that the set

Dnprk ∪ Unprk = {r | r ∈ Dk ∪ Uk ∧ r /∈ Dprk ∪ U
pr
k } is defined as the set of non-priority requests,

that is, requests for which the delivery can be postponed to after tk + l̄. Moreover, consider

Γk,r ⊆ Γk as the set of trips containing request r ∈ Dk ∪ Uk. The SPBP can be formulated with

binary decision variables yγj equal to one if trip γ ∈ Γk is assigned to drone j, and zr equal to

one if customer r ∈ Dk ∪ Uk is visited by at least one trip. The problem can then be modeled

as:

(SPBP) max
∑

r∈Dpr
k ∪Upr

k

µprzr +
∑

r∈Dnpr
k ∪Unpr

k

µnprzr (7a)

subject to

n∑
j=1

yγj ≤ 1, ∀γ ∈ Γk (7b)

∑
γ∈Γk

yγj ≤M, j = 1, . . . , n (7c)

zr ≤
∑
γ∈Γk,r

n∑
j=1

yγj, ∀r ∈ Dk ∪ Uk (7d)

∑
γ∈Γk

|Pγ |−1∑
h=0

t̄ihih+1

 yγj ≤
∑
γ∈Γk

|Pγ |−1∑
h=0

t̄ihih+1

 yγj+1, j = 1, . . . , n− 1 (7e)

tk +
∑
γ∈Γk

|Pγ |−1∑
h=0

t̄ihih+1

 yγj + ρ

(∑
γ∈Γk

yγj − 1

)
≤ T, j = 1, . . . , n (7f)

yγj ∈ {0, 1}, ∀γ ∈ Γk, j = 1, . . . , n (7g)

zr ∈ {0, 1}, ∀r ∈ Dk ∪ Uk. (7h)

The objective function (7a) seeks to maximize the weighted number of customers visited

on selected trips. In this context, the coefficients µpr and µnpr represent the weights given to

urgent and non-urgent customers. Each trip must be assigned to at most a single drone, following
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constraints (7b). The number of trips assigned to a drone is limited to a maximum of M , as

guaranteed by constraints (7c). Constraints (7d) link variables zr to yγj and ensure that zr is

equal to one only if customer r is contained in at least one selected trip. Constraints (7e) break

solution symmetry concerning the drone indices j = 1, . . . , n. Introducing these constraints

ensures that the sets of trips are assigned to drones in an order that reflects the increasing

duration of the trips. Constraints (7f) ensure that the total time required for all trips assigned

to a drone does not exceed the time limit. We note that constraints (7f) do not consider the

time for scheduling the sequence of trips assigned to the same drone. This aspect is addressed

in Section 5.3.5. Finally, constraints (7g) and (7h) define the domain of the variables.

5.3.4. Non-overlapping ∆-Trip Set Selection Problem

This problem aims to construct as many sets of trips as the drones available at the depot

while ensuring that no customer is visited more than once on a trip. To achieve this, we

optimize the following mathematical formulation and verify that the feasibility condition is

satisfied. Specifically, the SPBP maximizes the number of (urgent) requests to be served by

selecting trips that may overlap. The selected requests are now fixed and used to solve another

model to minimize the routing costs. Let Γ′
k ⊆ Γk denote the set of trips in an optimal solution

to the model (7a)–(7h). Furthermore, let D′
k ∪U ′

k ⊆ Dk ∪Uk be the set of requests contained in

at least one trip of Γ′
k. Then, the DTSSP can be formulated as:

(DTSSP) min
∑
γ∈Γk

c(γ)
n∑
j=1

yγj (8a)

subject to (7b), (7c), (7e), (7f), (7g), and to∑
γ∈Γk,r

n∑
j=1

yγj ≥ 1, ∀r ∈ Dk ∪ U ′
k (8b)

∑
γ∈Γk

yγj ≤
∑
γ∈Γk

yγj+1 + 1, j = 1, . . . , n− 1 (8c)

∑
γ∈Γk

yγn ≤
∑
γ∈Γk

yγ1 + 1. (8d)

Objective function (8a) minimizes the total routing costs of the selected trips. The covering

constraints (8b) ensure that requests in D′
k ∪U ′

k must be contained in at least one selected trip.
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Constraints (8c) aim to achieve a balance in utilizing drones. This is achieved by imposing that

a drone can only be assigned p trips, with p > 1, if at least p − 1 trips were assigned to drone

j + 1. It is essential to impose constraints (8d) to guarantee that the last drone, identified by

index n, also complies with the balanced utilization of drones prescribed by constraints (8c). To

accelerate the resolution of the mathematical formulation (8a)–(8d), the solution of the SPBP

model is employed as a warm start. If the optimal solution of (8a)–(8c) contains trips that visit

the same customer more than once, this visit is removed from the trip with the fewest customers

visited. If the trip becomes empty as a result, it is eliminated.

5.3.5. Trip Assignment Problem

Let Γ∗
k ⊆ Γk be the set of trips, without repeated requests, selected by solving the mathe-

matical formulation (8a)–(8b), such that
⋃n
j=1 Γ

∗
k,j = Γ∗

k, where Γ∗
k,j is the subset of trips that

can be assigned to drone j = 1, . . . , n. We observe that Γ∗
k,j1
∩ Γ∗

k,j2
= ∅ for 1 ≤ j1, j2 ≤ n and

j1 ̸= j2. Each subset Γ∗
k,j does not consider the current status of drone j. Consequently, it could

be a suboptimal decision to assign it to j. Instead, better assignments are identified using the

procedure described in Algorithm 6, taking into account the least lateness of each trip schedule

obtained with a permutation of the trips, and the state of the drones at the current time of the

epoch. The trips assigned by Algorithm 6 will be executed by the drone upon its return to the

depot, where it will also swap its battery.

Algorithm 6: Assign trips (assign trips).

input : Current epoch time tk; set of trips Γ
∗
k; set of drones ∆k.

output : Assignment of trip schedules to drones {Γk(δ) : δ ∈ ∆k}.
1 foreach j = 1, . . . , |∆| do
2 foreach Γ∗

k,j ∈ Γ∗
k do // find the best permutation of each trip schedule

3 Γ∗
k,j ← Π̄(Γ∗

k,jtk)

4 foreach δ ∈ ∆k do // compute the the total lateness of each possible

assignment

5 ψΓ∗
k,j=δ

← compute delay(Γ∗
k,j=δ)

6 end

7 end

8 end
9 {Γk(δ) : δ ∈ ∆k} ← TAP({ψΓ∗

k,j
: Γ∗

k,j ∈ Γ∗
k, δ ∈ ∆}, ∆k) // solve model (9a)−(9d)

10 return {Γk(δ) : δ ∈ ∆k}

We denote by Π̄(Γ∗
k,j, tk) the permutation operator that aims to find the best permutation
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of the trips in each subset Γ∗
k,j, with j = 1, . . . , n, to achieve the minimum lateness in the

fulfillment of customer requests. The permutation operator Π̄(Γ∗
k,j, tk) enumerates all possible

trip schedules assigned to drone j = 1, . . . , n and selects the one in which the total lateness in

the service of all requests of all trips, starting from the current time tk, is minimum. Then, for

each drone δ ∈ ∆k, we compute the additional lateness (if any) that the trip schedule Γ∗
k,j=δ

would have in case drone δ is still flying. In this case, the time required by δ to complete its trip

and return to the depot must also be taken into account. Let ψΓ∗
k,j=δ

denote the total lateness of

the trip schedule Γ∗
k,j=δ. This information, in combination with the trip schedules, is employed

to solve the following Trip Assignment Problem (TAP):

(TAP) min

|∆|∑
j=1

∑
Γ∗
k,j∈Γ

∗
k

∑
δ∈∆k

ψΓ∗
k,j
xΓ∗

k,jδ
(9a)

subject to ∑
∀δ∈∆k

xΓ∗
k,jδ

= 1, Γ∗
k,j ∈ Γ∗

k, j = 1, . . . , n (9b)

n∑
j=1

∑
Γ∗
k,j∈Γ

∗
k

xΓ∗
k,jδ

= 1, ∀δ ∈ ∆k (9c)

xΓ∗
k,jδ
∈ {0, 1}, Γ∗

k,j ∈ Γ∗
k, j = 1, . . . , n, ∀δ ∈ ∆k (9d)

where decision variables xΓ∗
k,jδ

are defined as follows:

xΓ∗
k,jδ

=

{
1, if the permutated trip schedule Γ∗

k,j is assigned to drone δ ∈ ∆k,

0, otherwise.

Objective function (9a) seeks to minimize the overall lateness associated with the assignment

of each permutation of trips to a drone in ∆k. Constraints (9b) indicate that a drone is assigned

to exactly a trip schedule, while constraints (9c) ensure that each trip schedule is assigned to a

single drone. Variables xΓ∗
k,jδ

are binary, as defined in (9d), and define the action to be taken

at epoch k. We observe that the solution provided by the TAP can assign a trip schedule to a

drone where some trips can start at a time greater than or equal to tk+1 = tk + Ψ. Using our

CFA policy, these trips will be canceled in the next pre-decision state Sk+1, as their customer
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requests can be reassigned and rescheduled more effectively in the next epochs, given that new

requests appear. On the contrary, if the myopic policy πLA (M = +∞) is used, all the trips

assigned to a drone are executed and remain unchanged, even if they start in the next epochs.

5.3.6. Battery Assignment Procedure

After finishing a trip and returning to the depot, each drone is loaded with the deliveries

to be performed on the next trip. It also undergoes a battery swap, replacing its depleted

battery with a fully charged one. To ensure that the batteries are utilized uniformly and thus

age in a homogeneous manner, it is necessary to monitor the number of times each battery β is

employed. This is represented by ωβk . The batteries are sorted in a priority queue based on their

usage count, with those used fewer times having higher priority. Therefore, upon the arrival of

a drone at the depot, the first battery of this queue is removed and equipped to the drone. The

battery swap is conducted within the drone finite-state machine, as illustrated in Figure 1.

Once a recharged battery is equipped on a drone, the former drone’s battery is removed

and not inserted into the priority queue immediately. Instead, the battery is first recharged.

The time to fully recharge the battery depends on its remaining charge and the recharge ratio,

expressed as e′β = 5%/min. Consequently, an empty battery requires 20 minutes to recharge.

Upon completion of the recharging process, the battery becomes available to be equipped on a

drone again and inserted into the priority queue. If this queue is empty when a drone arrives at

the depot, the drone waits for a battery to finish its recharge, thus becoming available for use.

6. Computational results

In this section, we assess the performance of our solution methodology on instances adapted

from the literature. All algorithms have been implemented in C++ and compiled with the g++

compiler, version 12.3.0. We used Gurobi’s C++ API v.11.0.2 for solving the integer programs.

All tests were executed on a computer with an Intel® Core™ i9-13900K processor with 32 threads

at 3.0 GHz and 128 GB of RAM.

We generated our instances from those of Ulmer and Thomas (2018), which we obtained after

requesting them from the first author. They shared 400 instances with 500 customers, of which

200 were generated using a uniform distribution and 200 using a normal distribution on the cus-

tomers’ coordinates. From each set of 200 instances, we randomly selected 50 and adapted them
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to be used in this work. The initial adaptation entailed the removal of customers deemed un-

reachable (as we consider only drones, while Ulmer and Thomas (2018) also considered vehicles).

An unreachable customer is one whom a drone cannot serve, even when performing a round

trip, because the energy required to reach it exceeds the battery’s capacity. Subsequently, cus-

tomers were sampled randomly, and three new instances were derived with m ∈ {200, 300, 400},

resulting in 300 instances. In these instances, each customer node r is associated with a random

demand qr ∈ [0.3kg, 2.0kg], a service time η = 3min, a time ar at which customer r appears

in the system, and the customer’s soft deadline lr. The value ar was randomly generated in

the interval (0, T − 240min], and we set lr = ar +240min following Ulmer and Thomas (2018).

Furthermore, the instances with m = 200 were solved with n = 12 drones, those with m = 300

were solved using n = 18, and those with m = 400 were solved using n = 24. These instances

and detailed results are available from https://www.leandro-coelho.com/drone-routing/.

Except for parameters M and Ψ, whose values may vary depending on the specific tests

employed, all remaining parameters are based on the values outlined in Table 2, obtained

from the literature or after a preliminary testing phase. Some values pertaining to drones and

batteries were derived from the data presented in Dorling et al. (2017) and Ulmer and Thomas

(2018). In Table 2, σξ̄ is the standard deviation of the drone’s average speed as a percentage

of the average speed and α is the confidence interval, both used in inequality (6) to compute

the drone’s maximum energy consumption; Σ is the maximum number of adjacent nodes to

be inserted in trip used in Algorithm 3; and µpr and µnpr are the objective coefficients used in

model (7a)–(7h). The other parameters are described in Table 1.

Table 2: Parameters values.

Drone data Battery data

Parameter σξ̄ α Σ µpr µnpr µd µl g l̄ ξ̄ v Q m p z b ρ e′β Emin Emax

Value 2% 97% 5 0.8 0.2 1 5 9.81N/kg 40min 24km/h 3kg 2.3kg 6 1.204kg/m3 0.0064m2 2n 20min 5%/min 10% 100%

Section 6.1 presents preliminary tests to assess the steps of our solution approach. Section 6.2

shows the results of the tests performed in the benchmark instances.

6.1. Preliminary tests

This section presents the results of preliminary tests conducted to evaluate the performance

of the proposed algorithm. In these preliminary tests, 12 instances were used, with two instances
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of each value of m ∈ {200, 300, 400} selected for both normal and uniform distributions. To

choose these 12 instances, we picked the first two instances of each size and each distribution.

In particular, the outcomes of the tests conducted to identify the optimal parameter value ofM

are presented in Section 6.1.1, and Section 6.1.2 outlines the computational analysis performed

to evaluate each of the main steps of our solution approach.

6.1.1. Tunning parameter M

Two values of Ψ were considered: 20min and 40min. These values were fixed by varying

M ∈ {1, 2, 3, 4} and selecting the best values for the tests presented in Section 6.2.

Table 3 shows the average CFA policy results across the 12 instances for each value of

M = 1, 2, 3, 4. In this table, ms
avg is the average number of customers served, cavg is the average

cost of the solutions, ψavg is the average lateness, τavg is the average distance traveled, and t (s)

is the average total execution time in seconds.

Table 3: Comparison of πCFA using different values of parameter M .

Ψ = 20min Ψ = 40min
M ms

avg cavg ψavg τavg t (s) ms
avg cavg ψavg τavg t (s)

1 299.00 1715.09 51.00 1460.09 11.34 271.42 2877.27 317.92 1287.69 7.67
2 298.08 1894.81 83.17 1476.52 40.45 280.42 3164.43 302.75 1287.34 25.63
3 297.67 2113.19 127.33 1478.98 93.22 271.08 3004.28 342.25 1293.03 65.22
4 296.92 2161.46 136.67 1478.13 143.57 269.92 3031.71 346.67 1298.37 99.42

As we can observe from the results presented in Table 3, πCFA(M = 1) yields the best

values for all metrics when Ψ = 20min. Regarding the tests with Ψ = 40min, the configuration

with M = 2 yields the best results in terms of both the average number of customers served

and the total lateness. In consideration of these outcomes, we have selected M = 1 and

M = 2, respectively for Ψ = 20min and Ψ = 40min, to be employed in the tests conducted in

Section 6.2. These values of Ψ are consistent with the flight duration of a drone engaged in the

delivery of goods in a practical setting.

6.1.2. Evaluating action components

In this section, we evaluate the main steps of our algorithm. First, we analyze the Trip

Construction Heuristic by assessing the two insertion policies presented in Section 5.3.1, namely

“by distance” and “by urgency” represented by sets Id(.) and I l(.), respectively. Second, we

evaluate the trip selection step by testing Algorithm 5 in comparison to an alternative version

that excludes the SPBP procedure, instead solely addressing the DTSSP. To demonstrate the
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importance of Algorithm 6, we evaluated a variant of our approach that omitted this phase. In

this variant, the trip assignments to drones were conducted following the DTSSP solution. We

employed M = 1 and Ψ = 20min in all tests conducted in this section.

Table 4 compares the two insertion policies (by distance and by urgency) for building trips

in the backward heuristic. The first six instances in this table have their customer locations

uniformly distributed, and in the last six they are normally distributed. The results of both

policies are presented, including the total number of generated trips (|Γ|total), the average num-

ber of trips selected per epoch (|Γ′|avg), the total lateness in minutes (ψ), and the total energy

consumption in kilowatts-minute (C̃E). Additionally, the total time spent in the heuristic gen-

erating trips through all epochs (Ht(s)) is provided, as is the total execution time of solving

the set-partitioning problem across all epochs (SPBPt(s)). Finally, the total running time of the

whole execution (t (s)) is also included.

Table 4: Comparison of πCFA(M = 1) with different backward heuristic insertion policies.

By distance By urgency

Instance m |Γ|total |Γ′|avg ψ C̃E Ht(s) SPBPt(s) t (s) |Γ|total |Γ′|avg ψ C̃E Ht(s) SPBPt(s) t (s)
bccl1 ud m200

200
1803 71.85 193 37.74 0.38 1.17 5.55 1442 103.00 163 32.66 0.16 0.70 2.54

bccl2 ud m200 1409 72.30 182 38.27 0.42 0.75 5.51 1934 138.14 0 31.15 0.17 0.75 2.77
bccl1 ud m300

300
3119 90.67 21 56.41 0.66 2.75 10.13 2224 158.86 7 50.47 0.31 2.29 7.10

bccl2 ud m300 2793 129.44 248 56.51 0.67 5.22 21.07 2216 158.29 34 50.81 0.38 3.08 8.47
bccl1 ud m400

400
2927 168.00 152 76.96 1.11 11.79 35.10 2962 211.57 172 67.22 0.64 7.91 22.13

bccl2 ud m400 4220 131.41 311 76.22 1.02 14.49 28.58 2317 165.50 57 65.27 0.58 6.92 17.19
average 2711.83 110.61 184.50 57.02 0.71 6.03 17.66 2182.50 155.89 72.17 49.60 0.37 3.61 10.03

bccl1 nd m200
200

2217 106.50 383 32.86 0.48 1.11 4.86 2745 196.07 0 29.98 0.19 0.79 2.65
bccl2 nd m200 2371 84.27 521 33.41 0.32 0.98 7.12 1494 106.71 30 30.35 0.17 0.78 2.24
bccl1 nd m300

300
3110 117.54 733 49.01 0.69 3.18 11.25 2692 192.29 0 43.80 0.32 2.74 7.99

bccl2 nd m300 3517 134.58 397 49.82 0.76 3.71 15.24 3042 217.29 53 47.14 0.36 2.53 7.88
bccl1 nd m400

400
4730 227.52 283 66.57 0.99 8.30 41.56 2833 202.36 69 63.26 0.66 13.58 31.82

bccl2 nd m400 3416 190.27 343 63.61 1.20 12.53 30.40 4119 294.21 27 61.51 0.55 8.99 23.34
average 3226.83 143.45 443.33 49.21 0.74 4.97 18.40 2820.83 201.49 29.83 46.01 0.38 4.90 12.65

As we can observe from Table 4, using the urgency insertion policy reduces the total number

of trips generated, compared to the “by distance” one. This is because, in the “by urgency”

approach, the algorithm can serve customers faster, i.e., in fewer epochs, and thus, there are

some epochs in which no trips need be generated. The average number of trips generated (when

an epoch requires them) is thus larger, but this happens less often than in the policy driven by

distance. Moreover, the urgency policy has resulted in more trips being generated on average

at each epoch, as each trip is shorter and visits fewer customers. Consequently, more energy is

used to reach these vertices, resulting in shorter trips.

As expected, the utilization of the urgency policy in the construction of trips reduces overall
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lateness compared to the “by distance” one. Despite selecting more (shorter) trips per epoch

when optimizing urgency, the average energy consumption per drone is less than that observed

when optimizing distance. This is because, in the latter case, drones will be more heavily loaded

and will, therefore, utilize their batteries to a greater extent. Consequently, the urgency policy

demonstrates a reduction in energy consumption compared to the distance policy.

Regarding the running times, both versions and the whole algorithm are extremely fast,

but the backward heuristic is observed to run quicker when utilizing the urgency policy. This

phenomenon can be attributed to how customer data is stored. Upon becoming visible to the

system, a customer is stored in a priority queue in which outstanding customers are sorted

by an increasing deadline. Consequently, customers are already sorted according to urgency.

On the other hand, utilizing the “by distance” insertion policy necessitates periodically sorting

outstanding customers by distance. This explains the difference in the running time of the back-

ward heuristic. Furthermore, the implementation of the urgency policy results in a reduction in

the number of trips generated, which in turn leads to a decrease in the execution time for solving

the SPBP across all epochs in comparison to the distance-based policy. The implementation of

the urgency insertion policy results in a reduction in the time required for the trip-building and

selection steps. Accordingly, this insertion policy was selected for implementation in all tests

conducted in this work.

Table 5 illustrates the comparative tests between the two route selection strategies: first,

solving only the DTSSP to select trips from the entire set generated, and second, solving SPBP

and then the DTSSP, as presented in Algorithm 5. To test this algorithm without the SPBP

step, we impose that all urgent customers must be visited at least once in the DTSSP instead of

imposing that all customers visited in the SPBP solution must be visited in the DTSSP solution, as

the SPBP solution is not generated in this case. The objective of these tests was to demonstrate

the significance of Algorithm 5 in conjunction with both the SPBP and DTSSP. Besides the total

lateness and the total execution time of our method, Table 5 presents the number of customers

served (ms), the total distance traveled by the drones divided by the number of customers

served (τ/ms), and the total execution time to solve the DTSSP through all epochs in seconds

(DTSSPt(s)).

Table 5 also demonstrates that configuring Algorithm 5 with the resolution of the SPBP

and subsequently the DTSSP, in contrast to merely using the DTSSP is much more efficient.
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Table 5: Comparison of πCFA(M = 1) using different trips selection strategies.

DTSSP SPBP+ DTSSP

Instance m ms ψ τ/ms DTSSPt(s) t (s) ms ψ τ/ms DTSSPt(s) t (s)
bccl1 ud m200

200
161 247 5.48 3.00 5.65 200 163 5.17 1.25 2.54

bccl2 ud m200 152 245 5.77 4.17 6.13 199 0 5.34 1.40 2.77
bccl1 ud m300

300
235 31 4.97 10.68 12.30 300 7 5.22 3.49 7.10

bccl2 ud m300 240 252 5.19 18.77 17.72 300 34 5.21 3.69 8.47
bccl1 ud m400

400
338 177 4.93 65.19 95.79 399 172 5.46 10.51 22.13

bccl2 ud m400 341 317 4.62 48.15 96.91 390 57 5.44 6.99 17.19
average 244.50 211.37 5.16 24.99 33.11 298.00 72.17 5.31 4.56 10.03

bccl1 nd m200
200

142 391 6.57 3.10 6.52 200 0 4.31 1.24 2.65
bccl2 nd m200 142 522 5.79 2.60 7.29 200 30 4.39 0.86 2.24
bccl1 nd m300

300
223 754 5.40 13.30 26.02 300 0 4.47 3.80 7.99

bccl2 nd m300 230 420 5.13 13.21 20.36 300 53 4.49 3.91 7.88
bccl1 nd m400

400
306 297 4.29 39.59 68.87 400 69 4.58 9.62 31.82

bccl2 nd m400 300 365 4.55 23.27 59.84 400 27 4.35 10.43 23.34
average 223.83 450.59 5.29 15.85 31.48 300.00 29.83 4.43 4.98 12.65

The former approach results in solutions with significantly more customers visited and reduced

total lateness, as better trips can be selected using the SPBP + DTSSP configuration. It is

evident that, although the solutions resulting from the DTSSP visit fewer customers than those

obtained from the SPBP + DTSSP, the latter configuration consistently yields better τ/ms ratios

in the majority of instances. Moreover, visiting more customers is the main objective of our

algorithms. Furthermore, it can be observed that employing the SPBP to select trips before the

DTSSP reduces the time required for the latter to be solved. This is achieved by ensuring that

customers included in trips selected by the SPBP are visited in a solution of the DTSSP, thereby

producing a tighter problem. For these reasons, the configuration of Algorithm 5 with first

solving the SPBP and then the DTSSP, has been employed in all tests conducted for this work.

Table 6 presents a series of tests designed to assess the efficacy of the TAP in assigning trips

to drones. Two versions of the proposed method were tested: without and using Algorithm 6.

In the first one, the algorithm assigns trips to drones in the same order as in the solution found

by the DTSSP. In the second one, we solve the TAP to optimally assign trips to drones. Table 6

presents a structure similar to that observed in the preceding tables.

As demonstrated in Table 6, the application of the TAP following the selection of trips is an-

other key aspect of our proposed algorithm. The application of the TAP results in enhanced over-

all efficiency, characterized by reduced lateness and an increased number of customers served.

Furthermore, due to the optimization of trip-drone assignments and the enhanced efficiency of

customer service, the overall running time of the algorithm is reduced. In light of these obser-

vations, the proposed algorithmic approach, as outlined in Algorithm 6, is employed in all tests
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Table 6: Comparison of πCFA(M = 1) using or not the Algorithm 6 to assign trips to drones.

Without Algorithm 6 With Algorithm 6
Instance m ms ψ |Γ|total t (s) ms ψ |Γ|total t (s)

bccl1 ud m200
200

171 598 1868 4.07 200 163 1442 2.54
bccl2 ud m200 171 160 1952 3.50 199 0 1934 2.77
bccl1 ud m300

300
277 259 2448 12.23 300 7 2224 7.10

bccl2 ud m300 276 624 3495 17.16 300 34 2216 8.47
bccl1 ud m400

400
348 278 4536 59.68 399 172 2962 22.13

bccl2 ud m400 344 252 3548 56.51 390 57 2317 17.19
average 264.50 361.83 2974.50 25.53 298.00 72.17 2182.50 10.03

bccl1 nd m200
200

181 327 2769 4.30 200 0 2745 2.65
bccl2 nd m200 180 209 2191 3.40 200 30 1494 2.24
bccl1 nd m300

300
272 49 3056 16.31 300 0 2692 7.99

bccl2 nd m300 283 143 3499 16.68 300 53 3042 7.88
bccl1 nd m400

400
374 100 6143 66.85 400 69 2833 31.82

bccl2 nd m400 384 404 4947 54.05 400 27 4119 23.34
average 279.00 205.33 3767.50 26.93 300.00 29.83 2820.83 12.65

presented in this work.

6.2. Numerical results

This section presents the results of the tests performed on all 300 benchmark instances. We

compare our method using two settings: πCFA(M = +∞), that is, a myopic approach where

trips are not canceled, and πCFA(M = M∗), where we have used M∗ = 1 for Ψ = 20min and

M∗ = 2 for Ψ = 40min, calibrated after a simulation procedure described earlier.

Table 7 illustrates the outcomes of experiments conducted with Ψ = 20min. In this table,

ms
avg denotes the average number of customers served, mswl

avg the average number of customers

served without delay, and cavg is the average solution cost, which is composed by the average

total lateness (ψavg) and by the average total distance traveled (τavg). Furthermore, column t

(s) shows the algorithm’s execution time.

Table 7: Average results of tests with Ψ = 20min.

πCFA(M = +∞) πCFA(M = 1)
m ms

avg mswl
avg cavg ψavg τavg t (s) ms

avg mswl
avg cavg ψavg τavg t (s)

200 192.25 190.52 1308.80 75.21 932.75 1.92 199.76 198.70 1152.25 32.28 990.85 3.13
300 287.78 285.21 1958.13 107.81 1419.08 9.68 299.63 298.06 1681.66 41.13 1476.01 9.99
400 382.96 379.19 2971.99 212.60 1908.99 26.91 399.19 396.36 2319.13 75.42 1942.03 24.16

We can observe that the CFA policy with M = 1 dominates the myopic policy that does

not limit the number of trips assigned to drones, which corresponds to M = +∞. For all

sizes of instances, the number of customers served is larger in our calibrated CFA policy. In

particular, in the dataset with 200 customers, the average total cost of the CFA policy shows
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a gap improvement of 11.96% in comparison to that of the myopic policy, computed as 100 ·

(cavg(M = +∞)− cavg(M = 1))/cavg(M = +∞). Additionally, the average lateness has a 57%

lower gap in the CFA policy, calculated as 100·(ψavg(M = +∞)−ψavg(M = 1))/ψavg(M = +∞).

In the data set with 300 customer demands, the average total cost exhibits a 14.12% reduction

in the gap when compared to the myopic policy, while the average lateness demonstrates a

notable decrease of 61.85% in comparison to the myopic policy. Finally, in the data set with

400 customer demands, the average total cost is observed to exhibit a reduction of 21.97% in

the gap, while the average lateness shows a decrease of 64.52% in the gap in comparison to that

observed in the myopic policy.

Table 8 presents the test results using Ψ = 40min. This table follows the same structure

as Table 7, and shows a similar pattern of results. Specifically, the data set with 200 customer

demands shows a reduction in the gap of 2.82% and 8.35% for the average total cost and

average lateness, computed as 100 · (cavg(M = +∞) − cavg(M = 2))/cavg(M = +∞) and

100 · (ψavg(M = +∞)− ψavg(M = 2))/ψavg(M = +∞), respectively. For the data set with 300

customer demands, we observe a reduction in the average total cost and average lateness, with

a decrease of 1.15% and 2.93%, respectively. In the data set with 400 customer demands, we

observe a minimal increase of 0.8% in the gap between the average total cost for the CFA policy

and the myopic policy. In addition, we observe a decrease of 2.22% in the average lateness gap.

Table 8: Average results of tests with Ψ = 40min.

πCFA(M = +∞) πCFA(M = 2)
m ms mswl

avg cavg ψavg τavg t (s) ms mswl
avg cavg ψavg τavg t (s)

200 171.27 167.55 1777.00 183.98 857.10 8.59 188.34 184.33 1726.85 168.61 862.60 3.87
300 258.38 252.73 2656.29 273.91 1286.74 42.20 282.24 276.04 2625.75 265.89 1296.30 18.44
400 344.08 335.38 3700.42 394.62 1727.32 130.59 375.78 367.33 3730.05 385.86 1734.00 56.48

The analysis of the average routing cost in columns τavg of Tables 7 and 8 shows that

the CFA policy might seem to perform slightly worse than the myopic policy. There are two

explanations for this observation. First, recall that the first objective of our algorithm is to

serve more customers. Our CFA policy excels in this criterion. Second, the lack of service to all

customers, as evidenced in columns ms
avg, can be attributed to the reduced flight range of the

drones, which is influenced by the uncertainty in power consumption of the batteries and the

limited number of drones available to complete all deliveries.
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The box plots depicted in Figures 2 and 3 provide a comprehensive statistical overview of

the performance of the CFA policy in comparison to the myopic one when Ψ = 20min. Figure 2

displays box plots of the pairwise percent increase in the average number of served customers

achieved by

100 ·
ms
M∗ −ms

M=+∞

ms
M=+∞

, (10)

wherems
M∗ andms

M=+∞ are the number of served customers by πCFA(M =M∗) and πCFA(M =

+∞), respectively. Recall that in tests with Ψ = 20min, we have used M∗ = 1.

Figure 3 displays box plots of the pairwise percent reduction in average cost per served

customer achieved by πCFA(M = 1) versus πCFA(M = +∞) policy as computed by

100 ·
cM=+∞
ms

M=+∞
− cM∗

ms
M∗

cM=+∞
ms

M=+∞

, (11)

where cM∗ and cM=+∞ refer to the solution cost obtained by πCFA(M = M∗) and πCFA(M =

+∞), respectively.

Figure 2: Percent increase in average number
of served customers by πCFA(M = 1) versus
πCFA(M = +∞).
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Figure 3: Percent reduction in average cost per served
customer by πCFA(M = 1) versus πCFA(M = +∞).
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One can note from the box plot of Figure 2 that for the instances with 200 customer demands,

the CFA policy achieved a median percent increase of 3.65%, 4.17% in the instances with 300

customer demands, and 4.18% in the instances with 400 customer demands. The 25th percentile

of the percent increase values is positive for all the data sets, demonstrating that the CFA policy

consistently achieves a greater total number of served customers in all instances.
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Regarding the box plot of Figure 3, for all the instances, we observe a large variability in

the average cost per served customer in the solutions provided by the CFA policy compared to

those obtained with the myopic policy. The CFA policy achieves a median percent reduction

of 2.87% in the data set with 200 customer demands, 5.92% in the data set with 300 customer

demands, and 16.83% in instances with 400 customer demands.

Figures 4 and 5 show a statistical overview of the performance of the CFA policy in compar-

ison to the myopic one using Ψ = 40min. Figure 4 depicts box plots of the pairwise percent in-

crease in average number of served customers achieved by πCFA(M = 2) versus πCFA(M = +∞)

as computed by expression (10). Similarly, Figure 5 shows the equivalent information for the

reduction in average cost per served customer, computed using expression (11). As it can be

noted from Figure 4, for the instances with 200 customers, the CFA policy achieves a median

percentage increase of 9.94%, of 9.54% for instances with 300 customers, and 9.31% for those

with 400 customers. Unlike the box plots for the case Ψ = 20 minutes, we observe an almost

constant trend of the median percentage increase of served customers. The 25th percentile of

the percent increase values are positive for all the data sets, indicating that the CFA policy

consistently results in a greater total number of served customers.

Figure 4: Percent increase in average number
of served customers by πCFA(M = 2) versus
πCFA(M = +∞).
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Figure 5: Percent reduction in average cost per served
customer by πCFA(M = 2) versus πCFA(M = +∞).
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Considering results presented in the box plot of Figure 5, for all the instances, we observe a

large variability in the average cost per served customer in the solutions provided by the CFA

policy compared to those obtained with the myopic policy. The CFA policy achieves a median

percent reduction of 16.66% in the data set with 200 customer demands, 9.8% in the data set
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with 300 customer demands, and 8.53% in instances with 400 customer demands. In contrast

to the case where Ψ = 20 minutes, we observe a decreasing trend for the median percentage

reduction in cost per served customer.

7. Conclusions

This study considers the operational optimization problem of a fleet of drones deployed

daily to make customer deliveries. The inherent uncertainty of this operation arises from the

variability of customer demands and the drones’ battery energy consumption. The objective is

to design a system to plan trips and optimize their assignment to drones in a dynamic setting,

considering the evolving delivery requirements throughout the day.

To form our real-time policies to assign and schedule trips fulfilling the demands, we have

designed a tailored CFA policy that accounts for a restricted number of trips to be assigned

to the drones. This ensures that the drones are ready at the depot to fulfill new requests

that may arise during the day. Our computational results demonstrate that the proposed CFA

policy achieves lower-cost solutions than a myopic policy. Further, we show that the CFA policy

significantly reduces the lateness in serving the customers within their time windows compared

to the myopic policy.

Our model and solution approach can accommodate the same or similar problems in which

the uncertainty affects the travel time. This includes, for instance, multi-modal transport

systems that employ autonomous robots for delivery purposes. Further research is required to

compare this with different delivery forms in a dynamic context.
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