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Abstract. Motivated by a real-world problem faced by Hydro-Québec, a large Canadian 
utility, this study investigates an inventory routing problem involving the efficient 
distribution of commodities to sites and the backhauling of materials from these sites 
to the depots. We minimize the total cost of distributing multiple products with a fleet 
of capacitated heterogeneous vehicles departing from various depots to customers 
while also backhauling multiple materials back to the depots, all within a discrete and 
finite time horizon. In each period, a customer’s delivery and backhauling can be split 
and satisfied by multiple vehicles. The total cost includes unit inventory holding costs at 
customer sites and transportation costs. We provide a mathematical formulation, 
introduce valid inequalities, and solve the resulting model using a branch-and-cut 
algorithm. To tackle large-size instances, a two-phase decomposition matheuristic is 
developed that solves the assignment and routing problems iteratively. This study is the 
first to consider multiple depots, split delivery, heterogeneous vehicles, multiple 
products, and backhauling in a single model, presenting both exact and heuristic 
solution methods to solve the problem efficiently. An extensive numerical study is 
conducted on synthetic instances to evaluate the performance of the model and 
solution approaches. The heuristic algorithm solves the synthetic instances in less than 
two hours with an average optimality gap of less than 2%. Finally, a case study is 
conducted on the Hydro-Québec commodity distribution and hazardous material 
backhauling network to demonstrate the real-world applicability of the model. We show 
how the company may benefit from integrating the delivery and backhauling networks. 
Our proposed model reduces the total routing costs by 21% compared to the case where 
backhauling is not integrated and split delivery is not allowed.  
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1. Introduction

A typical supply chain involves managing the production, inventory, and distribution
of finished products to multiple customers through various routes, often by minimizing
costs. When the production quantities at the plant are known, and the decisions are
limited to inventory and route planning, the optimization problem is often referred to
as the inventory routing problem (IRP) (Campbell et al. 1998; Chitsaz, Cordeau, and
Jans 2019). The basic IRP involves distributing a single product from a supply facility,
referred to as a depot, to a group of customers using a fleet of identical vehicles. Prod-
ucts are stocked at the depot, and each customer has a storage capacity and a known
demand. The objective of the IRP is to minimize total transportation and holding costs
throughout a planning horizon while ensuring that none of the customers experience
stockouts. This problem has drawn significant attention from the research community
due to the economic advantages of integrating transportation and inventory management,
and it is considered a complex optimization problem (Coelho, Cordeau, and Laporte 2014;
Archetti and Ljubić 2022).

From a practical standpoint, the basic IRP involves numerous simplifications and
limiting assumptions. These include the presence of a single supply or production site,
a single product with unlimited production or supply capacity, identical vehicles and
unlimited storage capacity at the production site. While these assumptions may be valid
in certain cases, they are usually too strict in more complex practical settings and may
lead to solutions that lack the flexibility and responsiveness necessary for efficient supply
chain management. Moreover, the basic IRP disregards the total travel time limit, which
is an important constraint in practice. More specifically, a delivery time limit is essential
to ensure that products arrive on time to meet consumer demand and that the vehicles
can return to their depot before the end of each period in the planning horizon. The
time limit for vehicles becomes more important when products for delivery are perishable
and must be kept fresh, as they cannot remain in the vehicle for too long. Split delivery
instead of consolidated delivery is another characteristic of real problems that is often
necessary to optimize vehicle capacity and reduce transportation costs (Dinh, Archetti,
and Bertazzi 2023).

While formulations of the IRP primarily focus on distributing commodities and min-
imizing the associated costs, incorporating pickups and backhauling into these models
can be beneficial in many cases. To this end, the IRP with pickup and delivery (IRP-
PD) is defined as a problem that focuses on direct transfers between various locations
and involves collecting commodities to move them between pickup and delivery points
or returning them to a central warehouse (Archetti et al. 2020). Backhauling, on the
other hand, takes advantage of vehicle return trips by transporting materials instead of
returning empty, enhancing efficiency and reducing costs. Ignoring backhauling can lead
to inefficiencies, including increased operational costs and environmental impacts, such
as higher greenhouse gas emissions. Backhauling is also important for networks where
the products to be delivered cannot be transported simultaneously in a vehicle with the
materials to be picked up due to incompatibility and potential hazards. For example, in
the food industry, products should not be transported with toxic chemicals because of
the risk of contamination, and if a vehicle plans to collect spoiled foods, they cannot si-
multaneously be in a vehicle that is delivering the foods. It is also the same for electronic
products that should not be transported with flammable liquids due to fire risk, textiles
transported alongside explosives pose significant safety hazards, and household goods
that should not be mixed with radioactive materials to prevent contamination. Another
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practical application of this concept can be seen in the grocery sector, where supermarkets
and retail stores often serve as customers for delivery, while grocery suppliers function
as backhaul customers (Toth and Vigo 2002; Koç and Laporte 2018). Motivated by an
industrial application at Hydro-Québec (HQ), we consider a problem in networks where
pickups are only permitted after completing deliveries to improve efficiency and reduce
operational costs. In our case, this is required because the materials to be transported
in the backhauling stage are hazardous.

In this study, we consider an IRP with delivery and backhauling (IRP-DB), inspired by
our industrial partner, HQ. We explore the benefits of integrating delivery and backhaul-
ing while addressing real-world challenges of the IRP, such as split delivery, heterogeneous
vehicles, and multiple depots. We introduce a mathematical model for the IRP-DB that
incorporates multi-depot and multi-commodity (MDC) considerations, referred to as the
IRP-DB-MDC. The problem involves multiple depots, each with varying supply capac-
ities. Each vehicle begins its journey from a depot during a specific time period and
returns to the same depot at the end of the same time period while ensuring that the
route length does not exceed the available time. Additionally, we consider the possibility
of split deliveries, where a single site may receive commodities from more than one ve-
hicle. Our fleet comprises heterogeneous vehicles with varying capacities and costs, and
each vehicle can make at most one tour in each time period. Note that the aforemen-
tioned assumptions in this general problem description can be relaxed, and the problem
can easily be simplified to the basic IRP form. In the context of this research, the trips
and activities of vehicles collecting materials from different points are referred to as back-
hauling since it happens after completing deliveries. We refer to the commodities being
delivered as delivery commodities and the materials being backhauled as backhauling
materials.

In this study, we employ a branch-and-cut (B&C) algorithm that effectively addresses
the problem, demonstrating improved CPU time and performance compared to solving
the mixed-integer programming (MIP) model directly by a commercial solver. The pro-
posed algorithms use valid inequalities to strengthen the formulation. Additionally, we
introduce a matheuristic approach to handle large-size instances where exact methods
fail to provide efficient solutions. To evaluate the effectiveness of the proposed model
and solution approaches, we test them on synthetic instances. The heuristic approach
can produce good solutions for instances with up to 100 sites, 3 − 5 vehicles, 15 − 30
commodities, and 3 − 5 periods within two hours. The effectiveness of the model and
the solution approaches is further demonstrated through their application to networks
that are representative of the HQ distribution and backhauling network. Benchmark
models, considering disjoint backhauling and delivery operations while avoiding split de-
livery, are also formulated to compare solutions across all models comprehensively. Our
study demonstrates the practical utility and the competitional efficiency of the proposed
solution approaches in complex, realistic scenarios, offering valuable insights. These in-
clude strategies for optimizing vehicle routes, improving vehicle allocation, and minimiz-
ing transportation costs within intricate logistics networks, ultimately enhancing logistics
management and ensuring efficient material transportation throughout the network. Fur-
thermore, numerical instances show that the proposed model can significantly reduce the
total cost of the network compared to benchmark models. In our case study, this im-
provement is particularly notable for routing costs, with a 21% reduction, highlighting
the model’s efficiency in cost minimization.

The subsequent sections are organized as follows. Section 2 reviews the relevant
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literature and discusses our contributions. Section 3 defines the problem and presents
the optimization model. Section 4 outlines the solution approach, including the exact and
matheuristic algorithms used to solve the problem. Section 5 discusses the computational
results and the case study. Finally, conclusions and managerial implications are presented
in Section 6.

2. Literature review

Since the introduction of the IRP by Bell et al. (1983), many variants have been devel-
oped and formulated. These include the perishable IRP (Shaabani 2022); stochastic IRP
(Li et al. 2023; Feng, Che, and Tian 2024; Ortega et al. 2024); IRP with time windows
(Tiniç, Koca, and Yaman 2021); sustainable and green IRP (Soysal et al. 2019; Rau,
Budiman, and Widyadana 2018); the multi-product IRP (Coelho and Laporte 2013a;
Neves-Moreira et al. 2019); and the IRP with a heterogeneous fleet (Cheng et al. 2017;
Hewitt et al. 2013). The IRP has also been extended to include deliveries and pickups,
where vehicles collect excess inventory from some customers and deliver it to others in
need, ensuring efficient inventory management and distribution. This extension, known
as IRP with delivery and pickup (IRP-DP), addresses various logistical challenges, but
few contributions are made in this field. Archetti, Christiansen, and Speranza (2018)
have studied a single product IRP-DP with a single vehicle and extended the formulation
to multi-vehicle cases (Archetti et al. 2020). Both of the papers have employed B&C
algorithms to solve the problem. One of the main applications of IRP-DP is in maritime
transportation, especially for transporting liquid and bulk materials. Due to the large size
and capacity of ships, the significant quantities transported, and the long distances and
travel times involved, it is more efficient to plan routes that combine pickup and delivery
operations at ports rather than schedule them separately. Grønhaug et al. (2010) study
maritime IRP in the liquefied natural gas business, where the natural gas is stored at
designated pickup (loading) ports and is transported via tankers to storage facilities at
delivery (unloading) ports. In a similar context with different applications, Van Anholt
et al. (2016) studied a multiperiod IRP involving both pickups and deliveries motivated
by ATM replenishment. Their approach allows for the dynamic transportation of com-
modities between the depot and customers, with customers also able to exchange goods
as demand fluctuates. Lei, Che, and Van Woensel (2024) have further expanded the
application of IRP-DP in a different domain and have applied IRP-DP to the collection,
disassembly, and delivery problems, formulating a scenario where products are collected
from centres, disassembled into materials, and delivered to remanufacturing plants. The
IRP can also be categorized based on inventory replenishment policies that dictate deliv-
ery quantities. The most common policies are the order up to level (OU) and maximum
level (ML) policies. The OU policy ensures that the inventory is fully stocked if visited,
while the ML policy allows flexible delivery quantities if stock capacities are not ex-
ceeded (Mahmutoğulları and Yaman 2023). Adulyasak, Cordeau, and Jans (2014) study
a multi-vehicle IRP and address the problems considering the ML and OU inventory
replenishment policies and Dinh, Archetti, and Bertazzi (2023) examine the advantages
of incorporating split deliveries into the problem under both ML and OU replenishment
strategies. In addition to these policies, Diabat, Bianchessi, and Archetti (2024) have
studied the zero inventory ordering (ZIO) policy, where replenishment occurs only when
the customer’s inventory level reaches zero. This policy is more customer-oriented than
the ML policy. The authors analyze its advantages for customers and demonstrate how
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the ZIO policy can reduce customers’ inventory costs compared to the ML policy while
discussing potential disadvantages for the system. Chiu, Angulo, and Larrain (2024)
examine how incorporating safety stocks can improve the long-term performance of the
rolling horizon strategy in IRP. Additionally, the study explores the impact of establishing
minimum inventory levels for the final period of the planning horizon.

The IRP is a mathematically challenging problem due to a combination of routing and
inventory management decisions, and researchers have used different exact and heuristic
algorithms to solve the problem (Archetti and Ljubić 2022). The exact methods devised
for the IRP are primarily categorized into branch-cut-and-price (BC&P) algorithms and
B&C algorithms. Although BC&P algorithms are used in some studies (Desaulniers,
Rakke, and Coelho 2016), B&C algorithms have been the most widely used exact meth-
ods for various IRP variants, including those with different policies, split deliveries, and
product substitution (Sk̊alnes et al. 2024). The paper of Archetti et al. (2007) is one
of the first to propose an exact IRP approach for the single-vehicle case. The literature
on developing solution approaches has advanced and aims to solve more complex prob-
lems with multiple vehicles. Coelho and Laporte (2013b) propose a B&C algorithm as
an exact solution approach for several classes of IRPs. Adulyasak, Cordeau, and Jans
(2014), Archetti, Boland, and Grazia Speranza (2017) and Mahmutoğulları and Yaman
(2023) have taken important steps to improve the B&C algorithms for different variants
of problems. Due to the complexity of the problem, heuristic algorithms have also been
developed to solve it. Le et al. (2013) have developed a heuristic algorithm for an IRP
involving perishable goods based on column generation. Absi et al. (2015) and Chitsaz,
Cordeau, and Jans (2019) have proposed an iterative algorithm to solve the problem,
and other researchers have developed new algorithms to get more efficient solutions.
Sk̊alnes et al. (2023) developed a heuristic that employs a B&C embedded matheuristic,
in which the matheuristic is invoked each time a new primal solution is obtained during
the B&C. The authors have conducted a comprehensive review of well-established heuris-
tic algorithms in the literature for the IRP and have compared the performance of their
proposed algorithm with these existing approaches. Several studies proposed both exact
and heuristic algorithms to solve the IRP. For instance, Bertazzi et al. (2019) focus on
the multi-depot IRP and present both a B&C algorithm and a three-phase matheuristic
designed specifically to handle realistic-size instances of the problem. For more informa-
tion on heuristic algorithms for IRP, we refer the readers to Andersson et al. (2010) and
to Sofianopoulou and Mitsopoulos (2021).

A key distinction between the basic IRP and the model presented in this study is the
inclusion of backhauling trips, which optimize vehicle capacity utilization after deliveries
are completed. Furthermore, the formulated model considers a multi-depot network with
heterogeneous vehicles that deliver and backhaul multiple products. The integration of
backhauling with deliveries is well-studied in the context of the vehicle routing problem
(VRP), known as VRP with backhauling (VRP-B) and has been extensively explored in
the literature. Deif and Bodin (1984) were the first to introduce VRP-B and extended
the Clarke and Wright (1964) algorithm to address it. For a comprehensive review of
VRP-B, readers are referred to Santos et al. (2020) and Koç and Laporte (2018). De-
spite the extensive research on VRP-B, the specific case of IRP, where vehicles perform
backhauling tasks within the framework of inventory routing, remains under-researched.
Only a few studies have addressed this particular problem. Arab, Ghaderi, and Tavakkoli-
Moghaddam (2020) approached the problem by considering a single depot without im-
posing any time limits on the tours, and they proposed population heuristic algorithms
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that could solve instances with up to 40 sites. On the other hand, Londoño et al. (2023)
formulated a model for identical vehicles while ignoring time constraints, with their so-
lution limited to instances involving a maximum of 15 customers. A summary of recent
studies on IRP-DP and IRP-DB is presented in Table 1. The table highlights how our
research differs from the other studies in the literature.

Table 1: Summary of literature in the field of IRP-PD and IRP-DB
Reference paper

Multiple Multiple Time Split Heterogeneous PD/DB Solution
depots products limits delivery vehicles approach

Ramkumar et al. (2012) ✓ ✓ ✓ ✓ - PD No method
Van Anholt et al. (2016) ✓ - - ✓ - PD B&C, heuristic
Iassinovskaia, Limbourg, and Riane (2017) - - - ✓ - PD B&C
Archetti, Christiansen, and Speranza (2018) - - - - - PD B&C
Archetti et al. (2020) - - - - - PD B&C
Arab, Ghaderi, and Tavakkoli-Moghaddam (2020) - ✓ - - ✓ DB Meta-heuristics
Agra, Christiansen, and Wolsey (2022) - - - ✓ - PD B&C
Neves-Moreira et al. (2022) - ✓ - - ✓ PD B&C, heuristic
Londoño et al. (2023) - - - - - DB No method
This research ✓ ✓ ✓ ✓ ✓ DB B&C, heuristic

B&C: branch-and-cut algorithm; PD: pickup and delivery, DB: delivery and backhauling

In this study, we propose a model for the IRP-DB that incorporates multiple depots,
multiple commodities, heterogeneous vehicles, a maximum travel time for each route,
and split deliveries. Most solution approaches for the IRP are developed to exploit
conventional basic problem characteristics, which may limit their practical applicability
(Song and Furman 2013). Our study offers a generalized solution approach that can
be applied to a wide range of real-world IRPs of similar complexity. We tackle this
problem using both exact and matheuristic algorithms. These methods are tested through
extensive numerical experiments, providing insights into the efficiency and scalability of
our methods. Our matheuristic approach efficiently solves problems with up to 100 sites
in less than two hours, achieving an average optimality gap of 3% for the 100-site instances
and less than 2% on average across all instances. We generate benchmark instances for
IRP-DB-MDC with heterogeneous vehicles to ensure comparability based on the well-
established IRP instances provided by Archetti et al. (2007). We also implement our
model in a real-world case study to demonstrate its practical relevance. This application
highlights the real-world applicability of our methods, particularly in optimizing the
logistics management of our industrial partner. Finally, we formulate benchmark models
to facilitate comprehensive comparisons with other approaches in the literature.

3. Problem definition and mathematical formulation

In this section, we present and model the IRP-DB-MDC. We first describe the problem
in Section 3.1 and introduce a mathematical model. We then provide benchmark models
in Section 3.2. Throughout this section, brackets refer to the mathematical model of a
problem. For example, IRP-DB-MDC refers to the problem itself, while [IRP-DB-MDC]
refers to its formulation.

3.1. Problem definition

The IRP-DB-MDC can be defined on a complete undirected graph G = (M ∪ N ∪
N ′, E), where M = {d1, d2, . . . , dM} represents the set of depots serving as the origin
and destination points for vehicle routes, N = {1, 2, . . . ,N} denotes the set of sites for
product deliveries, and N ′ = {N + 1,N + 2, . . . ,N ′} denotes the set of the sites for
backhauling material pickups. If a site has both delivery and backhauling demands, it
is considered as two separate sites. The set of edges, denoted by E, is defined as E =
{(i, j) | i ∈ M, j ∈ N ∪N ′} ∪ EN,N ′ ∪ EN ∪ EN ′ , where EN,N ′ = {(i, j) | i ∈ N, j ∈ N ′},
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EN = {(i, j) | i ∈ N, j ∈ N, i < j}, EN ′ = {(i, j) | i ∈ N ′, j ∈ N ′, i < j}. Let E(S) be
the set of edges (i, j) ∈ E such that i, j ∈ S, where S ⊆ N ∪ N ′. Additionally, δ(i) is
defined as the set of incident edges to site i ∈ N ∪N ′∪M , such that δ(i) = {(a, b) | a, b ∈
N ∪N ′ ∪M, (a, i) ∈ E or (i, b) ∈ E}. The set of time periods T = {1, 2, . . . , T } denotes
the planning horizon and the sets of commodities to deliver and materials to backhaul
are denoted by P = {1, 2, . . . ,P} and P ′ = {P + 1,P + 2, . . . ,P ′}, respectively. The
quantity of commodity p ∈ P to be delivered to site i ∈ N in period t ∈ T is represented
by dipt. Similarly, the quantity of backhauled material of type p ∈ P ′ collected from site
i ∈ N ′ during period t ∈ T is represented by gipt.

To formulate our problem, we define a network that encompasses both the delivery
process, which is responsible for transporting commodities from depots to sites and the
backhauling process, which is responsible for collecting materials. A fleet of heteroge-
neous vehicles K = {1, 2, . . . ,K} with transportation costs and times denoted by cijk
and tijk for (i, j) ∈ E, respectively, and a capacity of bk, depart from depots to deliver
commodities to sites to fulfill their demand or backhaul hazardous materials from sites
to depots. The interplay between the inventory level and demand at sites and the vehicle
capacity determines the number of vehicles that will visit a site within a given period, i.e.,
more than one vehicle may visit a site for delivery and backhauling during a period. A
vehicle cannot carry commodities and backhauling materials concurrently. Therefore, ve-
hicles may only start backhauling after completing commodity deliveries, or they should
immediately start collecting backhauling materials after leaving the depot without mak-
ing any delivery en route. The total amount of supplied commodities and backhauled
materials in each period is individually limited to the depot capacities, denoted by lip and
l′ip, respectively. Furthermore, inventory can be stored at sites, but the inventory level
must not exceed the capacity oi at site i ∈ N ∪N ′. The unit cost of holding inventory of
product p at site i is denoted by hip. The summary of notations is given in Table 2.

The following decision variables are used to formulate the IRP-DB-MDC. Variable
sipt represents the inventory level of delivery commodity as backhauling material p at
site i. The amount of commodity or material of type p delivered or collected from site
i by vehicle k in period t is denoted by uipkt. Binary decision variable xijkt equals one
if vehicle k traverses edge (i, j) in period t, and 0 otherwise, while zikt equals one if site
i is visited by vehicle k in period t. Figure 1 illustrates the delivery and backhauling
network. The sequence entails the delivery of commodities to sites, succeeded by the
backhauling of materials to depots. It is worth mentioning that a vehicle can directly
begin backhauling after leaving a depot, and delivery is not a prerequisite for initiating
backhauling operations. All quantities in this formulation share the same units and can
be expressed in pallets to facilitate calculations.

The problem can be formulated as a generalization of the formulations presented in
Adulyasak, Cordeau, and Jans (2014) and in Archetti, Christiansen, and Speranza (2018).

[IRP-DB-MDC] :

min
∑
t∈T

∑
k∈K

∑
(i,j)∈E

cijkxijkt +
∑
i∈N

∑
p∈P

hipsipt +
∑
i∈N ′

∑
p∈P ′

hipsipt
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Table 2: Summary of all notation
Sets
P Set of delivery commodities (indexed by p = 1, 2, . . . ,P)
P ′ Set of backhauling materials (indexed by p = P + 1,P + 2, . . . ,P ′)
T Set of time periods (indexed by t = 1, 2, . . . , T )
N Set of sites for delivery (indexed by i, i′, j = 1, 2, . . . ,N )
N ′ Set of sites for backhauling (indexed by i, i′, j = N + 1,N + 2, . . . ,N ′)
M Set of depots (indexed by i, j = d1, d2, . . . , dM); dk is the depot where vehicle k should start and end its trip
K Set of vehicles (indexed by k = 1, 2, . . . ,K); ik is the depot where vehicle i is located
Ki Set of vehicles that are located at depot i ∈ M,Ki ⊆ K
E Set of edges {(i, j) | i ∈ M, j ∈ N ∪N ′} ∪ EN,N′ ∪ EN ∪ EN′ , where EN,N′ = {(i, j) | i ∈ N, j ∈ N ′},

EN,N′ = {(i, j) | i ∈ N, j ∈ N ′}, EN = {(i, j) | i ∈ N, j ∈ N, i < j}, EN′ = {(i, j) | i ∈ N ′, j ∈ N ′, i < j}
E(S) Set of edges (i, j) ∈ E such that i, j ∈ S, where S ⊆ N ∪N ′ is a given set of sites
δ(i) Set of incident edges to site i ∈ N ∪N ′ ∪M, {(a, b) | a, b ∈ N ∪N ′ ∪M, (a, b) ∈ E, a = i or b = i}
Parameters
cijk Transportation cost of edge (i, j) ∈ E with vehicle k ∈ K
tijk Travel time of edge (i, j) ∈ E with vehicle k ∈ K
Tmax Available time for each vehicle in each period
dipt Demand at site i ∈ N for commodity p ∈ P in period t ∈ T
gipt Quantity of backhauling material of type p ∈ P ′ at site i ∈ N ′ accumulated in period t ∈ T
qip Storage capacity of site i ∈ N for commodity p ∈ P (i ∈ N ′ for backhauling material p ∈ P ′)
oi Global storage capacity of site i ∈ N ∪N ′

akp Capacity of vehicle k ∈ K for commodiy or backhauling material p ∈ P ∪ P ′

bk Global capacity of vehicle k ∈ K
hip Unit holding cost of commodity p ∈ P at site i ∈ N (i ∈ N ′ for backhauling material p ∈ P ′)
lip Maximum supply of commodity p ∈ P at depot i ∈ M at the beginning of each period
l′ip Maximum amount of backhauling material p ∈ P ′ that can be accumulated at each depot i ∈ M

fik Binary parameter equal to 1, if vehicle k ∈ K is located in depot i ∈ M , and 0 otherwise
sip0 Initial inventory level of commodity p ∈ P at site i ∈ N (backhauling material p ∈ P ′ at site i ∈ N ′)
Dikt Maximum commodity that can be delivered to site i ∈ N by vehicle k ∈ K in period t ∈ T

(maximum backhauling material that can be picked up from site i ∈ N ′ by vehicle k ∈ K in period t ∈ T )

Dikt = min
{
oi, bk,

∑
p∈P

∑T
t′=t dipt′

}
i ∈ N, k ∈ K, t ∈ T

D′
ikt = min

{
oi, bk,

∑
p∈P ′

(
sip0 +

∑t
t′=1 dipt′

)}
i ∈ N ′, k ∈ K, t ∈ T

Decision variables
sipt Inventory level of commodity p ∈ P or backhauling material p ∈ P ′ at depot i ∈ M in period t ∈ T
uipkt Quantity of commodity p ∈ P delivered to site i ∈ N in period t ∈ T with vehicle k ∈ K

(backhauling material p ∈ P ′ picked up from site i ∈ N)
xijkt Binary variable equals to 1 if vehicle k ∈ K traverses directly between edges i, j ∈ E in period t ∈ T , and 0 otherwise
zikt Binary variable equals to 1 if site or depot i ∈ N ∪N ′ ∪M is visited by vehicle k ∈ K in period t ∈ T , and 0 otherwise

s.t.
∑

(i,j)∈E

tijkxijkt ≤ Tmax k ∈ K, t ∈ T (1)

sip(t−1) +
∑
k∈k

uipkt = dipt + sipt i ∈ N, p ∈ P, t ∈ T (2)

sip(t−1) + gipt =
∑
k∈K

uipkt + sipt i ∈ N ′, p ∈ P ′, t ∈ T (3)

∑
p∈P

(
sip(t−1) +

∑
k∈k

uipkt

)
≤ oi i ∈ N, t ∈ T (4)∑

p∈P ′

(
sip(t−1) + gipt

)
≤ oi i ∈ N ′, t ∈ T (5)∑

i∈N

∑
p∈P

uipkt ≤ bk
∑
i∈M

zikt k ∈ K, t ∈ T (6)∑
i∈N ′

∑
p∈P ′

uipkt ≤ bk
∑
i∈M

zikt k ∈ K, t ∈ T (7)

sip(t−1) +
∑
k∈k

uipkt ≤ qip i ∈ N, p ∈ P, t ∈ T (8)

sip(t−1) + gipt ≤ qip i ∈ N ′, p ∈ P ′, t ∈ T (9)∑
i∈N

uipkt ≤ akp
∑
i∈M

zikt p ∈ P, k ∈ K, t ∈ T (10)∑
i∈N ′

uipkt ≤ akp
∑
i∈M

zikt p ∈ P ′, k ∈ K, t ∈ T (11)
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Figure 1: The delivery and backhauling network. Vehicles can start backhauling after delivery, but the
reverse delivery sequence after backhauling is prohibited.

∑
i′∈N

∑
Ki

ui′pkt ≤ lip i ∈ M, p ∈ P, t ∈ T (12)∑
i′∈N

∑
Ki

ui′pkt ≤ l′ip i ∈ M, p ∈ P ′, t ∈ T (13)∑
p∈P

uipkt ≤ Diktzikt i ∈ N, k ∈ K, t ∈ T (14)∑
p∈P ′

uipkt ≤ D′
iktzikt i ∈ N ′, k ∈ K, t ∈ T (15)

zikt ≤ fik i ∈ M,k ∈ K, t ∈ T (16)∑
(i,i′)∈δ(j)

xii′kt = 2zjkt j ∈ N ∪N ′ ∪M,k ∈ K, t ∈ T (17)

∑
(i,j)∈EN−N′

xijkt ≤ 1 k ∈ K, t ∈ T (18)

∑
(i,j)∈E(S)

xijkt ≤
∑
i∈S

zikt − zi′kt S ⊆ N ∪N ′, |S| ≥ 2, i′ ∈ S, k ∈ K, t ∈ T (19)

xijkt ∈ {0, 1} (i, j) ∈ E, i /∈ M,k ∈ K, t ∈ T (20)

xijkt ∈ {0, 1, 2} i ∈ M, j ∈ N ∪N ′, k ∈ K, t ∈ T (21)

zikt ∈ {0, 1} i ∈ N ∪N ′ ∪M,k ∈ K, t ∈ T (22)

sipt, uipkt ≥ 0 i ∈ N,N ′,M, p ∈ P, P ′, k ∈ K, t ∈ T. (23)

The objective function minimizes the total routing and inventory holding costs. Con-
straints (1) ensure that the total travel time for each vehicle route in each period will
not exceed the available travel time in that period. Constraints (2) and (3) represent
the inventory flow balance at sites for delivery commodities and backhauling materials,
respectively. Constraints (4) enforce the overall capacity of sites for all commodities,
while (5) impose this consideration for all backhauling materials in warehouses. The
global vehicle capacity is expressed by constraints (6) for delivery commodities and by
constraints (7) for backhauling materials. The industrial application additionally requires
constraints regarding the capacities per commodity and material for warehouses and ve-
hicles. Constraints (8) ensure that the total quantity of each commodity does not exceed
the available storage capacity at the site, while (9) serves an analogous role for materials.
Constraints (10) ensure that the total quantity of commodities on each vehicle does not
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surpass the capacity, and constraints (11) are formulated for the same purpose for ma-
terials. Constraints (12) and (13) guarantee that the total delivery commodity supplied
in each depot and the material backhauled does not exceed the associated capacity in
the depot. Constraints (14) and (15) allow the delivery of commodities to a site and
backhauling of materials by a vehicle from a site in a period only if the vehicle visits
the site in that period. Constraints (16) ensure that the route of each vehicle must start
and end at the predetermined depot. Constraints (17) are the degree constraints and
represent the conservation of vehicle flow. These constraints ensure that if a site is vis-
ited, the number of edges incident to that site must be 2. Constraints (18) ensure that
if a vehicle performs both delivery and backhauling, it can only begin the backhauling
operation after completing the delivery. In other words, the vehicle, cannot return for
delivery once it has traversed between the networks. Constraints (19) are subtour elimi-
nation constraints (SECs) for each vehicle in each period. These constraints are similar
to those used in Archetti et al. (2007) and in Adulyasak, Cordeau, and Jans (2014).
Constraints (20)−(23) impose domain restriction of the variables. Notice that although
[IRP-DB-MDC] may initially appear decomposable over time period, constraints (2) and
(3) introduce dependencies between consecutive periods. These constraints link each time
period to its predecessor, thereby preventing decomposition.

3.2. Benchmark Models

We formulate two benchmark models to assess the solution of the proposed model. The
first benchmark, referred to as [IRP-DB-MDC-I], models the case when a vehicle cannot
be utilized for both backhauling and delivery within the same period. Furthermore, split
deliveries are prohibited in this scenario. The second benchmark model, referred to as
[IRP-DB-MDC-II], allows a vehicle to perform backhauling after completing its delivery
tasks but forbids split deliveries. Table 3 summarizes the characteristics of the main
model and the benchmark models.

Table 3: Summary of benchmark models
Model Split delivery Integrated backhauling and delivery

Benchmark models
[IRP-DB-MDC-I] No No
[IRP-DB-MDC-II] No Yes

Main model [IRP-DB-MDC] Yes Yes

To formulate [IRP-DB-MDC-I], we replace constraints (18) in [IRP-DB-MDC] with
constraints (24), ensuring that a vehicle engaged in delivery cannot also be used for
backhauling at the same time. Additionally, we add (25) to the model to prevent split
deliveries. The [IRP-DB-MDC-I] formulation is given as follows:

[IRP-DB-MDC-I] :

min
∑
t∈T

∑
k∈K

∑
(i,j)∈E

cijkxijkt +
∑
i∈N

∑
p∈P

hipsipt +
∑
i∈N ′

∑
p∈P ′

hipsipt
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s.t. (1)− (17), (19)− (23)∑
(i,j)∈EN−N′

xijkt ≤ 1 k ∈ K, t ∈ T (24)

∑
k∈K

zikt ≤ 1 i ∈ {N ∪N ′}, t ∈ T. (25)

To formulate [IRP-DB-MDC-II], we solve the main model while including constraints
(25) to forbid split delivery.

[IRP-DB-MDC-II] :

min
∑
t∈T

∑
k∈K

∑
(i,j)∈E

cijkxijkt +
∑
i∈N

∑
p∈P

hipsipt +
∑
i∈N ′

∑
p∈P ′

hipsipt


s.t. (1)− (23), (25)

4. Solution approach

The model formulated in this study is a computationally expensive MIP that demands
substantial memory and processing power to obtain optimal solutions for large instances.
We now develop both exact and matheuristic algorithms to address this challenge. In the
following, we present and discuss the valid inequalities in Section 4.1. We then present
the details of exact and matheuristic algorithms and provide thorough explanations. The
exact algorithm is described in Section 4.2, and the matheuristic algorithm is detailed in
Section 4.3. The matheuristic algorithm provides near-optimal solutions more efficiently
by simplifying and breaking down the problem into manageable subproblems. It is par-
ticularly advantageous for larger instances where the exact algorithm may be impractical.

4.1. Valid inequalities

Similar to Archetti et al. (2020) and Adulyasak, Cordeau, and Jans (2014), we use
valid inequalities to strengthen our formulation. In this section, we derive a set of valid
inequalities specifically designed for our multi-commodity network with heterogeneous
vehicles and backhauling. The inequalities introduced in the referenced studies have
been adapted to suit our problem.

Let t′ be the earliest period when at least one customer must be replenished to prevent
a stockout, and κ be the minimum shipping quantity in t′, inequality (26) prevents
stockouts:

∑
k∈K

t′∑
t=1

z0kt ≥
⌈

κ

bmax

⌉
(26)
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where,

t′ip = argmin1≤t≤T

{
t∑

t′′=1

dipt′′ − sip0 > 0

}
t′ = min

i∈N,p∈P
t′ip

κ =
∑
i∈N

∑
p∈P

max{0,
t′∑
t′′

dipt′′ − sip′0}

bmax = max
k∈K

bk.

Inequalities (27) imply that if site i is not served in period t, then the inventory level
at the site should be sufficient to meet the demand of the site for that period without
resulting in a stockout. Inequalities (28) are an extension of (27) and ensure that if a site
i is not visited for delivery in periods t− e, . . . , t, then the decision variables for visiting
the site take the value of zero for all the given periods and all vehicles; therefore the
inventory level at time t− e− 1 should be sufficient to satisfy demand in those periods.
By considering the demand between t−e and t and accounting for the capacity of vehicles,
inequalities (29) ensure that the total number of visits to a site between periods should
be sufficient to prevent stockouts:(

1−
∑
k∈K

zik,t+1

)
dip,t+1 ≤ sipt i ∈ N, p ∈ P, t ∈ T

(27)(
e∑

t′=0

dip,t−t′

)(
1−

∑
k∈K

e∑
t′=0

zik,t−t′

)
≤ sip,t−e−1 i ∈ N, p ∈ P, t ∈ T, e ∈ [0, 1, . . . , t− 1]

(28)
e∑

t′=0

dip,t−t′ − sip,t−e−1 ≤
∑
k∈K

e∑
t′=0

zik,t−t′akp i ∈ N, p ∈ P, t ∈ T, e ∈ [0, 1, . . . , t− 1].

(29)

Inequalities (30) ensure that if a site i is not visited for backhauling in periods t−e, . . . , t,
then there should be enough capacity for stocking backhauling material accumulated in
those periods. Inequalities (31) ensure that the total number of visits to a site across
periods is sufficient to keep the accumulated backhauling material at each site below its
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capacity. Finally, we have the routing inequalities in (32)−(34):

sipt−1 +
t+e∑
t′=t

gipt′

(
1−

∑
k∈K

t+e∑
t′=t

zikt′

)
≤ qip i ∈ N ′, p ∈ P ′, t ∈ T, e ∈ [0, 1, . . . , t− 1]

(30)
e∑

t′=0

gip,t−t′ + sip,t−e−1 − qip ≤
∑
k∈K

e∑
t′=0

zik,t−t′akp i ∈ N ′, p ∈ P ′, t ∈ T, e ∈ [0, 1, . . . , t− 1]

(31)

zikt ≤
∑
i∈M

zikt i ∈ N ∪N ′, k ∈ K, t ∈ T (32)

xijkt ≤ zikt (i, j) ∈ E, k ∈ K, t ∈ T (33)

xijkt ≤ zjkt (i, j) ∈ E, k ∈ K, t ∈ T. (34)

4.2. The Branch-and-cut algorithm

We use the B&C algorithm for solving [IRP-DB-MDC], and it is strengthened by
the valid inequalities formulated in Section 4.1, all of which are polynomial in number.
Additionally, an exact separation algorithm, which solves a minimum s− t cut problem,
determines the violated SECs for each vehicle in each period as the vehicle tours are
identified by the vehicle index (Adulyasak, Cordeau, and Jans 2014). When solving the
separation problem at each node of the branch-and-bound (B&B) tree, we denote the
current values of the variables zikt and xijkt by zikt and xijkt, respectively. A graph for
vehicle k in period t is generated from the set of nodes with zikt > 0. The weights of the
edges in the generated graph are equal to the xijkt values. Next, for each site in a given
route, a minimum s− t cut problem is solved where the depot of the route is set as the
source node and the site is set as the sink node. If the value of the minimum cut is less
than 2zikt, then a violated SEC is identified. This procedure is executed at the root node
and in a predefined number of initially explored nodes in the B&B tree. For the subtour
on a set of nodes S that is found for vehicle k in period t, we add constraint (19) with
i′ = argmaxi∈N̄kt

(zikt) to the formulation where N̄kt = {i ∈ N | zikt > 0}. Note that we
have utilized the NetworkX (Hagberg, Swart, and Schult 2008) library in Python to solve
the minimum s− t cut problem and the Gurobi callback function (Gurobi Optimization
2024) for implementing the SECs as both lazy and user cuts.

4.3. Matheuristic algorithm

In this section, we describe a matheuristic algorithm to solve the problem by breaking
it into more manageable subproblems. The algorithm operates in two phases. In Phase I,
an initial solution is generated, which involves solving an assignment problem to attribute
sites to vehicles in each period and to obtain an optimal route for each assignment. Phase
II addresses the main optimization model by using the obtained assignment and routing
variables from Phase I as a warm start for the solver. Combining these two phases allows
the algorithm to obtain near-optimal solutions. Figure 2 shows the flowchart of the pro-
posed algorithm. The idea for the algorithm used to obtain the initial solution is inspired
by the matheuristic algorithms presented by Absi et al. (2015) and by Chitsaz, Cordeau,
and Jans (2019) for solving production routing problems. The mentioned algorithms con-
sider identical vehicles and do not account for travel time limits. However, our algorithm
addresses heterogeneous vehicles and incorporates travel time constraints. Additionally,
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Figure 2: The algorithm generates an initial solution in Phase I, then uses the B&C to solve the opti-
mization model using the initial solution as a warm start

instead of relying on numerous iterations, we employ the B&C algorithm to enhance the
performance and reduce CPU time. In the following, we describe the algorithm in detail.
Phase I: Iterative algorithm to generate an initial solution. This phase is divided
into three steps. In Step 1, a mathematical model is solved to assign sites to vehicles. In
Step 2, a series of traveling salesman problems (TSPs) are solved to find the best route
for each vehicle in each period. Finally, in Step 3, the assignment costs are updated
according to the obtained solutions. This procedure is repeated iteratively for a specified
number of iterations to refine the on-hand solution. The algorithmic steps are provided
in detail below.
[Step 1]. In this step, we solve an assignment model, denoted as [asgn], using the
constraints of [IRP-DB-MDC]:

[asgn] :min
∑
t∈T

∑
k∈K

∑
i∈{N+N ′+M}

σvitzikt +
∑
i∈N

∑
p∈P

hipsipt +
∑
i∈N ′

∑
p∈P ′

hipsipt


s.t. (1)− (34).

The main difference between this model and [IRP-DB-MDC] lies in the objective function.
In the [asgn] model, the objective function excludes routing costs and instead focuses on
the dispatching cost of vehicles and the costs of assigning sites to vehicles. The cost
of assigning site i to vehicle k in period t is denoted by σkit, which is approximated as
half of the travel cost for the vehicle to reach site i from the depot where the vehicle is
located. Additionally, the cost of dispatching each vehicle σvit for i ∈ M is calculated
as 1

N

(∑
i∈N σvit

)
. It is important to note that all decisions regarding the quantities

delivered to sites by each vehicle in every period are made within the model. These
quantities adhere to the vehicle and site capacity constraints.

We use a logic-based decomposition method to solve the [asgn] problem by dividing
it into a master problem and subproblems. The master problem involves assigning sites
to vehicles, while the subproblems focus on routing decisions. The subproblems check
whether the assignment from the master problem has a feasible solution, i.e., if the vehicle
can cover the sites within the given time. If an assignment is found to be infeasible due
to travel time constraints, the following cut is generated to exclude this assignment from
consideration. Here, z∗ikt represents the values in the current solution. The sets N and
N ′ correspond to the nodes visited by vehicle k∗ in the infeasible route for delivery and
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backhauling, respectively. The parameter α takes the value 1 if N and N ′ share a common
node and backhauling begins immediately from that node, and 0 otherwise:

∑
i∈N+N ′

zik∗t ≤
∑

i∈N+N ′

z∗ik∗t − 1− α.

To this end, the master problem is solved first, followed by the subproblems for each
assignment in each period. The master problem and the subproblem are given below as
[asgn-m] and [asgn-sp] respectively:

[asgn-m] : min
∑
t∈T

∑
k∈K

∑
i∈{N+N ′+M}

σvitzikt +
∑
i∈N

∑
p∈P

hipsipt +
∑
i∈N ′

∑
p∈P ′

hipsipt


s.t. (2)− (16), (22)− (32)

[asgn-sp] : min 0

s.t. (1), (17)− (21), (33), (34).

[Step 2]. In this step, we determine the optimal routes for the sites assigned to each
vehicle in each period. Specifically, we solve a series of TSPs for the sites allocated to
each vehicle during each period and record the resulting optimal routes.
[Step 3]. In this step, we update the assigning cost of sites to the vehicle using the
solution obtained in the first iteration. Let Nkt represent the set of sites assigned to the
vehicle k in period t, obtained from Step 1, and let Rkt be the route of vehicle k in period
t. For vehicle k in period t and i ∈ Nkt, let i

p and is denote the predecessor and successor
of site i in route Rkt, respectively. For any site not in Nkt, we update σvit to the cheapest
insertion cost for inserting it into Rkt. For sites in Nkt, we update the visiting cost σvit to
(cipi + ciis − cisip). We repeat this cost update mechanism for all sites across all vehicles
and periods.
Phase II: Improving initial solution. In this phase, we use the solution generated
in Phase I as a warm start for [IRP-DB-MDC] and start the solving procedure with a
given time limit. Finally, we report the optimized solution as the final solution of the
algorithm.

To customize the algorithm to solve the [IRP-DB-MDC-I] model, we add constraints
(25),(35)−(38) to [asgn] and [asgn-m] to forbid split delivery and ensure that each as-
signment involves either delivery or backhauling, but not both. In this context, y and y′

are defined as auxiliary binary decision variables. Constraints (35) set the value of ykt
to 1 if vehicle k in period t does the delivery and constraints (36) set the value of y′kt to
one if vehicle k in period t does the backhauling. Constraints (37) prevent a vehicle from
delivering and backhauling in the same period:

∑
i∈N

zikt ≤ N ykt k ∈ K, t ∈ T (35)∑
i∈N ′

zikt ≤ N ′y′kt k ∈ K, t ∈ T (36)

ykt + y′kt ≤ 1 k ∈ K, t ∈ T (37)

ykt, y
′
kt ∈ {0, 1} k ∈ K, t ∈ T. (38)
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To solve [IRP-DB-MDC-II] with the algorithm, we only add constraints (24) to the
[asgn] and [asgn-m] models to forbid split delivery. In the algorithm, there may be in-
stances where a strict travel time constraint for vehicle tours prevents the proposed meta-
heuristic algorithm from generating an initial solution on the first iteration or causes it to
take too long. This issue occurs when the time limit is short and the distances between
locations are large since [asgn-m] assigns sites regardless of their distances. Consequently,
the algorithm may need to solve the subproblem multiple times to avoid infeasible assign-
ments and to add numerous cuts to restore feasibility. To address this, we initially solve
the problem with a larger time limit than the actual one and then iteratively reduce the
time limit in steps until the desired travel time constraint is met. This approach allows
us to obtain feasible solutions more efficiently by gradually tightening the constraints.
We applied this method to our case study, and further details are provided in Section
5.4.2.

5. Numerical Study

In this section, we present the numerical experiments designed to evaluate the per-
formance of the proposed algorithms. In our numerical experiments, we use two distinct
datasets. The first one is used to generate synthetic instances, while the second one
is specifically generated to meet the requirements of our industrial partner, HQ. The
synthetic instances are designed to evaluate the model and the performance of the so-
lution approaches. We avoid using the case study data for this purpose to ensure that
the approaches are general and not biased toward the possible specific characteristics of
the case study data. We describe the data and the synthetic instances in Section 5.1.
We then evaluate the performance of the B&C and matheuristic algorithms in Sections
5.2 and 5.3, respectively. Finally, the details of the data for HQ are presented, and we
discuss the case study in Section 5.4. The computational experiments were conducted on
a 64-bit Windows server equipped with an Intel Xeon Gold 6148 CPU @ 2.40GHz. The
algorithms were implemented using Python and Gurobi 10.0.1.

5.1. Generation of synthetic instances

To evaluate the efficacy of proposed B&C and matheuristic algorithms, we adapt the
data generation instruction proposed by Archetti et al. (2007) to create synthetic in-
stances for multi-commodity IRP-DB-MDC with heterogeneous vehicles. The generation
process is customized to address the specific requirements of our problem. Detailed in-
formation on the generation process is provided in Tables 4 and 5. Each instance in our
study varies in scale, with the number of sites N = 12α and N ′ = 8α, where α ∈ {1, 3, 5}.
We solve the problem for different numbers of periods, T ∈ {3, 5}, and allocate a varying
number of vehicles, K ∈ {3, 5}. The number of commodities and materials are set to
P = 10β and P ′ = 5β, with β ∈ {1, 2}. As summarized in Table 6, 12 unique combina-
tions are generated. In all instances, we assume two depots, with vehicles of odd indices
departing from one depot and vehicles of even indices departing from the other. All
vehicles return to their starting depot at the end of their routes. We designed eight data
generation frameworks (DGFs) for each instance based on the varying parameter values
listed in Tables 4 and 5 by considering different intervals for holding costs, coordinate
ranges, and vehicle capacities. This process yielded 12 × 8 = 96 distinct instances. In
other words, for each DGF, the intervals of holding costs, coordinates and capacities are
different; however, parameters in Table 4 have the same intervals. To account for vari-
ability, we generated five data sets for each of the 96 instances by randomly generating
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parameters and reporting the average performance. To report the results, we employ
various aggregation methods and group the instances based on DGF or instance scales.
Out of the 480 synthetic instances generated, 450 were found to have feasible solutions,
while the remaining instances were determined to be infeasible. All subsequent analyses
in this paper focus on the 450 instances with verified feasible solutions. The parameter
ωk in Tables 4 and 5 represents a coefficient specific to each vehicle k, used to scale its
base capacity, thereby introducing heterogeneity among the vehicles in terms of their
capacities.

Table 4: Sampling distributions of parameters
Parameter Value Parameter Value
dipt

∗ [5, 25] gipt
∗ [5, 25]

akp maxi∈N (qip + dipt)× ωk akp′ maxi∈N′ (qip′ + gip′t)× ωk

qip dip1 × rndi qip gip1 × rani

oi
∑

p∈P qip, i ∈ N oi
∑

p∈P ′ qip, i ∈ N ′

lip maxt∈T
(∑

j∈N djpt

)
× rndi lip′ maxt∈T

(∑
j∈N ′ gjpt

)
× rndi

sip0 (qip − dip1) sip′0 (qip′ − gip′1)
bk

∑
p∈P akp Tmax avg(cijk)× (N +N ′)× V−1

rndi: a random number selected from set {2,3,4}
avg: average
∗ assumed to be the same for all periods

Table 5: Characteristic of different data generation frameworks
DGF hip hip′ Coordinates range ωk

1 [6,10] [11,15] [0,500] [1, 1.5]
2 [6,10] [11,15] [0,500] [1.5, 2]
3 [1,5] [6,10] [0,500] [1, 1.5]
4 [1,5] [6,10] [0,500] [1.5, 2]
5 [6,10] [11,15] [0,1000] [1, 1.5]
6 [6,10] [11,15] [0,1000] [1.5, 2]
7 [1,5] [6,10] [0,1000] [1, 1.5]
8 [1,5] [6,10] [0,1000] [1.5, 2]

[a, b] denotes a continuous uniform distribution between a and b

Table 6: Synthetic instances
Instance size Instance size

(N ×N ′ × P × P ′ × T ×K) (N ×N ′ × P × P ′ × T ×K)
(12× 8× 10× 5× 3× 3) (12× 8× 10× 5× 5× 5)
(12× 8× 20× 10× 3× 3) (12× 8× 20× 10× 5× 5)
(36× 24× 10× 5× 3× 3) (36× 24× 10× 5× 5× 5)
(36× 24× 20× 10× 3× 3) (36× 24× 20× 10× 5× 5)
(60× 40× 10× 5× 3× 3) (60× 40× 10× 5× 5× 5)
(60× 40× 20× 10× 3× 3) (60× 40× 20× 10× 5× 5)

5.2. Branch-and-cut algorithm performance

We now show the impact of including valid inequalities on the performance of the
algorithm. We first show the improvement made by valid inequalities and SECs on the
lower bound obtained at the root node of the B&B tree. We then show the performance
of the proposed B&C algorithm over generated synthetic instances.

Table 7 presents the improvement achieved in lower bounds by incorporating valid
inequalities. These improvements are all calculated compared to the linear programming
(LP) relaxation of the [IRP-DB-MDC]. We present the improvement achieved by the
default cuts of the commercial solver and demonstrate that incorporating additional valid
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inequalities and cuts further enhances this performance. The total improvement reaches
18.5%, compared to the 16.2% achieved by the commercial solver’s default cuts alone. The
table also provides detailed insights into the performance across different DGFs and scales.
Adding VIs shows improvement across instance sizes. This consistency indicates that the
proposed method is versatile and can be effectively applied to a wide range of problem
instances. However, analyzing the results based on different DGF values and scales reveals
that selecting parameters from various intervals can impact the improvement amount.
We observe greater improvements in DGFs where the routing cost is relatively higher
(DGF = 3, 4, 7, 8). This effect is most pronounced in DGFs 7 and 8, where routing
costs constitute the largest portion of the objective function while holding costs have the
smallest share. Overall, the results presented in Table 7 show the relevance of integrating
valid inequalities in improving the lower bound at the root node.

Table 7: Improvement of the lower bound at the root node compared to LP relaxation

DGF #ins
LP+ LP+

Instance size #ins
LP LP+

Gurobi Gurobi+VI Gurobi Gurobi+VI
1 50 8.9% 10.2% N = 12,N ′ = 8 160 25.9% 28.1%
2 60 6.8% 8.7% N = 36,N ′ = 24 150 15.1% 17.5%
3 55 14.3% 16.7% N = 60,N ′ = 40 140 7.6% 9.5%
4 60 20.3% 23.1% P = 10,P ′ = 5 220 19.6% 21.9%
5 50 10.7% 12.2% P = 20,P ′ = 10 230 12.8% 15.2%
6 60 13.3% 15.5% T = 3, T = 3 210 9.9% 11.1%
7 55 23.0% 25.3% T = 5,K = 5 240 22.5% 25.8%
8 60 33.0% 36.8%
Total Average 450 16.2% 18.5%
VI: valid inequalities, DGF: data generation frame work, #ins: number of instances

Next, we assess the performance of B&C compared to solving the [IRP-DB-MDC]
by Gurobi with a time limit of 7200 seconds. This evaluation aims to determine how
valid inequalities can efficiently facilitate the convergence of the problem to optimality.
The results of this assessment are summarized in Table 8. The results show that both
algorithms successfully solve all 160 instances with 20 sites (12 for delivery and 8 for
backhauling) to optimality. However, when applied to instances with 60 sites (36 for
delivery and 24 for backhauling), Gurobi fails to find feasible solutions for 44 instances
when the [IRP-DB-MDC] is solved without adding inequalities, whereas the B&C algo-
rithm reduces this number to 24 instances. As shown in the table, no feasible solution
is generated for any instance with 100 sites by any of the algorithms. This is where the
matheuristic algorithm is more useful. The results indicate that larger instances may
decrease the efficiency of both approaches, though B&C demonstrates superior perfor-
mance as the instance size increases. Generally, the B&C algorithm achieves an average
optimality gap of 0.7%, which is smaller than the 1% gap observed when solving the
[IRP-DB-MDC] with Gurobi without adding cuts. This highlights the enhanced effi-
ciency of the B&C algorithm. Additionally, checking the CPU time shows that adding
valid inequalities leads to faster convergence to optimality. When DGF 7 and 8 are used
to generate instances, we face the largest optimality gap. This occurs because the cost of
traveling in the objective function has a higher proportion. Overall, the B&C algorithm
outperforms the approach without B&C in finding efficient and feasible solutions and re-
ducing the optimality gap across various scales and parameters, as shown by the detailed
results in Tables 7 and 8.

5.3. Matheuristic algorithm performance
We now discuss the performance of the matheuristic algorithm and compare it with

the B&C algorithm in terms of objective function value and CPU time. The numerical
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Table 8: Performance comparison of MIP vs B&C

Scale #ins/
[IRP-DB-MDC] B&C

#opt #nf avg.gap1 CPU time #opt #nf avg.gap1 avg.gap2 CPU time
N = 12,N ′ = 8 160 160 0 0 1774 160 0 0 0% 450
N = 36,N ′ = 24 140 0 29 3.1% 7200 0 14 2.0% 2.0% 7200
N = 60,N ′ = 40 150 0 130 - 7200 0 125 - - 7200
P = 10,P ′ = 5 220 77 79 1.8% 4814 80 66 1.3% 1.3% 4808
P = 20,P ′ = 10 230 82 110 0.6% 5968 80 73 0.2% 0.7% 5091
T = 3,K′ = 3 210 80 53 1.1% 5755 80 48 0.7% 0.7% 4976
T = 5,K′ = 5 240 80 106 1.5% 5027 80 91 1.0% 1.2% 4923

DGF
1 50 20 19 0.2% 5019 20 14 0.2% 0.2% 4412
2 60 20 21 1.2% 5407 20 20 0.4 % 0.5 % 4882
3 55 20 23 0.5% 5150 20 18 0.6% 0.6 % 4750
4 60 20 22 1.2% 5498 20 20 1.0 % 1.0% 5050
5 50 20 12 0.8% 5406 20 10 0.4 % 0.7% 4727
6 60 20 20 1.0% 5480 20 18 0.6% 0.8 % 4950
7 55 20 22 1.5% 5293 20 19 1.0% 1.0% 4768
8 60 20 20 1.5% 5033 20 20 1.3% 1.6% 4982
Total/ Average 480 160 159 1.0% 5391 160 139 0.7% 0.8% 4950

(): the number in parentheses indicates the number of infeasible instances.
#opt: number of instances solved to optimality
#nf: number of instances with no feasible solution
avg.gap1: average gap for instances that both MIP and B&C can generate a feasible solution
avg.gap2: average gap for instances that B&C can generate a feasible solution
gaps are calculated compared to the lower bound

results are summarized in Table 9 and demonstrate that the algorithm produces optimal
solutions for instances with 20 sites. However, as the instance sizes increase, the opti-
mality gap increases, though the average gap compared to the reported best lower bound
remains below 2%. The column labeled “Imp” in the table reports the improvement
of the matheuristic algorithm over the objective function value obtained by the B&C
algorithm. Although there are instances where the B&C algorithm solves the problem
efficiently, on average, the algorithm outperforms the B&C, albeit with a marginal advan-
tage. The main advantage of the algorithm is highlighted when we study instances where
the B&C algorithm fails to produce feasible solutions, but the matheuristic succeeds. For
these instances, we observe an average optimality gap of 3.5% for the heuristic solutions,
as reported in the column labeled “Avg. gap2”. The matheuristic algorithm offers the
advantage of shorter CPU times, enhancing its practicality and efficiency for large-scale
problems by solving all instances in under 7,200 seconds. In particular, Phase I solves
the instances on averages in 825 seconds with an optimality gap of 3.3%. Phase II, which
takes approximately 2,480 seconds, further improves the solution, achieving an average
optimality gap of 1.9%. These findings suggest that although Phase I does not always
yield the best objective functions, it excels in terms of CPU efficiency. This advantage
becomes more significant with 100 sites, where Phase I, on average, requires 1,689 seconds
to achieve solutions with an optimality gap of 3.4% where B&C can not even generate a
feasible solution.

In conclusion, the proposed algorithm demonstrates significant efficiency, particularly
for large-size instances where the B&C algorithm fails to generate feasible solutions.
While the two-phase approach yields the best results, Phase I alone is highly efficient
regarding CPU time. Therefore, if a fast solution is required, it is conceivable to accept a
slight loss in the objective function value and run only Phase I. Notice that the procedure
of solving each subproblem for each vehicle in the matheuristic algorithm can be imple-
mented in Gurobi using a callback function, which adds cuts at each integer solution of
the master problem in the B&B tree.
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Table 9: Performance of matheuristic compared to the best lower bound

Instance size #ins
Phase I Phase II

Avg. gap1 Avg. gap2 Imp CPU time Avg. gap1 Avg. gap2 Imp CPU time
N = 12,N ′ = 8 160 1.8% - -1.8% 135 0% - 0% 466
N = 36,N ′ = 24 160 4.6% 4.9% -2.5% 539 2.4% 4.1% 2.0% 3600
N = 60,N ′ = 40 160 3.4% 3.4% - 1689 3.0% 3.0% - 3600
P = 10,P ′ = 5 160 3.8% 4.7% -2.6% 531 2.3% 3.7% -0.9% 2550
P = 20,P ′ = 10 160 2.7% 3.8% -1.7% 1061 1.5% 2.6% 1.1% 2564
T = 3,K′ = 3 160 1.9% 2.1% -1.1% 309 1.0% 1.4% -0.9% 2407
T = 5,K′ = 5 160 4.6% 5.3% -3.2% 1283 2.8% 4.2% 1.1% 2703
Average 480 3.3% 4.4% -2.0% 825 1.9% 3.5% 0.1% 2480

Avg. gap1: average gap for all instances
Avg. gap2: average gap for instances that B&C cannote generate a feasible solution
gaps are calculated compared to the lower bound
Imp: improvement made compared to B&C (if a feasible solution is obtained)

5.4. Case study

In this section, we analyze the case study and the associated challenges faced by HQ.
We first describe the data structure relevant to our industrial partner’s problem in Section
5.4.1. We next solve the problem, present the solution for the case study, and evaluate
the efficiency of our proposed approach for the case study in Section 5.4.2.

5.4.1. Case study overview

The HQ network has two depots distributing various commodities to 42 satellite points
and backhaul hazardous materials from 17 satellite points back to the depots. The de-
pots (origins) and satellite points are depicted in Figure 3. Two nodes marked with a
star represent the depots, squares indicate satellite points with delivery demand only,
and circles denote satellite points with both delivery and backhauling requirements. Ac-
cording to HQ’s current policy, the red sites are serviced by Depot number 1, located on
the left side of the figure, while the blue sites are only served by Depot number 2, situ-
ated on the right side. The commodities distributed to satellite points include fasteners
and connectors (e.g., various types of bolts, compression punches, cable lugs), insula-
tors and sealing components (e.g., composite insulators, insulating supports), mechanical
components (e.g., cross-arms, suspension clamps), sealing components, and other equip-
ment essential for the operation of electrical power systems. The hazardous materials
to backhaul that should be handled by HQ are primarily used transformer oils, which
are collected for cleaning, reuse, or disposal. HQ has a diverse fleet of vehicles, including
pickups, vans, and large trailers, which can be grouped into three main categories: trucks,
which are the fastest with an average speed of 90 km/h; commercial vehicles, suitable for
larger transportation needs with an average speed of 80 kmh; and trailers, which have the
largest capacity with an average speed of 70 kmh. Each vehicle is limited to completing
its tour within 8 hours. Due to the confidentiality of the data, we cannot disclose or
use the original demand data. Instead, we have obtained approximate data, which is
summarized in Table 10 below. The demand and capacity are measured in pallets, each
weighing approximately 20 kg. The case study data is summarized in Table 10.

In the following, we first solve [IRP-DB-MDC-I], which assumes that a vehicle cannot
be used for both backhauling and delivery within the same period, and split deliveries are
not permitted. We next address the second benchmark model, [IRP-DB-MDC-II], which
allows a vehicle to backhaul after completing the delivery without splitting the deliveries.
Finally, we solve [IRP-DB-MDC], the primary model proposed in this paper. Although a
comparison with HQ’s current exact plan might be insightful, it is not possible due to the
sensitive nature of HQ’s operational data and the confidentiality agreement. Furthermore,
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Table 10: Case study parameters
Parameter Value Parameter Value
dipt [1, 5] gipt [10, 20]
a1p, a2p, a3p 30, 50, 100 b1, b2, b3 100, 200, 400
oi 1000 qip 50
lip 1000 lip′ 1000
sip0 5 sip′0 5
hip [60, 100] CAD hip′ [110, 150] CAD
Tmax 8 hours cij1, cij2, cij3 1, 1.15, 1.25 CAD per km

Figure 3: Depots and satellite points: stars represent the depots (left D1, right D2), squares indicate
satellite points with only delivery demand, and circles denote satellite points with both delivery and
backhauling

HQ does not currently utilize a dedicated tool for optimizing delivery and backhauling
strategies, which limits direct comparison with their present processes. Nevertheless, we
have attempted to assess the performance of our model in relation to the closest scenario
to HQ’s operations. To this end, we evaluate HQ’s current policy by solving the first
benchmark, [IRP-DB-MDC-I], assuming that the red sites are serviced by Depot number
1 and the blue sites by Depot number 2, as per HQ’s existing strategy. We then relax
this assumption to allow our approach to determine the assignment. In the following
sections and Tables 11 and 12, the results for the first scenario are denoted as [IRP-
DB-MDC-I]1, while the results for the scenario with relaxed assumptions are denoted as
[IRP-DB-MDC-I]2.

5.4.2. Case study solution

We solve the case study instances using the B&C and the matheuristic algorithms
developed in this paper. The performance of these algorithms is summarized in Table 11.
The results indicate that the B&C algorithm fails to produce a feasible solution within
6 hours for any of the instances. However, the matheuristic algorithm effectively solves
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the instances with an optimality gap of less than 5%. It is important to note that a time
limit of 8 hours (Tmax = 8) for each vehicle to complete each tour is quite restrictive for
the problem. Therefore, the first iteration of the algorithm for the case study requires
considerable time to find a feasible solution. We employ the technique introduced in the
last paragraph of Section 4.3 to accelerate the algorithm and start the algorithm with an
initial time limit of 14 hours (Tmax = 14). Next, we reduce the time limit by one hour
in each subsequent iteration until the seventh iteration, when the time limit reaches 8
hours. The algorithm operates under this 8-hour constraint for the remaining iterations,
leading to the final solution accordingly. The results demonstrate that [IRP-DB-MDC]
is solved in Phase I in less than an hour, and Phase II further improves the solution from
Phase I by about 3% within 5 hours. This highlights the efficiency and effectiveness of
the matheuristic approach in tackling the problem under the various scenarios considered.
Next, we examine the objective function values of the solved instances. According to the
results in Table 11, allowing backhauling after delivery improves the objective function by
4%. Furthermore, permitting split deliveries results in an additional improvement, with
the objective function enhancement reaching up to 5%. Comparing the objective function
values for [IRP-DB-MDC]1 and [IRP-DB-MDC]2 reveals that relaxing the constraint of
assigning red sites to Depot 1 and blue sites to Depot 2 and allowing the optimization
process to determine assignments yields a 2% improvement in the objective function.
The results also indicate that the solution for [IRP-DB-MDC] in Phase I is achieved in
1,646 seconds. However, when split deliveries are avoided in [IRP-DB-MDC-II], the CPU
time of the first phase is increased to 2,095 minutes. Avoiding backhauling after delivery
resulted in a more significant rise in CPU time, with Phase I taking 9,273 seconds to
solve [IRP-DB-MDC-I]2. The algorithm obtains the solution within acceptable limits,
as the total CPU time to solve [IRP-DB-MDC] is less than 7 hours, aligning with HQ’s
standard practice of running this algorithm overnight through the batch process.

Table 11: Performance of the algorithms for case study instances
B&C Matheuristic

CPU time (P-I, P-II)
LB OFV CPU time LB OFV PI OFV PII

[IRP-DB-MDC-I]1 88816 NF 21600 84878 91813 91270 (1205, 18000)
[IRP-DB-MDC-I]2 84619 NF 21600 84552 91818 89432 (9273, 18000)
[IRP-DB-MDC-II] 81973 NF 21600 81877 88077 85417 (2095, 18000)
[IRP-DB-MDC] 81062 NF 21600 80810 87661 84977 (1646, 18000)

OFV: objective function value, PI: phase I, PII: Phase II, NF: no feasible solution obtained

Further analysis of the detailed solutions provided in Table 12 highlights the benefits
of our proposed model. In the [IRP-DB-MDC-I]2 solution, where vehicles are restricted
to either delivery or backhauling and split deliveries are not permitted, the routing cost
is 21,880 CAD, and the inventory cost is 67,551 CAD. This represents an improvement
over the [IRP-DB-MDC-I]1 solution; however, the costs remain higher than those in other
scenarios and require a total of 46 tours. The distribution of tours among vehicle types
is as follows: pickups perform 13 tours, vans perform 16 tours, and trailers perform 17
tours. Out of the total 46 tours, 23 are delivery tours and 23 are backhauling tours.
In contrast, the [IRP-DC-MDC-II] model, which allows backhauling to be started after
delivery is finished, demonstrates significant improvements in total costs. The routing
cost decreases to 17,539 CAD, although the inventory cost slightly increases to 67,877
CAD. More importantly, the total number of tours required reduces to 40, reflecting a
more optimized vehicle fleet use. The final model, [IRP-DB-MDC], further enhances these
benefits by reducing the routing cost to 17,227 CAD and decreasing the total number of
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tours to 38, where 30 tours have both delivery and backhauling. These findings highlight
the effectiveness of the proposed model. A closer examination of the traveled distances
by each vehicle type reveals another key advantage of our model. In the [IRP-DB-
MDC-I]2 scenario, pickups travel 5,879 km, vans travel 6,966 km, and trailers travel
6,391 km (a total of 19,236 km). The [IRP-DC-MDC-II] model shows improvement,
with pickups traveling 5,929 km, vans 5,886 km, and trailers only 3,873 km, reflecting
better route optimization (a total of 15,658 km). However, the most notable reduction
in traveled distance is seen in the [IRP-DB-MDC] model, where pickups travel 6,139
km, vans 5,039 km, and trailers only 4,234 km (a total of 15,412 km). The traveled
distance by each vehicle type in each solution is illustrated in Figure 4. This reduction
in traveled distances is particularly significant for trailers, which typically have higher
fuel consumption than smaller vehicles like pickups and vans. By decreasing the distance
covered by trailers, our model lowers fuel costs and reduces greenhouse gas emissions
and environmental impact. The reduced travel distance for trailers thus contributes to
economic and environmental sustainability, enhancing the overall benefits of the model.
These results clearly demonstrate that allowing integrated delivery and backhauling, and
split delivery not only reduces the total number of tours required but also minimizes the
total cost and distance traveled by the fleet. The analysis strongly supports the practical
benefits of adopting this model.

Table 12: Case study detailed solution
[IRP-DB-MDC-I]1 [IRP-DB-MDC-I]2 [IRP-DB-MDC-II] [IRP-DB-MDC]

Routing cost 22971 21880 17539 17227
Inventory cost 68299 67551 67877 67750

#tours by each
pickup 16 (6667) 13 (5879) 13 (5929) 14 (6139)

vehicle type
van 18 (6045) 16 (6966) 15 (5886) 13 (5039)

(distance in km)
trailer 18 (7481) 17 (6391) 12 (3873) 10 (4234)
total 52 46 40 38

#tours started from
depot #1 39 27 24 23
depot #2 13 19 16 15

[IRP-DB-MDC-II]1 [IRP-DB-MDC-II]2 [IRP-DB-MDC-I] [IRP-DB-MDC]
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Figure 4: Traveled distance by each vehicle type in each solution

6. Conclusion

We have presented a mixed-integer linear program to model an IRP focusing on real-
world requirements faced by our industrial partner, Hydro-Québec. The problem involves
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the delivery of various commodities to satellite points and the backhauling of materials
using heterogeneous vehicles. Different aspects of the IRP, such as multiple depots, split
deliveries, and the optimization of empty vehicle return trips, have been incorporated to
ensure practical applicability. We have developed a branch-and-cut algorithm and a logic-
based decomposition method to tackle the complexity of large instances that commercial
solvers cannot solve efficiently. The efficiency of our algorithms has been evaluated using
both synthetic instances and a real-world case study provided by our industrial partner.
Our proposed algorithms have demonstrated the capability to find optimal solutions for
small-sized instances (up to 20 sites) and near-optimal solutions for medium to large-size
instances (60-100 sites), outperforming both approaches that solve the problem with and
without the B&C algorithm in a given CPU time limit. Notably, for large-size instances
(100 sites), the matheuristic approach achieved a 3% optimality gap in less than two
hours, while the commercial solver failed to generate a feasible solution within the same
time limit.

Our study presents managerial implications, particularly for industries dealing with
complex IRPs such as Hydro-Québec. Firstly, our proposed model comprehensively in-
corporates several real-world complexities such as multi-commodity handling, multiple
depots, travel time limitations, split deliveries, heterogeneous vehicles, and backhauling.
By considering all these features of real-world problems, we provide a general model that
can be readily applied to various real-world scenarios. We also demonstrated how uti-
lizing empty vehicles for backhauling on their return trips to the depot can benefit our
industrial partner. Over five periods, this strategy resulted in a 21% reduction in total
routing costs and a 24% reduction in the total distance traveled by all vehicles compared
to the scenario where split deliveries were not allowed, and delivery and backhauling trips
could not be combined on the same route. The decrease in the total number of tours and
traveled distances contributes to lower emissions and improved fleet utilization. Secondly,
our proposed algorithm scales well to large instances. It operates in two phases, with the
first phase offering a quick solution that, while potentially losing some optimality, is fast
and easy to implement. This aspect is particularly valuable when decision-makers need
a rapid solution, ensuring managers balance solution quality and implementation speed.
Thus, our study addresses the theoretical challenges and provides practical, real-world
applicability that can significantly improve operational efficiency. The HQ’s current op-
erational strategy is to forbid split deliveries and not combine delivery and backhauling
trips.
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