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Abstract. This paper presents a two-step approach to managing Service Level 
Requirements (SLR) in real-life Bicycle Sharing Systems (BSS). SLR is a general 
concept that broadly describes how to effectively manage a BSS to improve user 
satisfaction while minimizing system operation costs. The two steps involve two 
proposed problems: first, the Target-Level Problem computes target bicycle 
quantities for stations, maximizing trip satisfaction. Second, the Bicycle 
Rebalancing Problem designs vehicle routes to adjust bicycle quantities. SLR 
literature includes several variants of these problems, but to our knowledge, very 
few exact approaches such as the one we propose can successfully handle real-
life BSS, which comprise thousands of stations, tens of thousands of bicycles, and 
nearly one hundred thousand daily trips. We gather data from real-life BSS from 
Boston, Chicago, Madrid, Mexico City, Montreal, New York, San Francisco, 
Toronto, and Washington DC. From a managerial perspective, our numerical 
results provide the decision-makers of BSS with several insights related to 
bicycle and station usage throughout the network of stations. 
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1 Introduction

Bicycle sharing systems (BSS) are integral to urban transportation, intertwining with broader transit
networks to enhance overall effectiveness in urban mobility (Shu et al., 2013). Similar to larger urban
transit frameworks, BSS present a fertile ground for various combinatorial optimization problems
(Bruck et al., 2019; Neumann-Saavedra et al., 2020), with a common goal of optimizing system
efficiency by maximizing bike availability while minimizing operational costs and user inconvenience.
System efficiency is defined by Service Level Requirements (SLR) (Datner et al., 2019), with a key
objective of strategically redistributing bicycles among stations to meet fluctuating daily demand.
To achieve success, managers must tackle critical questions. They need to determine the number
of bicycles and their technology (electric, non-electric, or hybrid), as well as the optimal station
locations and capacities. Additionally, they must establish effective pricing policies and assess their
impact on demand patterns, determine the number and capacity of vehicles needed for redistribution,
and develop efficient redistribution schedules and strategies. Our work addresses the question of
calculating station capacity, required bicycle quantities, vehicle capacity, fleet size, redistribution
schedules, and strategy.

This paper proposes a novel two-step approach to strategically redistribute bicycles within SLR.
In the first step, we introduce a problem to efficiently compute target quantities of bicycles, such
that these amounts maximize the number of future uncertain trips satisfied. The second step focuses
on designing vehicle routes to rebalance station quantities from initial values to the target quantities.
By breaking down this goal within SLR into two more minor problems, our work demonstrates the
ability to manage large-scale BSS efficiently.

The first problem that we propose is the Target-Level Problem (TLB), for which we present
several two-stage stochastic programs with recourse. In the TLB, a decision-maker allocates bicycles
across multiple stations before the day begins, anticipating random trip demands with varying start
and end times that are given in several samples. The objective is to determine quantities (target
levels) that maximize the satisfaction of incoming trips. The proposed two-stage formulation involves
integer decisions regarding the initial allocation of bikes across the station set. The second stage
adapts to revealed daily demand across a finite number of scenarios, optimizing bicycle flows to
enhance trip satisfaction. This formulation is similar to a sample average approximation (SAA)
problem (Shapiro, 2003). We recognize that modern-day solvers are unable to solve the problem,
even for small-sized samples.

To solve the TLB, we employ the Benders decomposition algorithm (Benders, 1962). This method
is integrated into a branch-and-bound framework, where an iterative process involves formulating and
solving a master problem alongside a corresponding sub-problem. This process generates optimality
cuts dynamically using a specific formulation of the scenario sub-problem, structured as a min-cost
flow problem. Finally, we assess the quality of our TLB solution by evaluating it on larger sample
sizes using standard SAA methodologies (Santoso et al., 2005).

The second problem, the Bicycle Rebalancing Problem (BRP), is a variant of the one-commodity
pickup and delivery vehicle routing problems, drawing inspiration from the stochastic bicycle reposi-
tioning problem outlined by Dell’Amico et al. (2018). In the BRP, a decision-maker devises vehicle
routes to minimize fleet travel distance and reduce missed bicycle pickups and deliveries around
the target levels computed in the TLB. Throughout the resolution of the BRP, numerous infeasible
solutions may arise. We contribute to the existing literature by proposing methodological enhance-
ments in heuristics to ensure feasibility during solution optimization. Furthermore, we propose a
restocking policy inspired by the vehicle routing with stochastic demands restocking policy that has
already been amply studied in the literature (see Salavati-Khoshghalb et al., 2019).

We conduct numerical computations for the TLB and BRP utilizing a newly curated benchmark
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instance set constructed from real-world historical data from major BSS. This real-world data draws
from a common source extensively used in BSS literature: the General Bikeshare Feed Specification
(GBFS, MobilityData, 2024). This source is a set of standards maintained by a developer community,
which numerous BSS adhere to. Interested readers can find examples of studies using the same
source to build instances for mathematical programs in Schuijbroek et al. (2017), Dell’Amico et al.
(2018), and Freund et al. (2022). In our study, we model real-world data points according to
Poisson processes and devise an instance generator capable of incorporating data from any BSS
adhering to these standards. As a result, our benchmark instance set represents, to the best of
our knowledge, some of the largest instances found in BSS literature. This comprehensive set
facilitates the evaluation of the efficiency of the TLB formulations, providing valuable insights into
their performance and practical applicability within BSS environments. One notable finding is that
certain BSS can fulfill most trip demands with considerably fewer contractual bicycles in inventory,
i.e., those the system operator has, in theory, (Beroud et al., 2024). In specific instances, the BSS
required as little as 50% of the bicycles. This finding is particularly significant considering real-
world BSS often maintain tens of thousands of bicycles in their inventory. Such insight could lead
to substantial cost savings for system operators.

This paper makes several contributions to the field. Firstly, we introduce a novel optimization
problem prevalent in major BSS. Secondly, we present several two-stage mathematical programs
with recourse formulations. Thirdly, we propose a Benders decomposition algorithm alongside the
station and scenario-based computation of bicycles’ lower and upper bounds. We show that our im-
plementation of the decomposition algorithm can handle real-life-sized instances. Fourthly, we pro-
pose a bicycle rebalancing problem alongside methodological enhancements to meet the previously
computed bicycle target levels efficiently. Additionally, the paper proposes a set of real-life-sized
instances.

The remainder of this paper is organized as follows. Section 2 presents the literature on BSS.
Sections 3, 4 and 5 present the problem definitions, formulations and solution methods for SLR,
TLB and BRP respectively. Section 6 outlines the processes of generating data. Section 7 presents
the numerical results for our implementations, and lastly, Section 8 presents the conclusions.

2 Literature Review

Since bike-sharing systems (BSS) were introduced in the 1960s (Laporte et al., 2018), their signifi-
cance and scale have grown immensely in contemporary urban environments. They will most likely
continue to do so given their ability to reduce carbon emissions and offer a flexible, eco-friendly mode
of transit (see the reviews of DeMaio, 2009 and Eren and Uz, 2020 for historical and contemporary
evidence of these benefits of BSS). The fascination for BSS within scientific literature is profound,
evidenced by studies that draw parallels between the systems’ requirements and human needs, akin
to Maslow’s renowned hierarchy of needs (Reggiani et al., 2022). Furthermore, evidence that some
BSS can fail quite spectacularly in some cities (BBC, 2021) demonstrates an ongoing need for studies
detailing system requirements.

A pivotal aspect of ensuring BSS viability consists of effectively managing SLR. In this re-
gard, the operations research literature has significantly contributed by identifying a plethora of
SLR-related goals and problems over the past two decades, dating back to the work of Benchimol
et al. (2011), thought to be the first article to formulate a mathematical program for the bicycle
repositioning problem. These intrinsic challenges span various known combinatorial optimization
problems, including service network design (Neumann-Saavedra et al., 2020), vehicle routing (Bruck
et al., 2019), inventory management (Datner et al., 2019), and numerous others. Furthermore, the

2

Service Level Requirements for Real-Life-Sized Bicycle Sharing Systems

CIRRELT-2025-02



mathematical programming community continually strives to develop and refine models and solution
methodologies to address and improve upon these recognized problems.

Despite this interest in SLR, state-of-the-art methods struggle to cope with the dimensions
posed by contemporary BSS. For example, major North American urban centers boast expansive
BSS landscapes, incorporating thousands of stations and bicycles, and nearly 100,000 daily trips.
Managing these systems involves intricate decision-making that encompasses bicycle repositioning
strategies, pickup and delivery specifics, and strategic allocation of rebalancing vehicles.

The largest instances solved using exact methods typically involve 50 to 150 stations, which is
significantly fewer than the number of stations in current real-life BSS. These problems are based on
artificial data generated from BSS that conform to the GBFS, and model variations of the inventory
routing problem (Schuijbroek et al., 2017; Ghosh et al., 2017; Bruck et al., 2019) and vehicle routing
problems (Dell’Amico et al., 2018). The former differs from traditional vehicle routing problems
in that it imposes only one rebalancing visit per station. It contrasts with inventory management,
which overlooks vehicle route design. Many of the above references also integrate additional BSS
features such as operational timelines, which entail fine-graining the intervals at which rebalancing
operations are necessary into minutes or hours. Researchers tackle these challenges with methods
like the L-shaped method, Lagrangian dual decomposition, and heuristics. However, even for 50–150
stations, the resulting problems are so complex that only a few optimal solutions are reported using
these methods.

An exception is the work by Freund et al. (2022), which addresses real-life-sized US-based BSS
but does not consider the rebalancing of bicycles by a capacitated vehicle fleet. The authors’ problem
is to determine the initial quantity of bikes and empty docks at each station that will minimize events
where users cannot find a bicycle or an empty dock at a given station (referred to as out-of-stock
events). Following their recommendations, a pilot program was implemented in New York’s BSS,
which involved relocating 34 docks between 6 stations. Using real data from April 2018, the authors
estimated that the 34 relocations reduced monthly out-of-stock occurrences by 831 to 1,121.

The latest heuristic methods also struggle with real-life scenarios. For example, in their research,
Cavagnini et al. (2024) utilized a mathematical heuristic to solve instances based on San Francisco’s
Bay Wheels BSS, which had 340 stations. However, in 2023, Bay Wheels had over 500 stations
according to peak-usage summer data taken from GBFS.

The size disparity between real-life-sized BSS and the solved instance sizes in the literature
illustrates the limitations of state-of-the-art methods in handling real-sized BSS, restricting their
practical application and managerial insights. We detail the sizes of the BSS used in our study in
Table 1. For each BSS, we took real-life data from its curated data and GBFS endpoints for July
2023, considered the busiest summer month for BSS in northern hemisphere cities. The following
columns are shown: ‘Qtot’ denotes the available inventory of bicycles, ‘N ’ denotes the number of
stations in the BSS, ‘

∑
i∈N hi’ denotes the sum of station bicycle capacities hi, and ‘Trips[8,22h]’

denotes the number of trips in the interval from 8:00 AM to 10:00 PM. Additionally, two Key
Performance Indices (KPI) are included as metrics: ‘Trips/Day’ denotes the average system usage,
and ‘Trips/Station&Day’ represents the average station usage. These metrics are calculated as trips
divided by stations and days in July 2023 (31 days).

Table 1 shows that Mexico City, Montreal, and New York are the largest BSS based on the
‘Trips/Station&Day’ KPI. This metric helps identify BSS with high trip demand without overbur-
dening the system. For instance, Chicago has a high ‘Trips/Day’ but a low ‘Trips/Station&Day,’
suggesting underutilization. Our findings in Section 7 support this observation. From this table,
especially from the number of stations, we can observe that the instances constructed and solved in
the literature that is presented in this section are small compared to these real-life sizes.

One reason behind the literature’s struggle to handle real-life sizes is the limited emphasis on
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City BSS Qtot N
∑

i∈N hi Trips[8,22h] Trips / Day Trips / Station & Day

Boston Blue Bikes 4,000 423 7,316 299,131 9,649.4 22.8
Chicago Divvy Bikes 16,500 1,677 15,302 473,233 15,265.6 9.1
Madrid BiciMAD 7,500 610 26,444 235,618 7,600.6 12.5

Mexico City Ecobici 6,800 661 17,447 856,778 27,638.0 41.8
Montreal Bixi 10,000 800 17,580 1,293,849 41,737.1 52.2
New York Citi Bike 32,000 2,175 67,365 2,983,001 96,225.8 44.2

San Francisco Lyft - Bay Wheels 70,000 554 12,196 145,195 4,683.7 8.5
Toronto Bike Share Toronto 9,000 791 15,063 585,504 18,887.2 23.9

Washington DC Capital Bike Share 6,000 738 12,681 343,647 11,085.4 15.0

Table 1: Summary of Real-World Data for Major BSS, July 2023.

developing efficient models for the sub-problems inherent in bicycle repositioning problems. While
Warrington and Ruchti (2019) identified a min-cost flow sub-problem within a broader bicycle repo-
sitioning framework, their approach did not involve solving via exact methods. Typically, the litera-
ture does not delve into such detailed sub-problem resolutions. Consequently, when aiming for exact
methods—such as employing decomposition approaches—the sub-problem resolution necessitates
solving an NP-hard integer program. Moreover, when the master problem embedded in a decompo-
sition approach is an NP-hard problem, such as designing minimum-cost rebalancing vehicle routes,
the manageable size of solvable instances diminishes considerably.

Additional literature pertinent to our work focuses on the optimal restocking policy for vehicle
routing with stochastic demands (VRPSD) (Salavati-Khoshghalb et al., 2019). Surprisingly, this
policy remains unimplemented in BSS literature despite its simplicity and potential to reduce vehicle
fleet travel distance while minimizing unsatisfied station requirements. In contrast, both theoretical
and practical aspects of this policy and its variants have received extensive attention in VRPSD
studies (Gendreau et al., 2016; Florio et al., 2021).

This paper proposes a two-step approach to efficiently manage SLR in real-life-sized BSS. Our
approach is based on the two-step method introduced by (Schuijbroek et al., 2017). It involves
calculating desired bicycle quantity intervals at each station (step one) and formulating and solving
a mixed integer program to route rebalancing vehicles that minimizes deviations of bicycle quantities
from the intervals within a specified time horizon (step two). We start by introducing a novel problem
denoted as the target-level problem, which computes a target quantity of bicycles for each station.
This computation considers the system’s unknown future bicycle trip demands, aiming to satisfy as
many as possible. We solve this problem using the Benders decomposition algorithm (Benders, 1962).
The sub-problem is modeled as a min-cost flow problem, enabling us to utilize specialized solvers
that implement polynomial algorithms. In the second step, we design vehicle routes to rebalance the
bicycle quantities, from the quantities initially given up to the targets. We utilize efficient dynamic
programming algorithms to compute the solution cost and propose methodological enhancements to
ensure the feasibility of the vehicle routes.

By decomposing the SLR into the target-level problem and the bicycle rebalancing problem, we
effectively overcome challenges associated with station rebalancing, thus enhancing our ability to
tackle larger BSS instances. We direct the reader to Table 1 in the study by Cavagnini et al. (2024)
for a comprehensive list of other examples of two-step approaches in the literature.

3 Service Level Requirements

In this section, we lay out the problem definition for our SLR maximization problem. Our model
is based on a real-life-sized BSS, but we have abstracted some features to propose our framework.
Below, we present our assumptions:
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1. The trips between each pair of stations follow an independent Poisson process.

2. The trips are processed on a first-come, first-served basis.

3. The BSS is always online, with variable trip demand rates that can be approximated at different
times.

4. The quantities of bicycles at the stations do not affect the demand for trips.

While these assumptions may not fully reflect the complexities of BSS operations, they do not
significantly impact our SLR maximization framework. The first two assumptions, based on earlier
work by Schuijbroek et al. (2017), states that a trip is the fundamental demand unit and that
multiple trips are allowed. A trip occurs when a user picks up and returns a bicycle, requiring both
a bicycle and a dock to be available.

The third assumption is that trips happen continuously at varying rates. Based on real-life
data in Table 1, we propose determining bicycle quantities at each station by 10:00 PM, before the
demand surge at 8:00 AM the next day. We define the rebalancing process as the interval between
setting these quantities and the next day’s demand, assuming negligible demand between 10:00 PM
and 8:00 AM.

Assumption four is the most restrictive as it deals with lost demand, but it allows us to build a
model that can approximate the number of satisfied trips. In the context of BSS, lost demand is the
failure of the system to provide a bicycle or a dock to satisfy a trip and the subsequent likelihood
that users will choose alternate transportation modes. The latter might produce, for example, a
cascade effect of users searching for bicycles or docks at neighboring stations or simply turning to
alternate urban transportation modes, thus temporarily or permanently modifying station demands.
Alternatively, demand at a station may be low if users know it is often empty, but their reaction to
the sudden availability of bicycles is uncertain. In a first-come-first-served system such as BSS, a
suitable model for such situations should consider the probability of users waiting for a bicycle when
none are available, going to a nearby station to find one, or using a different mode of transportation
altogether. Such a model is beyond the scope of our study. Nevertheless, we refer the reader to Goto
et al. (2004) for examples of the complexities of lost demand cost function modeling in a different
context than BSS.

With the enforcement of assumption four, we can compute an approximation of satisfied trips
by proposing a model that accepts or rejects a trip based on the presence of bicycles or docks. For
instance, in the case where a station is often empty, we assume that the demand will remain constant
even if there is a sudden increase in the availability of bicycles.

4 The Target-Level Problem

This section presents the Target-Level Problem (TLB). A formulation for a single scenario of the
TLB is presented in Section 4.1, and the complete problem formulation is presented in Section 4.2.
Section 4.3 presents the exact decomposition method to solve the problem. Five different models are
presented in Sections 4.4–4.6, and a generalized problem to optimize station capacities is presented
in Section 4.7.

4.1 A Scenario Formulation for the TLB

For each scenario ω of the TLB, the number of trips can be approximated by solving a min-cost flow
problem on a directed graph Gω(V ω, Aω). The set of nodes V ω comprises one node for each station
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3 3

t:0 t:1 t:2 t:tmax
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−1[0, 1]

−1[0, 1]

−1[0, 1]

−1[0, 1]

−1[0, 1]

−1[0, 1]

Figure 1: Min-Cost Flow Formulation Gω = (V ω, Aω) for one scenario of the TLB with n = 3 trips
and tmax = 4.

and time, including one node for each station at time t = 0 to denote station target levels, and a
source and sink node to denote bicycles moving from and to the depot. The demands of the source
and sink nodes are Qtot and −Qtot while all other nodes have zero demands. The set of arcs Aω

comprises arcs that connect each node in the network, where the capacity of each arc is the station
capacity hi and the cost is 0. We denote these arcs as holding arcs. Additionally, there is one arc
for each trip with a cost of -1, giving a reward of 1 unit and a capacity of 1. We accordingly denote
these arcs as trip arcs.

The objective of the min-cost flow is to minimize the total cost, maximizing the total reward
by optimizing the flow of bicycles through the network, accounting for station capacities and the
rewards associated with trips. The set of nodes V ω can be significantly reduced by only considering
nodes where events happen, where an event is either an incoming trip, an outgoing trip, or both.
Figure 1 shows an example of this reduction with three stations, tmax = 4, and six trips denoted by
green arcs. The target levels at each of the three stations are the outgoing flows from the source
denoted by yi, i = {1, 2, 3}.

4.2 A Complete Formulation for the TLB

The complete formulation of the TLB for a given sample Ω is based on the min-cost flow formulation
from Section 4.1. Let e = (picke, dele, starte, ende) denote a trip, where picke, dele are the pickup,
delivery stations and starte, ende are the pickup, delivery times. Let Eω be the set of trips in
scenario ω. Also, let Oω(i, t) be the set of trips originating from station i having a pickup time of t,
and Uω(i, t) be the set of trips that terminate at station i having a delivery time of t.

Let yi be an integer variable to represent the target level of bicycles of station i, fitω a continuous
variable for the number of bicycles at station i in scenario ω at the end of time t, and let ve be a
continuous variable to represent whether trip e can be satisfied or not. The following mixed-integer
program computes the target levels:

(TLB) max
∑
ω∈Ω

IP(ω)
∑
e∈Eω

ve (1)
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s.t.
∑
i∈N

yi ≤ Qtot, (2)

fi0ω = yi, i ∈ N, ω ∈ Ω, (3)

fitω = fit−1ω

+
∑

r∈Uω(i,t)

ve −
∑

e∈Oω(i,t)

ve,

i ∈ N, t ∈ T \ {0}, ω ∈ Ω, (4)

0 ≤ yi ≤ hi, and integer, i ∈ N, (5)

0 ≤ fitω ≤ hi, i ∈ N, t ∈ T, ω ∈ Ω, (6)

0 ≤ ve ≤ 1, e ∈ Eω, ω ∈ Ω. (7)

The objective in (1) maximizes the expected number of satisfied trips in the sample. Constraint
(2) ensures that the quantity of bicycles used by the targets does not exceed the available number
of bicycles. Constraints (3)–(4) are flow conservation constraints. Lastly, constraints (5)–(7) are
definitions of variables.

Furthermore, an upper bound can be derived for the TLB using the assumption that in each
min-cost flow problem, we have the flexibility to select which trips to fulfill. Denote cω, u∗ω as the
cost and optimal flow vector of the arcs in Aω. The formula for calculating the upper bound of the
TLB, denoted UB, is as follows:

UB =
∑
ω∈Ω

IP(ω)cωu∗ω. (8)

Lastly, the problem formulated in (1)–(7) can be referred to as a sample average approximation
(SAA) problem (Shapiro, 2003). In traditional approaches to such problems, the quality of a solution
is assessed using much larger samples than Ω. It is also commonly understood that the quality
improves with increasing sample sizes in the resolution (Kleywegt et al., 2002). We evaluate the
quality of our solutions using large samples in Section 7.

4.3 The Benders Decomposition Algorithm

To solve the TLB using Benders decomposition, we introduce a continuous variable θ > 0 as an
underestimator of the expected recourse cost. The master problem includes the first-stage decisions,
the recourse underestimator, and optimality cuts generated on the fly whenever a feasible first-stage
solution is found, following the branch-and-check method by Thorsteinsson (2001).

We begin by formulating the TLB as a two-stage mathematical program whose objective is to
maximize the expected recourse function Q(y) subject to constraints (2) and (5). To calculate Q(y),
we first provide a first-stage solution yν = (yνi ), followed by a variant of the min-cost flow problem in
Gω denoted as Gω1 = (V ω1 , A

ω
1 ). To create Gω1 , we adjust the demand at the source to Qtot−

∑
i∈N y

ν
i .

Second, we adjust the source-outgoing arcs to the |n| station nodes by imposing lower and upper
capacities of [yνi , y

ν
i ]. The remainder of the nodes in V ω and arcs in Aω stay the same. Next, denote

cω1 , u∗ω1 as the cost and optimal flow vector of the arcs in Aω1 . Then, the expected recourse cost of
first stage solution yν is given by the following formula:

Q(yν) =
∑
ω∈Ω

IP(ω)cω1 u
∗ω
1 . (9)
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With a procedure to compute the expected recourse cost, the master program of the Benders
decomposition method follows:

(M1) max θ (10)

s.t. (2), (5),

θ ≤ UB, (11)

Optimality cuts,

θ ≥ 0. (12)

We refer to the model in equations (2),(5),(10)–(12), as TLB Model 1 or simply M1.
To separate Benders cuts, we construct and solve the min-cost flow problem associated with Gω1

for all ω. The following notation is introduced. For i ∈ N , let γ∗ωi and ε∗ωi represent the optimal
values of the dual variables associated with the upper and lower flow capacity constraints of the
source-outgoing arcs to the station nodes in Gω1 . Furthermore, for (i, j) ∈ Aω1 \Aω1 (N), let γ∗ωij be
the optimal values of the dual variables associated with the upper capacity constraints of all arcs
in Aω1 \Aω1 (N), where Aω1 (N) is the set of source-outgoing arcs to the stations. Additionally, denote
the set of the trip arcs of Aω1 as Aω1Eω . Lastly, for i ∈ V ω1 , let π∗ω(i) represent the optimal value of
the dual variables associated with the node constraints, with π∗ω(source) and π∗ω(sink) being the
values associated with the source and sink nodes. The Benders optimality cut follows:

θ ≤
∑
ω∈Ω

IP(ω)

(
Qtot

(
π(source)− π(sink)

)
+
∑
i∈N

yi
(
γ∗ωi − ε∗ωi

)
+

∑
(g,j)∈Aω

1Eω

γ∗ωgj +
∑

(g,j)∈Aω
1 \
(
Aω

1Eω∪Aω
1 (N)

)hiγ∗ωgj
)

(13)

To improve the quality of the generated cut and take advantage of the min-cost flow structure of
our subproblem, we attempted the Pareto-optimal cut separation method introduced by Magnanti
et al. (1986). Their approach transforms the min-cost flow problem into a graph with much higher
capacities and demands, which slows down the resolution. Unfortunately, results obtained with this
technique did not improve over those obtained with the traditional Benders cut. For this reason, we
opt out of using the approach.

4.4 A First Variant Formulation of the TLB

Solving M1 can be inefficient due to the poor convergence of the classical optimality cuts, especially
when the second-stage information is not considered in the first-stage problem (Rahmaniani et al.,
2020). To address this, we propose a second model, called M2. The idea for this model comes
from the observation that having too few or too many bikes at a station can reduce the number
of satisfied trips. In a preprocessing phase, we compute the minimal and the maximal amount of
bikes at each station and for each scenario ω that do not reduce the best number of trips that
can be satisfied that scenario. Variables are then introduced to penalize the deviation from those
quantities. Additionally, we can compute the global minimal and the maximal amount of bikes in
the network so that the best number of trips that can be satisfied a scenario is not reduced. These
variables convey additional information from the second-stage model to the first-stage model to help
the convergence.
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Let lbωi and ubωi represent the lower and upper bounds of the bicycle quantity at station i in
scenario ω, and lbω and ubω denote the lower and upper bounds on the total number of bicycles
required in scenario ω. We perform the following calculations to get those bounds. For scenario ω,
we modify Gω to get lbω and ubω as follows. The cost of the trip arcs is set to −M , with M being a
high value, and the cost of source-to-sink arc is set to 1. The incentive for the min-cost flow problem
is to serve as many trips as possible, while sending a minimal amount of bikes at the stations. Next,
the min-cost flow problem is solved, and the flow from the source to stations gives the lower bound
lbω. To compute ubω, we repeat the procedure with the source-to-sink arc cost of −1 instead of 1.

We perform similar calculations for lbωi and ubωi of station i and scenario ω. The cost of the arc
from source to station i is set to 1, the source-to-sink arc cost is set to 0, and the trip arc cost is
set to −M . We solve the min-cost flow problem and the flow from the source to the station i is lbωi .
For ubωi , we repeat the procedure with the a cost from source to station i of −1.

Let lω and mω be the variables that measure the violation of the total scenario bicycles, and let
lωi and mω

i represent the variables that measure the violation of the station scenario bicycles. The
master problem for the decomposition method follows:

(M2) max θ (14)

s.t. (2), (5), (12), (13),∑
i∈N

yi + lω ≥ lbω, ω ∈ Ω, (15)∑
i∈N

yi −mω ≤ ubω, ω ∈ Ω, (16)

θ ≤ UB −
∑
ω∈Ω

IP(ω)(lω +mω), (17)

yi + lωi ≥ lbωi , ω ∈ Ω, i ∈ N, (18)

yi −mω
i ≤ ubωi , ω ∈ Ω, i ∈ N, (19)

θ ≤ UB −
∑
ω∈Ω

IP(ω)
∑
i∈N

(lωi +mω
i ), (20)

lω, mω ≥ 0, ω ∈ Ω, (21)

lωi , m
ω
i ≥ 0, ω ∈ Ω, i ∈ N. (22)

Constraints (15)–(16) bind the total bicycles used in a scenario, and constraints (18)–(19) bind
the bicycles used by the individual stations in different scenarios. Constraints (17) and (20) bind
the expected recourse cost to the violation variables lω, mω, lωi and mω

i . Constraints (21)–(22) are
definitions of variables.

Finally, the computations of those bounds requires solving 2|Ω|(N + 1) min-cost flow problems.
This can take a significant amount of time for large problems. Also, it is important to consider that
when solving M2, the optimal solution of M1 may be cut off by the assumption that there is a linear
relationship between the number of missing bikes and the number of unsatisfied trips. In practice,
one bike might be used for several trips.

4.5 A Second Variant Formulation of the TLB

Solving M2 can be computationally expensive due to the requirement to compute all station and
scenario bounds. We thus propose a third model, M3, that requires the computation of fewer bounds.
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Let li, mi be the variables that measure how the station bicycles violate the given upper and lower
bounds. The formulation of M3 follows:

(M3) max θ (23)

s.t. (2), (5), (12), (13),

yi + li ≥ max
ω∈Ω

lbωi , i ∈ N, (24)

yi −mi ≤ min
ω∈Ω

ubωi , i ∈ N, (25)

θ ≤ UB −
∑
i∈N

(li +mi) , (26)

li, mi ≥ 0. (27)

Constraints (24)–(25) bind the total bicycles used to a single upper and lower bound for each
station. Constraint (26) binds the expected recourse cost to the violation variables li and mi.
Constraints (27) are definitions of variables.

The maximal station lower bound, maxω∈Ω lb
ω
i , and minimal station upper bound, minω∈Ω ub

ω
i ,

are determined through an heuristic process. This heuristic takes a collection of bicycle flows for all
scenarios as input and seeks the smallest and largest flows. In practice, the collection of flows can
be obtained when solving the min-cost flow in Gω, ∀ω ∈ Ω. If the smallest and largest flow values
of station i are 0 or hi, respectively, the procedure to compute station-scenario bounds of M2 is
invoked for i. Otherwise, the maximal and minimal bounds are set to the maximum and minimum
flows across all scenarios.

4.6 A Third Variant Formulation of the TLB

A decision-maker might intuitively aim to keep target levels near half capacity to balance both high
pickup and delivery demands. The following mathematical program implements this logic:

min
y

∑
i∈N

(yi − 0.5hi)
2

(28)

s. to (2), (5).

The program in (28), (2), (5) is quadratic and can be solved by the following dynamic program-
ming (DP) algorithm to compute target levels under the logic of halving the station capacities. We
denote this problem as M4 and the cost function that calculates the optimal target levels as HM4

i (z),
for all stations i and all available bicycle quantities z. The recursion to compute the optimal target
levels for i = 1, . . . , n, follows:

HM4
i (z) = min

0≤yi≤min{z,0.5hi}

{
(yi − 0.5hi)

2 +HM4
i+1(z − yi)

}
, (29)

with the boundary condition of HM4
i (z) = 0, for i = n + 1. The minimum cost is obtained by

calculating HM4
1 (Qtot) and the time complexity is O(n

∑n
i=1 hi).

10

Service Level Requirements for Real-Life-Sized Bicycle Sharing Systems

CIRRELT-2025-02



4.7 Optimizing the Station Capacity

This section presents an approach for optimizing station capacities. We suppose that we are given
a non-negative integer budget B representing the maximum number of docks that can be added
to the network of stations. Let h+

i be integer variables denoting the capacity increase of station i.
Then, the formulation of the Station Capacity Problem (SCP), which we denote as Model 5, or M5,
follows:

(M5) max θ (30)

s.t. (2), (12),∑
i∈N

h+
i ≤ B, (31)

0 ≤ yi − h+
i ≤ hi, (32)

h+
i , yi ≥ 0, and integer, (33)

Optimality Cuts.

Equation (30) aims to maximize the expected number of satisfied trips. Inequality (31) represents
the budget constraint, while inequality (32) is a generalization of inequality (5). Inequalities (33)
introduce the new variable definitions.

Notably, the optimality cuts for this generalized problem differ from those of the TLB due to the
altered second-stage formulation resulting from potentially varied station capacities. To separate
these optimality cuts, we begin by constructing the graph Gω2 = (V ω2 , A

ω
2 ) for each ω, following a

similar procedure to the construction of Gω1 . Let hν+
i denote the values of the increase variables,

respectively, at a given solution ν. From Gω1 , adjust the capacity of the holding arcs associated with
station i from [0, hi] to [0, hi + hν+

i ]. The construction of the remaining arcs and all nodes in Gω2
follows the same principles as those in Gω1 . Next, the separation of the cut is performed with a
procedure similar to that of model M1.

Lastly, an upper bound UBSCP for M5 can be computed by performing the following modifica-
tions to Gω(V ω, Aω). Modify the capacity of each holding arc from hi to hi + B. The rest of the
graph remains the same, and UBSCP is given by averaging the scenario optimal solutions.

We propose two variants for M5, similar to the variants of M1 concerning station and scenario
bounds. The first variant, Model 6 (M6), adds to the constraints in (31)–(33) the station scenario
bound constraints from M2. The second variant, Model 7 (M7), applies a similar logic by adding
the constraints in M3.

The following modifications are made to Gω1 to formulate the min-cost flow graphs of the station
and scenario lower and upper bounds in M6 and M7. The capacity of all holding arcs is modified to
infinity, or in practice, to Qtot, while the remaining arcs and nodes remain unchanged.

5 The Bicycle Rebalancing Problem

This section presents the Bicycle Rebalancing problem (BRP). Section 5.1 presents the problem
formulation, while the policies to compute the cost of a route are given in sections 5.3 and 5.4.
Lastly, Section 5.6 presents an heuristic solution method. Throughout this section, we follow the
notation of the TLB given in Section 4, while introducing new notation as needed.
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5.1 Problem Definition

The BRP is defined as the problem of designing vehicle routes that start and end at the depot, to
redistribute bicycle quantities among a set of stations. This redistribution is managed by a fleet of
homogenous vehicles, each with a capacity denoted as Q. The network of stations is represented by
a graph G = (V,A), where V = N ∪ {0} denotes the set of stations N and the depot labeled as 0,
and A denotes the arcs that connect each station with a given distance dij , and (i, j) ∈ A. The goal
is to redistribute the bicycles at each station exactly once, all while ensuring that the total distance
traveled on any given route remains below a predefined distance D.

Denoting y∗i as the target level of station i, computed by solving the TLB in Section 4, the
station’s demand is represented by qi ∈ Z, with qi = y∗i − hi0, where hi0 is the initial bicycle
occupation. A rebalanced station has its demand either fully or partially satisfied within the interval
[qi − (hi − hi0), qi + hi0]. Here, (hi − hi0), hi0, represent maximum missed deliveries and pickups
respectively. To scale the missed bicycle quantities to the distance traveled by the vehicle fleet, an
integer parameter δ ≥ 1 is defined with units of [kilometers/missed bicycles].

Without loss of generality, and to ensure that all nodes in V can feasibly be visited by one vehicle,
we suppose that an instance of the BRP satisfy the conditions |qi| ≤ hi and |qi| ≤ Q for all i ∈ V .

5.2 Cost of a Route

In the BRP, the cost of a route comprises the total distance traveled and the cost incurred due
to deviations from target-level bicycle quantities at each station. We propose two distinct cost
computation functions based on policies designed to enhance the service level requirements of the
bicycle-sharing system. The first policy forces the driver to visit all stations on the route sequentially.
In contrast, the second policy allows performing restocking trips to the depot depending on the
residual capacity of the vehicle. These two policies are denoted as the continue-to-next (CN) policy
and the restocking trips (RT) policy, and they are presented in Sections 5.3 and 5.4.

5.3 The Continue-to-Next Policy

The cost computation for a route r = {0, i1, . . . , it, 0} is divided into t + 1 stages. Each stage k
corresponds to a station visit in the sequence r, with each station visit having a corresponding
request denoted by qk.

We introduce the variables xk ∈ [0, Q] to represent the vehicle load when arriving at station k,
where xt+1 = 0. Let w̄+

k = hi0 and w̄−k = hi − hi0 denote the maximum missed pickup and delivery
quantities at stage k, respectively.

Define HC
k (xk) as the cost function of the CN policy. Then, the following DP algorithm computes

HC
k (xk) for k = 1, . . . , t, as follows:

HC
k (xk) = min

−w̄−k ≤wk≤w̄+
k

0≤xk+wk≤Q−qk

{
δ|wk| +HC

k+1(qk + xk + wk)

}
, (34)

with the boundary condition HC
k (xk) = 0 for k = t+ 1. The cost of r is given by

∑t
k=0 dikik+1

+
dit0 + min0≤x0≤Q{HC

1 (x0)}.
Solving this DP algorithm has a pseudo-polynomial time complexity of O(nQwmax) in the worst

case, where wmax = max
1≤k≤t

{w̄−k , w̄
+
k }.
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5.4 The Restocking Trips Policy

The cost of performing a restocking trip on route r is calculated as follows. At each stage k, the
vehicle must decide whether to continue to the next station or to make a restocking trip to the depot
to drop off or pick up bicycles. The state variable dk represents the vehicle’s remaining autonomy and
is used to determine whether to continue or restock. The formula to calculate dk is dk = dk−1 − rk.
Here, rk = ck−1,0 + c0k − ck−1,k represents the additional distance incurred during the restocking
trip between stations k − 1 and k, and d0 = D −

∑
(i,j)∈r cij . Let HR

k (xk, dk) denote the cost of
performing a restocking trip at stage k = 1, . . . , t, given by the following DP algorithm:

HR
k (xk, dk) = min

{
rk + min

−w̄−k ≤wk≤w̄+
k

0≤xk+wk≤Q−qk

{δ|wk|} + min
0≤y≤Q

{HR
k+1(y, dk − rk)},

min
−w̄−k ≤wk≤w̄+

k
0≤xk+wk≤Q−qk

(
δ|wk|+HR

k+1(qk + xk + wk, dk)
)}

. (35)

with the boundary condition HR
k (xk, dk) = 0 for k = t+ 1.

The two terms in this DP sum the cost of missing wk bicycles with the cost of moving to the next
station on the route with minimal residual bicycle quantities y in the vehicle and available distance
to restock dk − rk.

With HR
k (xk, dk) defined, the cost is given by

∑t
k=0 dikik+1

+ dit0 + min0≤x0≤QH
R
1 (x0, D).

5.5 Feasibility of a Route

Under both cost policies described in Section 5.2, a route may be infeasible depending on the
sequencing of the stations and the vehicle’s remaining autonomy. In this section, we specifically
focus on the CN policy to propose conditions that determine whether a given route of stations is
feasible.

Let r = {0, i1, . . . , it, 0} be a route and S be the set of stations comprising route r. We propose
the following two feasibility conditions that need to be simultaneously satisfied for r:∑

i∈S
q>0

qi ≤ Q+
∑
i∈S

w̄+
i +

∑
i∈S
qi<0

|qi|, (36)

∑
i∈S
qi<0

|qi| ≤ Q+
∑
i∈S

w̄−i +
∑
i∈S
qi>0

qi, (37)

Equations (36), (37) are conditions for the pickup and delivery request in r. A route becomes
infeasible if it violates either one of the conditions, as shown in Parada et al. (2024).

5.6 Solution Method

To solve the BRP, we implement the Adaptive Large Neighborhood Search (ALNS) metaheuristic
as proposed by Ropke and Pisinger (2006). Our approach includes sequential insertion, related
removal, and random removal operators.

To accelerate the computations of the DP in the CN and RT policies, we propose a lower bound
LHC on HC

k (xk) for a given set S ⊆ N . This lower bound is calculated by summing the requests in
S and comparing the total with Q as follows:
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LHC = δmax{0, |
∑
i∈S

qi| −Q}. (38)

Using this lower bound, the sequential insertion operator can determine if a route satisfies the
condition HC

1 (x0) = 0 by sequentially applying equation (38) to the stations on the route until a
non-zero cost is found. This method allows for faster sorting of candidate insertion moves without
explicitly computing HC

1 (x0).
For the restocking trips policy, we optimize the number of recursive calls by using a linear

relaxation of a knapsack problem at each station k to determine the maximum feasible number of
restocking trips, given the available distance dk. In this problem, the knapsack items represent
restocking trips at stations k + 1, . . . , t, with their respective distances as weights.

Initial exploratory experiments made with ALNS determined that an effective strategy is to run
50,000 ALNS iterations with the CN policy (using the DP for HC

k (xk)), then take the best solution
from this run and perform 5,000 ALNS iterations with the RT policy (using the DP for HR

k (xk, dk)).
This approach is applied in our computational experiments presented in Section 7.2.

6 Data and Instance Characterization

This section outlines the sources of real-life BSS data and our benchmark instances for the TLB and
BRP. Section 6.1 details the data, and Section 6.2 describes the generated instances.

6.1 Real-Life-Sized Data

BSS data comes from two main sources: JSON schemas and historical trip data. The General Bike-
share Feed Specification (GBFS) standardizes real-time information about BSS, including station
locations and bicycle availability. Operators of systems or city administrators also provide historical
trip data.

We collected data from nine BSS: Blue Bikes (Boston, MA), Divvy Bikes (Chicago, IL), BiciMAD
(Madrid, Spain), Ecobici (Mexico City, Mexico), BIXI (Montreal, Canada), Citi Bike (New York,
NY), Bay Wheels (San Francisco, CA), Bike Share Toronto (Toronto, Canada), and Capital Bike
Share (Washington, D.C.). We note that for Madrid two thirds of the trips are missing some
information and had to be discarded. Thus, the results for Madrid should be taken with a grain of
salt.

An exploratory analysis of JSON data and historical trips revealed significant differences in size
and usage among nine BSS. From April to July 2023, Citi Bike, Bixi, and Ecobici had the highest
number of trips, each exceeding three million. In contrast, the BSS in Washington, D.C., and
Toronto recorded fewer than one million trips each. Notably, Citi Bike (New York) had more than
ten million trips during this period.

We analyzed data from July 2023, the busiest month for the BSS in our study, to ensure com-
parability. Figure 2 shows the average number of trips for the three largest BSS and Boston. The
average trips in Figure 2 are based on hourly counts between 8:00 AM and 10:00 PM, averaged over
31 days.

The data depicted in Figure 2 clearly illustrates the system usage patterns throughout an average
day and reveals the disparities in size among the four locations. It is evident that Montréal, New
York, and Boston experience peak usage between 4:00 PM and 7:00 PM, signifying a surge in demand
during the end-of-workday period. Conversely, Mexico City experiences a more evenly distributed
demand throughout the day, with a noticeable decline after 7:00 PM. In terms of size, New York
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Figure 2: Histograms of Average Daily Trips from 8AM to 10PM for some BSS in July 2023.
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City N Qtot Average Arcs Average Nodes
Boston 423 4,000 22,198.8 12,085.5
Chicago 1,678 15,242 36,475.3 19,518.4
Madrid 610 7,500 18,639.7 10,437.1

Mexico City 661 6,800 54,876.5 26,436.9
Montreal 800 10,000 79,547.1 36,832.5
New York 2,175 32,000 179,221.2 80,816.4

San Francisco 554 7,000 12,795.1 7,656.3
Toronto 791 9,000 41,809.1 22,341.3

Washington DC 738 6,000 26,976.6 15,184.1

Table 2: Summary of Instances with |Ω| = 100 for the TLB.

shows significant demand during its low-demand hours from 8:00 PM to 10:00 PM, exceeding the
peak demand in Mexico City at any time of the day and matching many peak hours in Montreal.
Specifically, New York experiences demand for more than ten thousand trips between 5:00 PM and
6:00 PM. Montreal’s peak occurs at nearly five thousand trip demands at 5:00 PM. In comparison,
Mexico City peaks at less than three thousand trips at various hours throughout the day.

6.2 Characterization of the Instances

In this section, we outline the instances generated for the TLB and the BRP.
For the TLB, we generate five instances, with 15, 25, 50, 75, and 100 scenarios, for each of the

nine cities, totaling 45 instances. To generate each instance we sampled random variables for each
scenario, allowing us to simulate independent Poisson processes for each trip.

Table 2 provides an overview of the largest instances (with 100 scenarios), detailing metrics such
as the number of real-life stations (N), contractual total available bicycles (Qtot), and the sizes of
scenario graphs Gω, represented by the average number of MCF arcs and nodes. Regarding the
contractual number of bicycles is the theoretical quantity publicly defined by either the BSS or city
operators; however, in practice, many BSS use a fraction of this daily. Such a quantity is not publicly
available.

The table reveals significant variation in instance sizes across cities, as measured by the average
number of arcs and nodes. In line with the analysis of the real-life data presented in the histograms
in Figure 2, the instances of New York, Montreal, and Mexico City are the largest.

Additionally, we generated a set of 400 scenarios, denoted as Ω400, for each city. This set is used
to compute an unbiased estimator through the expected recourse cost of a given solution in Ω400.

For the BRP instances, we propose one instance for each city, totaling nine instances. For this
problem, we solved the TLB to get the initial quantities with a Qtot equal to the total sum of bicycle
quantities that are currently in the network to avoid high disparities between what is currently in
use and the contractual quantities.

In each city, we construct the graph (V,A) where the set of nodes V is constructed from the
real-life locations of the same N stations as the TLB instances. The arc distances (i, j) ∈ A are
calculated using the Haversine distance formula between node pairs i, j ∈ V . We gathered JSON
files from GBFS to obtain the initial station occupation hi0.

The rebalancing vehicle capacity is set at Q = 40, consistent with current real-life BSS capacities
(MontrealGazette, 2015). However, a small percentage of nodes have demand levels (qi) exceeding
this threshold (qi > 40), making it impossible to find a feasible solution that visits each node exactly
once. We address this by creating multiple nodes corresponding to real-life stations whose demand
surpasses vehicle capacity, such that each resulting node manages a portion of the total demand.
Additionally, we remove nodes with qi = 0 from each instance, as they were not significantly used
as transshipment nodes.
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City N |V |
∑

i∈N qi
Boston 423 392 100
Chicago 1,677 1,158 49
Madrid 610 586 181

Mexico City 661 626 100
Montreal 800 762 100
New York 2,175 2,111 119

San Francisco 554 528 49
Toronto 791 724 100

Washington DC 738 693 149

Table 3: Summary of Instances for the BRP.

Table 3 summarizes the BRP instances with the following columns: ‘N’ indicates the number
of real-life stations, ‘|V |’ shows the number of generated nodes, and ‘

∑
i∈N qi’ represents the total

demand, reflecting the number of bicycles that need to be delivered to or picked up from the depot.
The table shows the activity of different BSS, with New York having the highest activity. Chicago

has relatively low activity, with nearly a third of its stations not requiring rebalancing. Nearly 500
nodes out of 1,677 stations had a qi-value of 0 and were removed.

7 Computational Results

This section presents the results for implementing the decomposition methods for the TLB and
the ALNS metaheuristic for the BRP. Both were implemented in C++ with Cplex 22.10 for the
decomposition method. Experiments were run on a CPU with Intel E5-2683 v4 @ 2.1 GHz. For the
TLB, we implemented the code in parallel using the OpenMP library, and experiments were run
using 64 cores. This section has been divided into Sections 7.1 and 7.2 for the results of the TLB
and BRP, respectively.

For the TLB, we use the following formula to compute percentage gaps given an upper bound
UB:

%Gap =
UB − LB

LB
× 100,

where LB denotes the lower bound, which is the value of a given solution to any of our models.

7.1 Results for the TLB

We present the results for the TLB models M1–M4 in Section 7.1.1. Additionally, we present the
results of changing the number of available bicycles in Section 7.1.2, and the results for the OSC
models M5–M7 in Section 7.1.3.

7.1.1 Results for Models M1-M4

The results of solving models M1–M3 are shown in Figure 3. This figure displays the average
percentage gaps of an unbiased estimator with respect to UB400 after solving all three models for
the nine cities and all scenarios (15, 25, 50, 75, and 100). The unbiased estimators were calculated
as the average cost of a TLB model solution in Gω, ∀ω ∈ Ω400, using the Benders decomposition
algorithm with a time limit of 1,800 seconds. UB400 is the average optimal cost of Gω, ∀ω ∈ Ω. Each
data point on the plotted lines corresponds to the average gap of all nine cities for a given scenario.
The figure also displays the total averaged computational times for each model and scenario, which
are the sum of the Benders algorithm and the time required to compute bounds in M2 and M3.
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Figure 3: Comparison of results for Models M1-M3 with different scenarios: (a) Average % Gap
with UB400 and (b) Average time taken

Figure 3 shows that M2 consistently outperforms M1 and M3, and that M3 improves as the
number of scenarios increases while M1 worsens, possibly because fewer first-stage solutions are
visited. This suggests that the station and scenario bounds help convergence for M2 and M3, but
not for M1. In the plot of computation times, M1 and M3 are displayed as an average, since they are
not significantly different from each other. The average times for M2 increase with the complexity
of station scenario bounds for larger cities. This information is further detailed in Table 5.

The figure also indicates that the best results are achieved with 100 scenarios. Therefore, we
utilize instances with 100 scenarios for further analysis in Table 4.

Table 4 presents a detailed comparison of the Benders decomposition algorithm for models M1–
M3 for 100 scenarios. The columns include ‘Opt’ for optimal solutions (with 1 indicating an optimal
solution and 0 non-optimal), ‘%CplexGap’ for the Cplex gap at a 1,800-second limit, ‘Time[s]’ for
the time to reach the best or optimal solution, and ‘Cuts’ for the number of Benders optimality cuts
added to the model.

Table 4 confirms M2’s superiority over M1 and M3, as it is the only one of the three models to
solve all cities to optimality. This table highlights the advantage of using the complete station and
scenario bounds in M2, shown by the large number of cuts added to models M1 and M3. These cuts
suggest that M1 and M3 are unlikely to converge to optimality regardless of the time limit. Initial
experiments with an extended time limit of four hours instead of half an hour corroborate this. M2,
in contrast, converged for all cities with zero optimality cuts needed, and a closer inspection of our
results showed that convergence was attained at the root node in all cases.

We conclude the analysis of the TLB models in Table 5 by comparing the performance of models
M1–M4 in achieving the best gap in the 400 scenario set of Ω400. From a BSS managerial standpoint,
this table is the most relevant in this section as it answers the question of which model should be used
to determine the bicycle target levels that maximize average trip satisfaction. The table is structured
as follows. For each city, the column ‘UB400’ denotes the average optimal cost of Gω, ω ∈ Ω400.
Columns ‘M1’ to ‘M4’ under the header ‘%Gap’ denote the gap of models M1–M4 with respect to
UB400. The gaps for models M1–M3 are calculated using the best or optimal solution at the end of
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M1 M2 M3
City Opt %CplexGap Time[s] Cuts Opt %CplexGap Time[s] Cuts Opt %CplexGap Time[s] Cuts

Boston 0 8.5 1,800.0 4,898 1 0.0 1.5 0 0 8.2 1,800.0 4,945
Chicago 0 9.4 1,800.0 3,026 1 0.0 4.6 0 0 8.4 1,800.0 2,912
Madrid 0 4.5 1,800.0 9,607 1 0.0 2.0 0 0 5.6 1,800.0 9,197

Mexico City 0 6.0 1,800.0 1,095 1 0.0 5.6 0 0 6.1 1,800.0 1,095
Montreal 0 7.0 1,800.0 466 1 0.0 9.3 0 0 6.0 1,800.0 460
New York 0 9.0 1,800.0 118 1 0.0 35.3 0 0 8.6 1,800.0 123

San Francisco 0 12.2 1,800.0 9,983 1 0.0 1.8 0 0 11.8 1,800.0 10,285
Toronto 0 7.7 1,800.0 2,411 1 0.0 3.3 0 0 8.6 1,800.0 2,387

Washington DC 0 9.9 1,800.0 4,441 1 0.0 2.2 0 0 11.1 1,800.0 4,404

Table 4: Performance of Models M1-M3 in Cities with 100 Scenarios.

%Gap Bounds Time[s]
City UB400 M1 M2 M3 M4 M2 M3

Boston 9,256.2 8.5 2.1 6.7 4.7 92.03 1.1
Chicago 15,026.3 9.4 2.3 7.2 78.3 290.7 1.9
Madrid 7,558.5 4.5 0.3 7.0 0.9 78.4 1.0

Mexico City 20,480.4 6.0 1.4 3.7 4.2 1,072.1 12.8
Montreal 40,475.9 7.0 1.3 3.4 4.6 2,928.7 33.0
New York 95,536.0 9.1 1.0 4.6 6.2 27,591.1 95.7

San Francisco 4,582.4 12.3 1.1 14.5 2.8 24.1 0.2
Toronto 18,077.8 7.7 1.8 5.9 5.6 464.1 4.2

Washington DC 10,913.3 9.9 2.1 9.1 4.6 165.0 1.2
Avg. 8.3 1.5 6.9 12.4

Table 5: %Gaps with UB400 of Models M1-M4 Using 100 Scenarios

a 1,800-second run of the Benders decomposition algorithm and 100 scenarios. The gaps for M4 are
computed using the solution of the DP algorithm in equation (29). Lastly, the columns ‘M2’ and
‘M3’ under the header ‘Bounds Time[s]’ denote the time in seconds required to compute the station
and scenario bounds. Model M4 computation time is negligible.

The results demonstrate that model M2 is superior to all other models despite the increased
time needed to compute the station scenario bounds. However, this additional computation time is
significant only for New York. The time is less than an hour for Montreal, and less than 20 minutes
for other cities. On the other hand, model M4 offers a valuable and highly efficient alternative to the
decomposition method, for all cities except Chicago. When Chicago is excluded, the average gap for
M4 decreases from 12.4 to 4.2, making it the second best model after M2. The poor performance of
M4 in Chicago is likely due to the underutilization of bicycles in this city, which is further analyzed
in Section 7.1.2.

7.1.2 Results with Fewer Available Bicycles.

This section presents the result of varying the contractual number of bicycles Qtot. Initial ex-
ploratory experiments showed that for many cities, Qtot was significantly greater than the sum of
the target levels; hence, computing the minimal Qtot that maximizes trip satisfaction provides a
relevant managerial insight.

We modify constraint (2) to the following form:∑
i∈N

yi ≤ φQtot, (39)

where φ ∈ [0, 1] is an input parameter. Then, we solve the TLB model with a given φ to obtain
a solution that uses fewer bicycles.
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% of Available Bicycles (φ)
City 10 20 30 40 50 60 70 80 90 100

Boston 58.7 81.5 89.2 93.1 95.5 96.9 97.6 97.9 97.9 97.9
Chicago 87.1 95.5 97.6 97.7 97.7 97.7 97.7 97.7 97.7 97.7
Madrid 83.9 93.2 97.1 98.8 99.5 99.7 99.7 99.7 99.7 99.7

Mexico City 55.7 80.7 88.8 92.9 95.1 96.7 97.8 98.3 98.6 98.6
Montéal 66.1 84.0 90.7 93.9 96.0 97.5 98.4 98.7 98.7 98.7

New York 74.1 88.2 92.7 95.1 96.8 97.9 98.5 98.9 99.0 99.0
San Francisco 74.8 89.8 95.4 97.9 98.7 98.9 98.9 98.9 98.9 98.9

Toronto 69.8 87.1 92.5 95.7 97.3 98.0 98.2 98.2 98.2 98.2
Washington DC 58.7 80.9 88.3 92.5 95.2 96.6 97.5 97.8 97.9 97.9

Average 69.8 86.9 92.7 95.5 97.0 97.8 98.2 98.4 98.4 98.4

Table 6: Average Percentage of Satisfied Trips with Fewer Available Bicycles
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Figure 4: Montreal, New York, and Mexico City average percentage of satisfied trips with fewer
available bicycles

Table 6 explores how changing Qtot affects the average satisfied trips. The columns under ‘%
of Available Bicycles’ show the the number of satisfied trips for each provided bicycle percentage,
corresponding to the φ parameter in equation (39). Then, for each of the following φ values of 5%,
10%, . . . , 90%, 95%, M2 was solved with 100 scenarios, and its solution was utilized to determine
the average number of satisfied trips in the set Ω400. This average is expressed as a percentage of
UB400. We use M2 to provide a solution because this model consistently yielded the best values
among all models in Figure 5.

The table shows that the contractual number of bicycles is significantly higher than the required
quantity. With just 50% of contractual bicycles, 97.0% of average trips can be accommodated,
compared to 98.4% of average satisfied trips with Qtot. The satisfaction level remains consistent at
98.2%, even with only 70% of bicycles being used. Chicago is still more noteworthy, with just 10%
of bicycles resulting in an 87.1% average trip satisfaction rate, the highest among the nine cities.

Even the three largest BSS in New York, Montréal, and Mexico City can accommodate about
96% of average trips with just 50% of the contractual bicycles, as shown in Figure 4. The figure
includes more data points than Table 6, providing a better understanding of the relationship between
satisfied trips and available bicycles. For example, in 2023, New York had an average of over 30,000
contractual bicycles per month, according to the Department of Transportation and Citi Bike data.
The figure suggests that BSS operators could reduce costs by using as few as 15,000 bicycles.
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Budget as a % of
∑

i∈N hi (B)

City
∑

i∈N hi 0 1 2 3 4 5 10 15 20

Boston 7,316 0.0 1.3 1.7 1.8 2.0 2.1 2.7 2.8 3.5
Chicago 15,302 0.0 0.3 0.3 0.6 0.8 0.7 0.8 0.9 1.2
Madrid 26,444 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2

Mexico City 17,447 0.0 0.8 1.5 1.6 1.9 2.1 2.5 2.9 3.0
Montreal 17,580 0.0 0.0 0.0 0.3 0.0 0.3 0.6 0.9 1.1
New York 67,365 0.0 0.3 0.1 0.0 0.0 0.1 0.5 0.7 1.0

San Francisco 12,196 0.0 0.2 0.4 0.5 0.5 0.5 0.3 0.4 0.6
Toronto 15,063 0.0 0.2 0.3 0.5 0.6 0.8 1.3 1.7 1.9

Washington DC 12,681 0.0 0.2 0.3 0.5 0.7 0.8 1.3 1.5 1.6
Avg 0.0 0.4 0.5 0.7 0.7 0.8 1.1 1.3 1.6

Table 7: Increase in Average Satisfied Trips for a Given Budget
.

7.1.3 Results for the SCP

This section presents the results for the SCP in Table 7. The table shows the increases in average
satisfied trips for the solution of model M6 compared to the solution of model M2, for all nine cities
and one hundred scenarios using budget values ranging from 0% to 20% of

∑
i∈N hi. The table also

shows the sum of current station capacities
∑
i∈N hi.

The data indicates that, in general, M6 improves upon M2 in nearly all cities and budgets. A
closer inspection of the table suggests that there are BSS where targeted investments in increased
capacity could lead to better service than others. Such is the case in Mexico City and Boston, where,
with relatively low budgets, the system can serve more trips. On the contrary, the table shows that
neither Montréal nor New York, for example, attain such gains, indicating that capacities have been
perhaps more meticulously decided. It’s also important to note that increasing station capacity does
not affect the station’s incoming and outgoing trip demands, as outlined in the fourth assumption
of the SLR problem definition.

Lastly, results for M5 and M7 are not presented, as they exhibit similar behavior to those of M1
and M3. Furthermore, additional research is necessary to understand the implications of assumption
4 outlined in Section 3 and modifed station capacities, namely how variations in the initial station
capacities can influence trip demands.

7.2 Results for the BRP

This section presents BRP results in Tables 8, and 9, obtained through the ALNS procedure outlined
in Section 5.6.

Table 8 compares the CN and RT policies for a δ = 1. Columns include ‘Cost’ for the cost of
the solution, which is the sum of the traveled distance ‘Dist’ plus the ‘Policy’ cost CN or RT, and
‘Drv.’ for the number of drivers utilized. The CN policy determines route cost as missed bicycles
multiplied by δ. Conversely, for the RT policy, the cost encompasses missed bicycles multiplied by
δ plus the restocking trip distances. ‘Time[s]’ denotes the computational time in seconds.

Table 8 shows that the RT policy yields better solutions, evident from smaller average cost values
compared to the CN policy. However, the RT policy requires significantly more computation time,
especially in cities like Montreal and Mexico City. The effectiveness of the CN policy comes from
the efficient feasibility checks described in Section 5.6. These checks make it easier to quickly verify
if a route is feasible and, combined with the calculation of LHC , effectively reduce the amount of
calculations needed. Conversely, the RT policy’s complexity in the DP for HR

k (xk, dk) leads to longer
computational times, especially when the instance allows long routes.

Table 9 provides an overview of the solution costs after the ALNS runs, contrasting the CN
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Continue-to-Next Policy Restocking Trips Policy
City Cost Dist. Policy Drv. Time[s] Cost Dist. Policy Drv. Time[s]

Boston 312.4 312.4 0 5 274.1 312.4 312.4 0 5 973.4
Chicago 903.6 903.6 0 11 970.4 903.5 903.5 0 11 4,576.2
Madrid 1,656.0 1,634.0 22 16 524.7 1,577.3 1,559.1 18.2 15 8,287.8

Mexico City 560.2 560.2 0 8 721.4 377.9 377.9 0 13 9,193.7
Montreal 1,027.9 1,027.9 0 11 668.2 1,027.5 1,027.5 0 11 11,282.0
New York 4,489.1 4,471.1 18 44 1,588.0 4,469.3 4,459.3 10.0 44 11,705.2

San Francisco 1,265.4 1,239.4 26 11 314.3 1,225.8 1,216.6 9.2 11 2,791.1
Toronto 848.0 848.0 0 9 610.0 845.5 841.2 4.3 9 11,975.1

Washington DC 789.9 789.9 0 11 563.3 789.9 789.9 0 11 2,019.0
Average 1,316.9 1,309.6 7 14 692.7 1,281.0 1,276.4 4.6 14 6,978.2

Table 8: BRP Results with δ = 1.

δ

UBALNS 1 5 10 15 20 25
City CN RT CN RT CN RT CN RT CN RT CN RT

Boston 312.4 312.4 321.1 321.1 334.3 334.3 324.8 324.8 328.0 322.9 333.8 324.0
Chicago 903.6 903.5 984.6 971.8 1,001.4 937.1 995.8 995.8 990.8 918.5 979.2 918.7
Madrid 1,656.0 1,577.3 1,860.5 1,535.5 1,880.9 1,762.7 2,030.6 1,685.8 2,076.7 1,793.4 1,820.5 1,623.7

Mexico City 560.2 377.9 727.3 594.6 764.8 661.9 751.4 633.7 731.5 669.0 726.6 689.3
Montreal 1,027.9 1,027.5 1,128.7 984.6 1,141.5 1,139.3 1,241.4 1,007.4 1,180.3 991.9 1,165.6 918.4
New York 4,489.1 4,469.3 5,488.4 4,648.6 5,762.2 4,531.7 5,810.8 4,536.8 5,763.4 4,688.2 5,456.3 5,451.0

San Francisco 1,265.4 1,225.8 1,378.6 1,032.6 1,490.7 1,182.5 1,418.5 1,181.0 1,421.1 1,197.9 1,506.5 1,035.5
Toronto 848.0 845.5 917.6 914.1 947.7 822.4 945.2 945.2 917.5 823.7 984.8 931.1

Washington DC 789.9 789.9 844.0 844.0 802.4 796.7 864.7 864.7 860.4 841.3 833.7 833.7
Average 1,316.9 1,281.0 1,516.8 1,316.3 1,569.6 1,352.1 1,598.1 1,352.8 1,585.5 1,360.8 1,534.1 1,413.9

Table 9: BRP Results for All δ Values

and RT cost policies across various δ values, specifically δ = {1, 5, 10, 15, 20, 25}. The cost of each
solution is represented as UBALNS in each cell of the table.

The table illustrates that across all δ values, the ALNS run with the RT policy consistently
improves solutions over the CN policy. The most substantial improvements occur at δ = 20, where
all nine RT solutions outperform the CN solution, and nearly all improvements fall within the 10–
15% range. Moreover, our combined approach remains robust to various δ values, maintaining stable
UBALNS values around 1,500 despite the increased cost of missed bicycles.

8 Conclusion

We propose a two-step approach to optimizing the redistribution of bicycles in bicycle-sharing sys-
tems by breaking Service-Level Requirements into the Target-Level Problem (TLB) and the Bicycle
Rebalancing Problem (BRP). Our computational experiments show that Model 2 outperforms other
TLB models, achieving optimal solutions and enabling substantial reductions in total bicycles with-
out significantly impacting satisfied trips. Furthermore, Model 6 is the most effective for determining
increases in station capacities that lead to a higher average number of satisfied trips.

In the BRP context, the restocking trips (RT) policy outperforms the continue-to-next (CN)
policy by providing superior solutions in cities with complex networks despite requiring more com-
putational time.

22

Service Level Requirements for Real-Life-Sized Bicycle Sharing Systems

CIRRELT-2025-02



Acknowledgments

We thank Digital Research Alliance of Canada for providing high-performance computing facilities.
Financial support for this work was provided by the Canadian Natural Sciences and Engineering
Research Council (NSERC) under Grant 2021-04037. This support is gratefully acknowledged.

References

BBC (2021). Why some bike shares work and others don’t. https://www.bbc.com/future/

article/20210112-the-vast-bicycle-graveyards-of-china. Accessed: April 17, 2024.

Benchimol, M., Benchimol, P., Chappert, B., De La Taille, A., Laroche, F., Meunier, F., and
Robinet, L. (2011). Balancing the stations of a self service “bike hire” system. RAIRO-Operations
Research, 45(1):37–61.

Benders, J. (1962). Partitioning procedures for solving mixed-variables programming problems.
Numerische mathematik, 4(1):238–252.

Beroud, B., Van Zeebroeck, B., and Peduzzi, E. (2024). Quel avenir pour le service public bruxellois
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