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Abstract. The cost of producing diverse cars depends on the sequence in which 
they are arranged in the body shop, paint shop, and assembly shop. Before 
entering the downstream assembly shop, the upstream car sequence shared by 
the body shop and paint shop is readjusted via the painted body storage, which 
consists of several first-in-first-out lanes. The car resequencing problem 
addressed in this paper requires determining the upstream and downstream 
sequences and the car-to-lane assignment to minimize the total cost of the three 
shops. We propose a nested logic-based Benders decomposition approach with 
three levels, where each car is assigned a body and a color in the first level to 
determine the upstream sequence. In the second level, cars are rearranged by 
determining their configurations and downstream positions. A feasible 
assignment of cars to lanes is sought in the third level to respect this sequence 
change. We provide a mathematical formulation for each level and propose two 
shortest-path problem reformulations for the first level, where solving the first 
reformulation is equivalent to a k-shortest path problem. The second 
reformulation is a shortest-path model restricted by demand constraints. A lower 
bound, valid inequalities, and a heuristic method are also proposed as 
enhancements. In our CRSP, the number of cars to be resequenced is not limited 
by the PBS size.  Computational results show that our approach can handle 
instances of up to 120 cars, about ten times more than previous studies. A 
sensitivity analysis is conducted to provide some managerial insights. 
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1 Introduction

A car model is made up of three attributes: the body (e.g., hatchback, SUV), the color, and the

configuration (e.g., flagship version, deluxe version), which are processed in three consecutive

shops. First, metal parts are welded together to frame the overall body of one car in the

body shop. This car then moves to the paint shop to be sprayed with a color. Finally, in the

assembly shop, a group of options (e.g., sunroof, power seats) are assembled to complete the

configuration of the car.

To adapt to the high customization nowadays, various car models are arranged in one

sequence to be processed on a mixed-model production line (MMPL) that runs through the

above three shops.

The car sequence arranged on the MMPL has a crucial impact on the cost of each shop.

To reduce expenses related to switching welding tools and cleaning spray nozzles, the body

shop and the paint shop look for a sequence with the least number of body and color changes,

respectively. Meanwhile, a production requirement known as the color batch limit restricts the

number of consecutive cars with the same color within a constant to maintain spray quality.

The assembly shop prefers a sequence that minimizes workstation overload or ensures a steady

consumption of options. Several methods are available to create a car sequence that minimizes

the cost of the assembly shop or the total cost of the paint shop and assembly shop. So far,

the body shop has not been considered.

In real-world manufacturing, a sequence of cars with preset attributes can be changed to

a new sequence via a buffer. The buffer is a physical structure placed between two adjacent

shops. For clarity, we refer to the two shops as the upstream and downstream shops. A car

leaving the upstream shop can be temporarily stored in the buffer so that other cars behind it

can enter the downstream shop first. This sequence change benefits the reduction in the total

cost of both shops simultaneously.

The resulting car resequencing problem (CRSP) with a buffer studies how to change an

upstream car sequence via the buffer to a downstream one. The painted body storage (PBS)

between the paint shop and the assembly shop is the most widely used buffer. It consists of

multiple linear lanes where cars enter and exit in a First-In-First-Out (FIFO) manner. Another

way to change the car sequence is virtual resequencing (VRS), which works by swapping the

preset attributes of cars. Applying VRS in the CRSP with a buffer contributes to further cost

reduction [3], but it increases complexity because pure VRS is also NP-hard [13].

This work addresses a CRSP involving a PBS and VRS faced by a Chinese carmaker.

For cars to be produced in one shift, their upstream sequence shared by the body shop and

paint shop is changed via the PBS to the downstream one in the assembly shop. Our goal is

to minimize the total cost of the three shops by determining the body, color, configuration,

downstream position of each car, and which lane of the PBS it enters. Unlike the carmaker

making decisions sequentially, we optimize the objectives of the three shops jointly for the first

time.

In related studies, the number of cars is assumed not to exceed the PBS size. This assump-

tion yields a static car-to-lane assignment problem and may cause unnecessary PBS construction

costs. Moreover, the largest instance that can be solved so far contains only 18 cars [27], which

is insufficient for a real-world production plan (e.g., 50 cars are produced per one-hour shift).
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In this work, the number of cars to be rearranged is not restricted by the PBS size. We

develop a nested logic-based Benders decomposition (NLBBD) method with three levels to

solve real-world instances. The optimal upstream sequence is obtained in the first level by

determining the body and color of each car. It is then rearranged in the second level by

assigning each car a configuration and a downstream position. To achieve the sequence change,

we seek a feasible car-to-lane assignment in the third level.

We propose two shortest-path problem reformulations for the first level to improve our

method. Other algorithmic enhancements include a lower bound to tighten the first-level for-

mulation, three valid inequalities to guide the second level, and a heuristic method to construct

initial solutions. Besides experiments to show the efficiency of our approach, a sensitivity

analysis is also conducted to derive managerial insights.

Regarding the contributions, our approach is the first exact method for the CRSP that

involves physical and virtual resequencing, to our knowledge. The two shortest-path problem

reformulations are applicable to general sequencing problems that aim to minimize the num-

ber of changeovers. With the first reformulation, repeatedly solving the master problem in

the logic-based Benders decomposition (LBBD) can be treated as solving a k-shortest path

problem (kSPP). We prove the stopping criteria and verify the optimal solution. The second

reformulation is based on an aggregated graph and can provide higher-quality solutions.

In the remainder of this paper, Section 2 reviews related studies. Section 3 details the CRSP

in this work. The NLBBD and enhancements are proposed in Section 4. Section 5 describes two

shortest-path problem reformulations. Section 6 states how to perform our approach overall.

Computational results and the sensitivity analysis are shown in Section 7. Section 8 gives the

concluding remarks.

2 Literature Review

This section reviews related studies on the car sequencing problems, the CRSP, and the LBBD,

as well as some inspirations for our work.

2.1 Sequencing Problems in Car Manufacturing

Car sequencing problems initially address how to arrange cars to be assembled in the assembly

shop, where each station serves to install one specific option having a limited supply. Three

approaches are discussed to determine a desired car sequence: mixed-model sequencing (MMS),

car sequencing problem (CSP), and level scheduling (LS). The first two aim to minimize the

station work overload, whereas the third aims to keep options consumed steadily from one

period to the next.

Work overload is minimized explicitly in the MMS via various objective functions [14]. The

CSP works implicitly by using a set of Hw : Nw ratio rules defined for options. The ratio means

the number of cars with option w in any subsequence of length Nw cannot exceed Hw. The

CSP aims to find a sequence that respects all rules or minimizes rule violations [24].

LS is acknowledged as a priority in the Just-In-Time production system. Our carmaker

applies it to maintain a constant consumption of options. Like Wu et al. [27], we minimize
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the absolute deviation of the actual consumption from the ideal consumption of all options to

achieve the goal.

Boysen et al. [8] review these approaches. Besides heuristics, some graph representations

are proposed to obtain exact solutions or lower bounds [7, 15].

Subsequently, in the 2005 ROADEF challenge, car sequencing problems are extended to

include the paint shop. Participants needed to determine a car sequence that minimizes the

number of color changes and ratio-rule violations, while respecting the color batch limit. Benoist

[5] proves the optimality of 54% of the best-known solutions of the benchmark in the challenge.

Using a new formulation and column generation, Jahren and Achá [18] obtain better lower

and upper bounds. Exact and heuristic methods developed for this challenge are reviewed by

Solnon et al. [23].

This work jointly optimizes the objectives of all three shops for the first time. We enrich

the graph representations for car sequencing problems, which are adaptable to other sequencing

problems.

2.2 Car Resequencing Problem

According to the review of Boysen et al. [9], the reason for readjusting a car sequence divides

the CRSP into reactive and proactive resequencing. The former handles unforeseen production

disturbances, while the latter aims to reconstruct a sequence that benefits the shop where cars

are ready to enter. This work focuses on the latter, where cars are rearranged for the assembly

shop.

A car sequence can be readjusted virtually without moving cars (i.e., VRS) or physically

via a buffer. The key in VRS is to decouple cars from their preset attributes. As for physical

resequencing, four types of buffers are available: the automated storage and retrieval system,

mix bank, pull-off table, and insert buffer. The mix bank comprising several FIFO lanes is the

most widely used one [25]. Our addressed PBS is a specific mix bank in front of the assembly

shop.

Considerable heuristics are developed for the CRSP with a mix bank, which is NP-hard in

the strong sense. These methods often decompose the complete CRSP into a release subprob-

lem that guides cars to leave the buffer, and a fill subproblem that assigns cars to lanes [6].

Meanwhile, such methods can only manage no more cars than the size of the mix bank. For

more cars, the entire car sequence is split into segments to apply these methods in a rolling

horizon.

Few efforts are made for exact methods. Ko et al. [19] treats the CRSP with a mix bank

having two lanes as a traveling salesman problem. By dynamic programming (DP), they get

the optimal solution for 20 cars within one hour. This number is then extended to 56 using

stronger bounds [16]. The CRSP in Wu et al. [27], which is closely similar to our CRSP, is

formulated as a mixed integer programming (MIP) model and solved for 18 cars within one

hour using Gurobi.

In response to the challenges outlined by Boysen and Zenker [6] about the CRSP, such as

the need for more efficient exact procedures and the impact of some parameters, we propose

an exact method for real-world instances and conduct a sensitivity analysis on two types of

parameters.
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2.3 Logic-based Benders Decomposition

The LBBD was formally proposed by Hooker and Ottosson [17] as an extension of Benders

decomposition (BD) [4]. It decomposes an optimization problem with a complex formulation

into a master problem (MP) and one or several independent subproblems (SPs). In each

iteration, the MP is solved first to assign values to its complicating variables. Then, given

these values, the SPs are solved to optimality. Based on the results of the SPs, the MP is

amended by adding optimality or feasibility cuts. This process continues until the optimal

solution is proven to be found. Unlike BD, the SP in LBBD can take any form. The optimality

and feasibility cuts are problem-specific and devised using the inference dual of the SP.

The LBBD has succeeded in various combinatorial optimization problems, especially when

the MP is an assignment or a planning problem, and the SP is a scheduling problem [12]. It is

the first time it is being used to tackle the CRSP.

There are two ways to implement the LBBD. In the standard one, the MP is repeatedly

solved to optimality in the iterative process. In the other one, known as branch-and-check

(BAC), the MP is solved only once by branch-and-cut. The SPs are solved for each feasible

solution to the MP to check whether to add cuts in a callback way [20].

Regarding techniques to improve the LBBD, the MP is usually tightened by incorporating

the relaxation of the SP [20]. This incorporation is regarded as a remedy for losing the SP-

related information in the MP. Codato and Fischetti [10] attempt to enhance the feasibility

cut by finding a minimal infeasible set of the MP variables. Before adding optimality cuts,

Angulo et al. [2] add subgradient Benders cuts in BD to the MP. Some problem-specific cuts

constructed using the lower bounds on the SPs can also work well [11, 12]. A complex MP or

SP can be decomposed again, which results in a multi-level LBBD where each level is easy to

solve [26, 22].

3 Problem Definition

Consider a total of d =
∑

b∈B
∑

m∈M
∑

j∈J dbmj cars to be produced in a one-hour shift, where

dbmj is the demand for the car model with body b ∈ B = {1, 2, ..., b̄}, color m ∈ M =

{1, 2, ..., m̄}, and configuration j ∈ J = {1, 2, ..., j̄}.
All cars are first arranged in an upstream sequence to be processed successively in the body

shop and paint shop. The two shops aim to minimize the number of body and color changes,

respectively. Meanwhile, the color batch limit requires the number of consecutive cars with

the same color not to exceed c̄. Upon leaving the paint shop, this upstream car sequence is

readjusted by the PBS.

The PBS comprises l̄ lanes, each lane l ∈ L = {1, 2, ..., l̄} with a maximum capacity of q̄.

As Figure 1 shows, the transfer car at the PBS entrance (exit) carries one car from the paint

shop (PBS) to one lane of the PBS (the assembly shop) each time. The two transfer cars

operate independently, i.e., when one car enters the PBS, another can leave the PBS at the

same time. Cars in the same lane move forward via a conveyor belt. Whenever a car enters

the PBS, the number of cars stored in each lane cannot exceed q̄. Using the PBS, each car

i ∈ V = {1, 2, ..., d} is moved to a new position p ∈ P = {1, 2, ..., d} in the assembly shop,

which aims to keep all options consumed steadily.
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The goal of the CRSP is to minimize the total cost of the body shop, paint shop, and

assembly shop, whose objectives are weighted as α, β, and γ, respectively. Decisions include

the body, color, configuration, lane of the PBS, and downstream position assigned to each car.

ca1 ca2 ca3

3 5 7

4 9 2

q̄ = 3

l̄ = 3

TC

12345

upstream
sequence

Entrance

Paint Shop

TC

1 4 5 2 3

downstream
sequence

Assembly Shop

Exit

- Set of bodies: - Set of colors: - TC: Transfer car

Figure 1: Illustration of a PBS with l̄ = 3 lanes and capacity q̄ = 3 of each lane.

We provide a complete formulation (CF) to model the CRSP, where most variables are

binary. The total cost depends on the upstream and downstream sequences. It follows that

we apply the standard LBBD to decompose the CF into an MP that determines the upstream

sequence and an SP that determines the downstream sequence and assigns cars to lanes. Be-

sides, the car-to-lane assignment decisions do not directly affect the cost of the assembly shop.

We thus decompose the SP again, leading to a three-level LBBD, i.e., the NLBBD presented

below. The CF and the standard LBBD can be found in our online supplement.

4 A Nested Logic-Based Benders Decomposition

In our NLBBD method, the first and the second levels are responsible for determining the

upstream and the downstream sequences, respectively. The third level involves assigning cars

to lanes. This section presents the formulation for each level, along with a lower bound, three

valid inequalities, and a heuristic method as technical enhancements.

4.1 First Level: Determine the Upstream Sequence

The upstream sequence is defined by the body and color of each car. Decisions on the two

attributes and the associated costs can be expressed by the following decision variables:

• xibm = 1 if car at upstream position i has body b and color m, 0 otherwise, i ∈ V, b ∈
B,m ∈M ;

• fi,i+1 = 1 if cars at upstream positions i and i + 1 have different bodies, 0 otherwise,

i ∈ V \ {d};

• gi,i+1 = 1 if cars at upstream positions i and i + 1 have different colors, 0 otherwise,

i ∈ V \ {d};

• Θ represents the cost of the assembly shop, Θ > 0,Θ ∈ R.
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The upstream sequence is then determined by solving the first-level formulation L1:

(L1) min α ·
∑

i∈V \{d}
fi,i+1 + β ·

∑
i∈V \{d}

gi,i+1 + Θ (1)

s.t.
∑
b∈B

∑
m∈M

xibm = 1, i ∈ V, (2)∑
i∈V

xibm =
∑
j∈J

dbmj, b ∈ B,m ∈M, (3)

p+c̄∑
i=p

∑
b∈B

xibm 6 c̄, p ∈ {1, ..., d− c̄} ,m ∈M, (4)

fi,i+1 >
∑
m∈M

xibm −
∑
m∈M

xi+1
bm , i ∈ V \ {d} , b ∈ B, (5)

gi,i+1 >
∑
b∈B

xibm −
∑
b∈B

xi+1
bm , i ∈ V \ {d} ,m ∈M, (6)

[Optimality Cuts], (7)

Θ > ∆, (8)

xibm ∈ {0, 1} , i ∈ V, b ∈ B,m ∈M, (9)

fi,i+1, gi,i+1,Θ ∈ R, i ∈ V \ {d} . (10)

The objective function (1) minimizes the total cost of the three shops. Constraints (2) and (3)

ensure that each car gets only one body and one color, and that each body-color demand is met.

Constraints (4) represent the color batch limit. Constraints (5) and (6) define the variables

used to indicate body and color changes. Since L1 is a relaxation of the CRSP, variable Θ may

underestimate the actual cost of the assembly shop. If it does, one optimality cut in constraints

(7) is added to L1. The cut links the actual cost with the L1 variables, and we introduce it in

Section 4.2 after obtaining the actual cost from the second level. By progressively incorporating

these cuts, Θ approximates and eventually equals the actual cost. We tighten L1 by a bounding

constraint (8). ∆ is a lower bound on the cost of the assembly shop. We compute it in Section

4.3 by a relaxation of the second level.

4.2 Second Level: Determine the Downstream Sequence

After solving L1, we denote its optimal solution as x̂ibm. All x̂ibm = 1 indicate the opti-

mal upstream sequence Su. By assigning each car a new position and a configuration, Su

is altered in the second level to a downstream sequence Sd that minimizes absolute devia-

tions between the actual and ideal consumption of all options. Assembling configuration j

requires rwj of option w ∈ W = {1, 2, ..., w̄}. The ideal consumption ratio of option w is

σw =
∑

j∈J r
w
j ·
(∑

b∈B
∑

m∈M dbmj

)
/d [21]. Let binary variable yipj = 1 if the car at upstream

position i requires configuration j and goes to downstream position p. The second-level formu-

lation L2 to find Sd is written as:

(L2) F2(x̂ibm) = min γ ·
∑
p∈P

∑
w∈W

∣∣∣∣∣∣
∑
j∈J

rwj ·

 p∑
p′=1

∑
i∈V

yi
p′j

− p · σw
∣∣∣∣∣∣ (11)
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s.t.
∑
j∈J

∑
p∈P

yipj = 1, i ∈ V, (12)∑
i∈V

∑
j∈J

yipj = 1, p ∈ P, (13)∑
i∈Tbm

∑
p∈P

yipj = dbmj, b ∈ B,m ∈M, j ∈ J, (14)

[Feasibility Cuts] , (15)

yipj ∈ {0, 1} , i ∈ V, p ∈ P, j ∈ J. (16)

The objective function (11) minimizes the sum of absolute deviations of the actual options

consumed from the ideal options consumed and can be easily linearized. Constraints (12) ensure

that each car is assigned only one configuration and one downstream position. Constraints (13)

limit each downstream position to be occupied by a unique car. Each set Tbm in constraints

(14) contains all cars with body b and color m, i.e., Tbm = {i ∈ V |x̂ibm = 1}. Constraints (14)

guarantee that the number of cars with configuration j in Tbm exactly matches the demand

dbmj. After obtaining a solution to L2, i.e., a downstream sequence, we need to find a car-to-

lane assignment to achieve the sequence change. However, this change may violate the PBS

capacity or FIFO rules. As a result, one feasibility cut in constraints (15) can be added to L2

to remove this downstream sequence. We introduce this cut in Section 4.4.

If d > l̄×q̄, then, each car i ∈ {(l̄−1)×q̄+2, . . . , d} cannot move to any downstream position

between 1 and pi − 1, where pi = i− (l̄ − 1)× q̄. We can hence set the related yipj variables to

0 before solving L2, that is, yi1j = yi2j = · · · = yipi−1,j = 0, j ∈ J , i ∈ {(l̄ − 1) × q̄ + 2, . . . , d},
pi = i− (l̄ − 1)× q̄.

Given x̂ibm, the minimum cost F2(x̂ibm) of the assembly shop is obtained by solving L2. We

now use it to define the optimality cut in constraints (7). As stated previously, when F2(x̂ibm)

is underestimated by the value of Θ, i.e., Θ̂ < F2(x̂ibm), we add the following optimality cut to

L1:

Optimality Cut : Θ > F2(x̂ibm) ·

 ∑
(i,b,m)∈X

xibm − |X |+ 1

 (17)

where X = {(i, b,m)|x̂ibm = 1, i ∈ V, b ∈ B,m ∈M}. Given x̂ibm, this cut provides Θ with the

exact cost of the assembly shop. Once the same x̂ibm is encountered again in a subsequent

iteration, cut (17) makes Θ equal to F2(x̂ibm), and the global optimal solution is proven to be

found.

To reduce the cuts (17) added, we use the bounding constraint (8) in L1 to raise the value of

Θ to a lower bound ∆ on L2. In the next section, we show how to get ∆ by solving a relaxation

R of L2.

4.3 Computing A Lower Bound on L2

The relaxation R is a level scheduling problem. It has the same objective as L2, but omits the

body shop, paint shop, and PBS. The decision to be made is which configuration of the car

should be placed at each downstream position. Let integer variable ξjp be the number of cars
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with configuration j from downstream position 1 to p, R is formulated as:

R : ∆ = min γ ·
∑
p∈P

∑
w∈W

∣∣∣∣∣∑
j∈J

rwj · ξjp − p · σw
∣∣∣∣∣ (18)

s.t.
∑
j∈J

ξjp = p, p ∈ P, (19)

ξjp 6 ξjp+1 6 ξjp + 1, p ∈ P\ {d} , j ∈ J, (20)

ξjd =
∑
b∈B

∑
m∈M

dbmj, j ∈ J, (21)

ξjp ∈ Z, 0 6 ξjp 6 max
j∈J

{∑
b∈B

∑
m∈M

dbmj

}
, p ∈ P, j ∈ J. (22)

The objective function (18) minimizes absolute deviations between the actual and ideal con-

sumptions of all options. Constraints (19) ensure that the number of cars to be assembled from

position 1 to p is exactly p. Constraints (20) indicate that the number of cars with each con-

figuration from position p to p+ 1 either remains unchanged or increases by one. The demand

for each configuration is guaranteed by constraints (21). In R, the difference ξjp − ξjp−1 = 1

indicates that the car at position p has configuration j. Although R is a MIP, our tests on all

instances show that it is easy to obtain its optimal solution within 0.2 seconds.

4.4 Third Level: Determine the Car-to-Lane Assignment

In the third level, each car is assigned to one lane of the PBS, while respecting the capacity

constraints and FIFO rules. We denote a feasible solution of L2 as ŷipj. The downstream

sequence is given by set Y = {(i, p)|∑j∈J ŷ
i
pj = 1, i ∈ V, p ∈ P}, where pair (i, p) indicates that

car i is moved to downstream position p. We then define the concept of two (i, p) pairs that

conflict.

Definition 4.1. Pair (i1, p1) is in conflict with pair (i2, p2) if and only if i1 < i2, p1 > p2 or

i1 > i2, p1 < p2, for i1, i2 ∈ V, i1 6= i2, p1, p2 ∈ P, p1 6= p2.

In accordance with the FIFO rules, cars i1 and i2 cannot be assigned to the same lane

of the PBS if pair (i1, p1) conflicts with pair (i2, p2). This allows us to construct the FIFO

constraints using a set I = {(i1, i2)|(i1, p1) conflicts with (i2, p2), (i1, p1), (i2, p2) ∈ Y} defined

for the downstream sequence Y . Let binary variable hil = 1 if car i is assigned to lane l, the

car-to-lane assignment decisions are made through the following feasibility problem:

(L3)
∑
l∈L

hil = 1, i ∈ V, (23)

hi1l + hi2l 6 1, l ∈ L, (i1, i2) ∈ I, (24)

i∑
k=1

ρik · hkl 6 q̄, i ∈ V, l ∈ L, (25)

hil ∈ {0, 1} , i ∈ V, l ∈ L. (26)

8

A Logic-Based Benders Decomposition for the Car Resequencing Problem with a Painted Body Storage

CIRRELT-2025-04



In L3, the binary parameter ρik = 1 indicates that when car i enters the PBS, car k remains

stored in the PBS. The values of all ρik, i, k ∈ V, k 6 i can be derived from ŷipj, whose calculation

procedure is provided in our online supplement. Constraints (23) ensure that each car enters

exactly one lane. Constraints (24) require cars to comply with the FIFO rules. When car i

enters lane l, one constraint in (25) ensures that the number of cars still in lane l cannot exceed

capacity q̄.

As mentioned before, ŷipj is obtained without regard to PBS capacity and FIFO rules. When

its Y is infeasible for L3, the following feasibility cut is added to L2 as one of the constraints

(15):

Feasibility Cut :
∑

(i,p)∈Y

∑
j∈J

yipj 6 |Y| − 1 (27)

We sum yipj over on J for each (i, p) in Y to form the left-hand side of the cut (27). We can do

this because the feasibility of L3 is independent of the decisions on configuration. This cut only

eliminates one Y that makes L3 infeasible. Next, we propose three valid inequalities to guide

the second-level search toward a feasible solution of L2 that makes L3 as feasible as possible.

4.5 Valid Inequalities

The three valid inequalities serve to eliminate the feasible solutions of L2, whose downstream

sequences make L3 infeasible. The first two are capacity inequalities used to remove the solu-

tions that require more spaces than the available PBS capacity. The third, named the clique

inequality, targets the solutions that require more lanes than the total lanes of the PBS.

4.5.1 Capacity Inequality I

We introduce the set Kk = {(i1, p1), (i2, p2), ..., (ik, pk)}, without loss of generality, i1 < i2 <

... < ik ∈ V and p1 > p2 > ... > pk ∈ P , to represent that k distinct lanes are used by these

k cars. Then, for each pair in Yk = {(i, p)|(i, p) ∈ Y , i < ik}, we check if it conflicts with all

pairs in Kk to construct a set Vk =
{

(i, p)|(i, p) ∈ Yk, (i, p) conflicts with all pairs in Kk

}
.

Clearly, all cars whose (i, p) pairs are in Vk should be stored in the other l̄ − k lanes

(l̄ > k). When the number of these cars is greater than the remaining capacity of the PBS, i.e.,

|Vk| > (l̄ − k)× q̄, we add the first capacity inequality (28) to the search tree of L2:

Capacity Inequality I :
∑

(i,p)∈Kk∪Vk

∑
j∈J

yipj 6 |Kk|+ |Vk| − 1 (28)

It is possible to check if cut (28) for each k ∈ {2, ..., l̄− 1} is violated. In this work, we only

check for k = 2, as preliminary tests show that checking for k > 2 takes more computational

time.

4.5.2 Capacity Inequality II

For each pair (ik, pk) in Y , there are two groups of cars that cannot enter the same lane as

car ik. The first consists of cars with smaller upstream indexes than ik and bigger downstream

positions than pk. In contrast, each car in the second group has a bigger upstream index than ik,
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but a smaller downstream position than pk. We divide all pairs in V ×P = {(i, p)|i ∈ V, p ∈ P}
into two parts to represent the two groups, then get the following sets:

Y1 = {(i, p) ∈ V × P |i < ik, p > pk}, Y1 = {(i, p)|(i, p) ∈ Y1 ∩ Y} (29)

Y2 = {(i, p) ∈ V × P |i > ik, p < pk} , Y2 = {(i, p)|(i, p) ∈ Y2 ∩ Y} (30)

If |Y2| > 0, then at least one lane is set aside for the second group of cars to leave the PBS

first. Except for the other lane assigned to car ik, at most (l̄ − 2) × q̄ spaces are available to

store all cars in the first group. When the number of cars in the first group is greater than the

available capacity, i.e., |Y2| > 0 and |Y1| > (l̄ − 2)× q̄, we add the second capacity inequality

(31):

Capacity Inequality II :
∑
j∈J

yikpk,j +
∑

(i,p)∈Y1

∑
j∈J

yipj +
∑

(i,p)∈Y2

∑
j∈J

yipj 6
∣∣Y1

∣∣+
∣∣Y2

∣∣ (31)

4.5.3 Clique Inequality

We first transform a dowsntream sequence Y into an undirected graph GY = (VY , EY). Each

(i, p) pair in Y is considered as a vertex of GY . An edge is created between two vertices if they

conflict. As a result, two cars cannot enter the same lane if their (i, p) pairs are two endpoints

of an edge of GY .

Then, all cars whose (i, p) pairs form a clique C of GY must enter distinct lanes. This is

because a clique is a subset of vertices of an undirected graph, where every pair of vertices

is connected. Therefore, at least |C| lanes are needed to rearrange all cars whose (i, p) pairs

belong to C to their respective downstream positions. If there exists a clique C whose size is

greater than the total number of lanes, i.e., |C| > l̄, we generate and add a clique inequality

(32) as follows:

Clique Inequality :
∑

(i,p)∈C

∑
j∈J

yipj 6 l̄ (32)

In this work, we only find the maximal cliques for a Y using the Bron-Kerbosch algorithm

with pivoting. The reason is that a maximal clique is a clique that cannot be extended into a

larger one by adding an additional vertex, thus, its inequality (32) is the strongest. The online

supplement provides the illustration of the GY built for a Y with ten cars and its maximal

cliques found.

4.6 A Heuristic Solution for L2 and L3

Once R from Section 4.3 is solved, we get the configuration sequence that incurs the lowest

cost to the assembly shop. We denote this sequence as Sc = {c1, ..., cp, ..., cd}, where cp is the

configuration of the car placed at downstream position p. In a specific iteration, if Θ̂ of L1

equals ∆, it is possible to construct a heuristic solution for L2 and L3 before directly solving

them.

Let Su = {(1, b1,m1), ..., (i, bi,mi), .., (d, bd,md)} denote an upstream sequence obtained

from the first level, where (i, bi,mi) indicates that car i requires body bi and color mi. Guided
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by Sc, we first attempt to alter Su to a downstream sequence for L2.

• Step 1. Include all cars that have body b and color m in set Obm = {i|(i, bi,mi) ∈ Su, i ∈
V, bi = b,mi = m}, and sort them in ascending order of the car index, b ∈ B,m ∈M ;

• Step 2. For each configuration j ∈ J , count all body-color combinations with positive

demands to define a map Qj = {(b,m) : Obm|dbmj > 0, b ∈ B,m ∈M};

• Step 3. Take configuration cp from Sc. Select the car with the lowest index i from all

Obm sets of map Qcp . Place car i at position p and assemble it in configuration cp, i.e.,

set ŷip,cp = 1. Then, delete car i from all Obm sets of map Qj, j ∈ J . Repeat for p from 1

to d.

The reason for choosing the car with the lowest index is to reduce resequencing effort. Once

Step 3 is finished, we obtain a downstream sequence Y that makes the assembly shop cost ∆.

Then, we continue Step 4 to verify the feasibility of Y .

• Step 4. Check if Y violates any valid inequality. If it does, Y is infeasible for L3, and

stop. Otherwise, try Step 5 to construct a heuristic car-to-lane assignment for L3.

• Step 5. Assign car i to the lane with the lowest index l, ensuring the cars already assigned

to it do not conflict with car i. Set ĥil = 1. Repeat for i from 1 to d.

• Step 6. Check if Y and ĥil respect the capacity constraints (25). If so, they are the optimal

solution of L2 and L3, and stop. If not, go to Step 7.

• Step 7. Solve L3 using Y . If L3 is feasible, we get the optimal solution of L2 and L3.

Otherwise, the above steps fail to construct a heuristic solution for L2 and L3.

We illustrate our heuristic method with an example in the online supplement.

5 First-Level Reformulations

In this section, we model the determination of the upstream sequence on two kinds of acyclic-

directed graphs and propose two shortest-path problem reformulations M1 and M2 for L1 in

order to solve larger instances.

5.1 A Shortest-Path Problem Reformulation M1

We start by building the first graph G1 = (N1,A1), where L1 is reformulated as a classical

shortest-path modelM1. In G1, each node is labeled as (b,m | η | a1
1, ..., a

1
m̄, ..., a

b
′

m′
, ..., ab̄1, ..., a

b̄
m̄),

where a1
1 + ... + a1

m̄ + ... + ab
′

m′
+ ... + ab̄1 + ... + ab̄m̄ = p. It represents the decision to produce

a car with body b and color m at upstream position p. In its label, ab
′

m
′ is the number of cars

with body b
′

and color m
′

from upstream position 1 to p. η denotes the number of consecutive

cars with color m from the last color change position to the current position p. The use of ab
′

m′

and η allows the demand and the color batch limit constraints to be respected in the building
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process of G1. Any node with the label in which η > c̄ or ab
′

m′
>
∑

j∈J db′m′j is infeasible and is

not created.

The new nodes are spawned by their parent nodes. For a node n1 with label (b,m | η | a1
1, ..., a

b̄
m̄),

we try to attach it to a car with body b∗ ∈ B and color m∗ ∈ M to create a potential child

node n2 labeled (b∗,m∗ | η′ | a1′
1 , ..., a

b̄′
m̄). The value of ab

∗
m∗ of n1 is incremented by 1 for n2. If

ab
∗
m∗ + 1 does not exceed the demand

∑
j∈J db∗m∗j, we continue to update η for n2. If the two

cars represented by n1 and n2 have the same color, i.e., m = m∗, we set η
′
= η+1. For m 6= m∗,

η
′

is renewed to 1. If η
′

respects the color batch limit, i.e., η
′ 6 c̄, node n2 is created.

We introduce a source node ns with label (0, 0 | 0 | 0, ..., 0) as the first node to start the

creation process. For each node, at most b̄ × m̄ potential child nodes can be created, where

each one represents a car with a certain body-color combination. Once a node with a label in

which a1
1 + ...+ ab

′

m′
+ ...+ ab̄m̄ = d is created, it becomes a terminal node because all demands

are met at this point. Regarding the labels of terminal nodes, the values of a1
1, ..., a

b
′

m′
, ..., ab̄m̄

equal the demand for each car model, respectively. Hence, we can merge all the terminal nodes

into a single terminal node nt with label (
∑

j∈J d11j, ...,
∑

j∈J db′m′j, ...,
∑

j∈J db̄m̄j).

The arcs of G1 are created along with the creation of new nodes. When node n2 is spawned

by node n1, we create an arc (n1, n2) ∈ A1 to connect them. This arc is associated with a cost

cn1,n2 . If n2 is created by extending a car with the same body and color as the car represented

by n1, or n1 is the source node, cn1,n2 = 0. Extending a car with only a different body or only

a different color makes cn1,n2 = α and cn1,n2 = β, respectively, while changing both body and

color makes cn1,n2 = α + β. Figure 2 illustrates the G1 built for an example with four cars.

(0, 0 | 0 | 0, 0, 0, 0)

(1, 1 | 1 | 1, 0, 0, 0)

(2, 1 | 1 | 0, 0, 1, 0)

(2, 2 | 1 | 1, 0, 0, 1)

(2, 1 | 2 | 1, 0, 1, 0)

(1, 1 | 2 | 2, 0, 0, 0)

1+5

1

(1, 1 | 2 | 1, 0, 1, 0)

(2, 2 | 1 | 0, 0, 1, 1)

1

5

(1, 1 | 1 | 2, 0, 0, 1)

(2, 1 | 1 | 1, 0, 1, 1)

1+5

5

(2, 2 | 1 | 1, 0, 1, 1)

5

(2, 2 | 1 | 2, 0, 0, 1)

1+5

(1, 1 | 1 | 1, 0, 1, 1)

1+5

1+5

(2, 0, 1, 1)

1

1

1+5

5

Source Node

Terminal
Node

Position 2 Position 3 Position 4Position 1

- 𝑏̄ = 2 bodies, 𝑚̄ = 2 colors
- Color batch limit: 𝑐 = 2
- 𝛼 = 1, 𝛽 = 5

- Demand for each
   body-color

combination:
2 for 1-1, 1 for 2-1,
1 for 2-2

Figure 2: Illustration of the First Acyclic-Directed Graph G1.

In G1, each path from the source node to the terminal node corresponds to a feasible solution

of L1, as any node that violates the demand or the color batch limit constraint is not created.

Among such paths, the kth shortest one is equivalent to the optimal upstream sequence in

the kth iteration. As a result, solving the master problem (MP) L1 repeatedly, as done in

the standard LBBD, can be treated as a k-shortest path problem (kSPP), which aims to get

the top-k shortest paths from a source to a terminal in a digraph [1]. If the MP solution in a

specific iteration does not reach the stopping criteria, we start a new iteration to update the

MP decision by finding the next shortest path instead of adding cuts and solving the MP again.

The new path found is the next best MP solution. Even if its cost is the same or higher than
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the current MP solution, it may help to reduce the optimal objective value of the subproblem.

The implementation of the NLBBD with G1 is detailed in Section 6. We do not provide model

M1 because we do not solve it.

In Section 7.2, it is shown that the size of G1 surges as the number of cars increases. Con-

sequently, we attempt to compress G1 by simplifying the labels of its nodes. The resulting

aggregated graph G2 and the second shortest-path problem reformulation M2 for L1 are pre-

sented in what follows.

5.2 An Aggregated Shortest-Path Problem Reformulation M2

In the aggregated graph G2 = (N2,A2), the label of each node is simplified to (p | b,m | η). It

signifies placing a car with body b and color m at upstream position p. η still counts the number

of consecutive cars with color m from the last color change position to the current position p.

The construction of G2 is similar to that of G1. We start with a source node ns labeled

(0 | 0, 0 | 0). For each node n1 ∈ N2 with label (p | b,m | η), we try to create a child node n2 by

placing a car with body b∗ ∈ B and color m∗ ∈ M at position p + 1. If m and m∗ are the

same color and η + 1 6 c̄, n2 with label (p+ 1 | b∗,m∗ | η + 1) is created. If m 6= m∗, n2 is also

created but labeled as (p + 1 | b∗,m∗ | 1). Once n2 is created, it is linked to n1 using an arc

(n1, n2) ∈ A2. The arc cost cn1,n2 of G2 is computed in the same way as of G1. When a node

with the label in which p = d is created, it becomes a terminal node. We denote Nt as the set

of all the terminal nodes of G2.

Likewise, each path in G2 from the source node to one terminal node maps an upstream

sequence. Such a path is feasible for L1 only if it meets the production demands. Therefore,

with G2, we reformulate L1 as a shortest-path modelM2 restricted by demand constraints. Let

binary variable xn1,n2 = 1 denote that arc (n1, n2) ∈ A2 is selected. M2 initially consists of an

objective function that minimizes the sum of the path cost and variable Θ, as well as the flow

conservation and demand constraints. We denote the optimal solution of M2 as x̂n1,n2 and Θ̂.

When Θ̂ underestimates the cost F2(x̂n1,n2) of the assembly shop, we add an optimality cut

(33), where X ′ = {(n1, n2) ∈ A2|x̂n1,n2 = 1}, to M2 and begin a new iteration.

Optimality Cut : Θ > F2(x̂n1,n2) ·

 ∑
(n1,n2)∈X ′

xn1,n2 −
∣∣∣X ′∣∣∣+ 1

 (33)

The online supplement provides the formulation ofM2 and the G2 built for the example in

Figure 2. With simplified labels, G2 can be smaller and take less time to build. However,M2 is

a MIP and requires more time to be solved than directly finding one shortest path in G1. The

comparisons between M1 and M2 and between G1 and G2 are presented in Section 7.2.

6 Overall Implementation

This section explains how we implement the NLBBD method with G1 and G2, respectively. The

algorithmic flowchart for each can be found in the online supplement. Both implementations

start by solvingR to obtain the lower bound ∆ and the best configuration sequence Sc. After G1
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or G2 is built, the iterative process begins. In the kth iteration, we obtain the optimal upstream

sequence Su
k from the first level. Then, we use Su

k to get the optimal downstream sequence yk

along with the cost F2(Su
k ) of the assembly shop, and a feasible car-to-lane assignment hk. We

first execute the heuristic method to get yk and hk. If the heuristic method succeeds, then

F2(Su
k ) = ∆, and there is no need to solve L2. If not, we solve L2. For each incumbent integer

solution of L2, we check if it violates any valid inequality. If so, it gets pruned. Otherwise, we

solve L3. If L3 is infeasible, a feasibility cut (27) is added to the L2 search tree via a callback

routine. After obtaining F2(Su
k ), we stop or proceed to the next iteration according to the

stopping criteria.

Specifically, using G1, in the kth iteration, we find the kth shortest path pk from the source

to the terminal by using the kSPP algorithm of Al Zoobi et al. [1] to obtain Su
k . The cost of pk

is F1(pk), or equivalently, F1(Su
k ). It is equal to the body shop and paint shop costs incurred by

Su
k . Then, we use the heuristic method to find solution yk and hk of the second and third levels.

If the method fails to identify feasible yk and hk, we solve L2 to compute F2(Su
k ). Let UB be

the global upper bound initialized to a big constant MAX. If UB> F1(Su
k ) + F2(Su

k ), we set

UB= F1(Su
k )+F2(Su

k ) and replace the current best solution (p∗,Su∗,y∗,h∗) with (pk,Su
k ,yk,hk).

If the stopping criterion UB 6 F1(Su
k )+∆ or F2(Su

k ) = ∆ is met, we stop and return the global

optimal solution (p∗,Su∗,y∗,h∗). Otherwise, we continue to the next iteration.

Next, we demonstrate the correctness of the stopping criteria using the following proposition.

Proposition 1 If UB 6 F1(Su
k ) + ∆ or F2(Su

k ) = ∆, where Su
k is the first-level solution

in the kth iteration, then the NLBBD procedure can be stopped, and the optimal solution is

(p∗,Su∗,y∗,h∗).

Proof. First, we prove the condition UB 6 F1(Su
k )+∆. Let UB be the best objective value and

(p∗,Su∗,y∗,h∗) be the best solution seen so far. Since F1(Su
k ) is non-decreasing as k increases,

we have F1(Su
k ) 6 F1(Su

k′
) for k

′
> k. We know F1(Su

k′
) + ∆ 6 F1(Su

k′
) + F2(Su

k′
) as ∆ is the

lower bound on F2(Su
k ) for any k > 1. After the kth iteration, if UB 6 F1(Su

k ) + ∆, then

UB= F1(Su∗) +F2(Su∗) 6 F1(Su
k ) + ∆ 6 F1(Su

k′
) + ∆ 6 F1(Su

k′
) +F2(Su

k′
) holds. It means that

in the subsequent iterations, there will be no Su
k′

with a smaller objective value than UB, so we

can stop.

Second, we prove the condition F2(Su
k ) = ∆. If F2(Su

k ) = ∆, then we have F1(Su∗) +

F2(Su∗) 6 F1(Su
k ) +F2(Su

k ) = F1(Su
k ) + ∆ 6 F1(Su

k′
) + ∆ 6 F1(Su

k′
) +F2(Su

k′
) for any k

′
> k. It

also means that after the kth iteration, there is no Su
k′

whose objective value is strictly smaller

than F1(Su∗) + F2(Su∗), thus we can stop.

As a side note, in our implementation, we avoid building G1 completely in the first iteration.

Instead, we build the set of nodes only and add an additional label that is used to compute the

first shortest path p1. This way allows us to save a significant amount of memory.

In contrast, the NLBBD using G2 follows the standard LBBD scheme. By solvingM2, Su
k is

derived from all x̂n1,n2 = 1 of the kth iteration. If Θ̂k > ∆, it is unnecessary to use the heuristic

method for Su
k , instead we directly solve L2. Once F2(Su

k ) is obtained, we check if Θ̂k < F2(Su
k ).

If so, the decision Su
k is modified by adding an optimality cut (33) toM2 and solvingM2 again.

Otherwise, if Θ̂k = F2(Su
k ), we stop and get the optimal solution (x̂k,Su

k ,yk,hk).
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7 Computational Results

This section presents a computational analysis of our approaches and enhancements. Section

7.1 introduces all the instances used. Section 7.2 compares the performance of the NLBBD

with that of standard LBBD and Gurobi. Section 7.3 provides managerial insights from a

sensitivity analysis. We coded all algorithms in C++ and solved all MIPs with Gurobi 10.0.3.

All tests were performed within one hour and on a single 2.40 GHz AMD Rome 7532 processor

with 220 GB memory. All instances, codes, and detailed computational results are available at

https://sites.google.com/view/xinyiguo.

7.1 Instance Generation

Our experiments use two datasets: a basic one for algorithm comparison and an extended one

for sensitivity analysis. The basic dataset consists of 30 real-world instances provided by a Chi-

nese carmaker, who works eight one-hour shifts daily to produce d = 50 cars per shift, and 330

artificial instances, of which every 30 are generated for one d in {10, 20, 30, 40, 60, 70, 80, 90, 100,

110, 120}. In the 30 real-world instances, there are b̄ = 2 bodies, m̄ = 3 colors, j̄ = 3 configura-

tions, and w̄ = 10 options. The demand distribution of each attribute and the options required

by each configuration are given in the online supplement. Following these distributions, we

generate the production demand quotas for all artificial instances, which is also described in

the online supplement.

Spray nozzle cleaning is the most costly process. Referring to the objective-weight ratio

106 : 1 between the paint shop and the assembly shop in [27], we assign weights to the three

shops as α = 1, β = 10000, and γ = 100. The color batch limit c̄ is 5 for d 6 30 and 10 for

d > 40. Finally, the number of lanes (l̄) and the capacity per lane (q̄) are l̄ = 3, q̄ = 3 for d ∈
{10, 20, 30}, l̄ = 5, q̄ = 5 for d ∈ {40, 50, 60}, and l̄ = 6, q̄ = 6 for d ∈ {70, 80, 90, 100, 110, 120}.

The extended dataset consists of several B-M-J sub-datasets. Each sub-dataset contains

150 artificial instances, with every 30 instances corresponding to one d ∈ {10, 15, 20, 25, 30}.
All instances in the sub-dataset B-M-J have B bodies, M colors, and J configurations. For each

car, its body, color, and configuration are uniformly generated from their respective sets B, M ,

and J . For each configuration in J , the binary demand for each of the ten options is generated

with uniform distribution. We fix the PBS size as 3× 3 and keep three weights unchanged as

in the basic dataset.

7.2 Algorithm Comparison

All tests in this section are performed on the basic dataset. We first evaluate the three valid

inequalities. Then, we compare the performance of our approaches with standard LBBD and

Gurobi in solving the CRSP. Finally, we present the difference in the size between G1 and G2.

We first compare the efficiency of the three valid inequalities used to solve L2 in Table 1. For

this, we ran our NLBBD with G1 on small and medium instances, without using the heuristic

method. Firstly, all three valid inequalities were allowed to be added. Then, we tested the

impact of removing each one by not checking the condition for adding it.

We see that using all three valid inequalities (“cut1-2-3”) performs best, as it solves the

most instances. The clique inequality (32) is the strongest, while the first capacity inequality
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Table 1: Performance of the Three Valid Inequalities Used to Solve L2.

d
#Instances Solved Avg. Computational Time (sec.) #Feasibility Cut Added

cut1-2 cut1-3 cut2-3 cut1-2-3 cut1-2 cut1-3 cut2-3 cut1-2-3 cut1-2 cut1-3 cut2-3 cut1-2-3

10 30 30 30 30 0.1 0.1 0.1 0.1 4.0 0.2 0.1 0.1
20 30 30 30 30 3.3 1.2 0.7 1.0 66.1 3.4 2.7 4.0
30 30 30 30 30 71.1 11.4 7.6 8.1 555.7 20.6 17.2 11.6
40 5 30 29 30 1,118.1 235.7 90.4 156.3 2,121.6 119.6 63.3 67.0
50∗ 1 27 28 28 1,455.9 1,081.8 566.0 173.2 1,222.0 164.8 185.9 68.3
60 0 11 19 30 1,379.4 1,274.8 270.9 — 194.3 213.1 72.8
70 0 0 10 23 > 3, 600 2,040.5 848.7 — — 33.3 63.5

Sum 96 158 176 201

(28) is the weakest. Compared with “cut1-2-3”, removing (28), i.e., “cut2-3”, leads to the loss

of 25 optimal solutions, while removing (32), i.e., “cut1-2”, 105 solutions are lost. Meanwhile,

using the second capacity inequality (31) together with (32) yields more promising feasible

solutions because fewer feasibility cuts are added. Thus, the three valid inequalities are kept

in the rest of our tests.

Table 2 compares the performance of all the algorithms we used to solve the CRSP. We ran

the NLBBD with L1 (“NL”) and the two first-level reformulations M1 and M2, respectively,

to solve all basic instances. The use of the heuristics before solving L2 is denoted by “H”. For

comparison, we also solved a complete formulation using Gurobi (“CF”) and standard LBBD

(“SL”). As described in Section 3, SL is a two-level decomposition method. Its MP is the

same as L1, but its SP is a MIP used to determine the downstream sequence and car-to-lane

assignment simultaneously.

Table 2: Comparison of all Algorithms.

d
#Instances Solved (#Ins. Exceed Memory) Avg. Total Computational Time (sec.)

CF SL NL M1 M2 NL+H M1+H M2+H CF SL NL M1 M2 NL+H M1+H M2+H

10 30 30 30 30 30 30 30 30 25.3 2.6 0.4 0.1 0.3 0.4 0.0 0.2
20 10 29 30 30 30 30 30 30 2,789.4 221.1 5.0 1.0 4.3 4.5 0.3 3.3
30 0 26 30 30 28 30 30 28 695.7 130.2 8.1 33.5 76.6 1.3 26.5
40 0 3 29 30 28 30 30 28 1,905.8 312.7 156.3 300.2 146.4 94.7 213.0
50∗ 0 0 23 28 24 28 30 29

> 3, 600

596.3 173.2 1,195.5 293.0 53.6 582.9
60 0 0 23 30 13 24 30 27 445.0 270.9 1,275.1 307.3 22.0 114.0
70 0 0 15 23 7 20 29 17 1,270.3 848.7 1,674.9 316.9 121.5 375.4
80 0 0 18 17 1 24 29 20 1,614.7 1,671.0 3,112.2 586.1 347.2 954.2
90 0 0 9 15 (1) 1 22 30 18 2,215.8 1,917.3 2,194.4 694.5 534.8 850.4
100 0 0 3 8 (3) 0 15 28 (1) 10 2,352.4 2,474.1

> 3, 600

1,409.7 1,165.2 576.9
110 0 0 1 2 (6) 0 17 23 (6) 12 2,518.6 1,904.8 1,363.5 1,732.8 1,080.8
120 0 0 0 2 (15) 0 13 17 (13) 14 > 3, 600 2,484.5 1,870.6 1,352.0 1,109.6

Sum 40 88 211 245 162 283 336 263

The results in Table 2 highlight the performance of our NLBBD approaches. SL performs

close to CF because its SP is intractable. In comparison, NL, M1, and M2 consume less

time and solve the instances with 120 cars, which is far better than 18 cars in Wu et al. [27].

Although NL and M2 are more efficient than SL, they cannot solve all real-world instances.

In contrast, M1 outperforms significantly. It solves many more instances but requires more

computing resources. The numbers in the parentheses show how many instances are not solved
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due to the memory limit. Meanwhile, the heuristic method succeeds in constructing the optimal

solution for L2 and L3. With it, more instances with up to 336 are solved, and less time is

consumed.

For the small and medium instances that are solved, Table 3 reports the total time taken

by different methods based on the LBBD to find upstream sequences (“Avg. Time. Su”) and

to obtain downstream sequences along with car-to-lane assignments (“Avg. Time. Sd & h”),

respectively. The columns of “#Iter” compare the average number of iterations required for

these methods.

Table 3: Comparison of all LBBD-based Methods.

d
Avg. Time. Su (sec.) Avg. Time. Sd & h (sec.) #Iter

SL NL M1 M2 SL NL M1 M2 NL+H M1+H M2+H SL NL M1 M2

10 0.5 0.3 0.0 0.2 2.1 0.1 0.1 0.1 0.0 0.0 0.0 1.7 1 1 1
20 29.1 4.0 0.0 2.9 192.0 0.9 0.9 1.4 0.3 0.3 0.4 6.9 1.1 1.0 1
30 54.8 124.3 0.3 28.2 640.8 5.8 7.7 5.3 0.4 1.0 0.5 2.5 1 1.0 1
40 26.1 108.9 30.0 178.6 1,879.6 203.8 124.4 121.5 42.8 60.4 0.0 1 2.0 1.4 1
50∗ 523.2 386.0 8.8 499.0 — 210.2 160.0 696.4 26.7 42.5 0.2 — 1.3 1.4 1
60 306.3 253.2 18.6 159.1 — 191.8 251.8 1,116.0 10.2 3.0 0.0 — 1 1.1 1
70 337.6 346.6 68.3 241.8 — 923.7 755.2 1,433.0 0.2 49.8 0.2 — 1.1 1.3 1

The four columns under “Avg. Time. Su” show that M1 and M2 outperform SL and NL

to find the optimal upstream sequence. Especially, M1 shows a remarkable advantage. This

is because running the kSPP algorithm is faster than solving MIPs. The columns for “Avg.

Time. Sd & h” comparisons show that decomposing the SP of SL into L2 and L3 is another

boost to save time. With NL, M1, and M2, the average reduction in the time to find the

optimal downstream sequence and a feasible car-to-lane assignment is from 95.4% to 92.0% as

the number of cars increases from 10 to 40. When incorporating the heuristics in M2, this

time is reduced even to 0. The comparison in “#Iter” columns shows that the Su obtained by

solvingM2 seems to be of high quality. M2 requires only one iteration, whereas other methods

need more, or do not completely solve the instances in the first iteration (“—”).

Table 4: Comparison of G1 and G2.

d
#Nodes #Arcs Time.Build (sec.)

G1 G2 G1 G2 G1 G2

10 1,335.0 192.8 3,769.1 806.6 0.0 0.0
20 28,487.5 460.0 102,404.1 2,099.1 0.0 0.0
30 375,454.1 789.7 1,632,756.8 4,057.6 0.6 0.0
40 2,432,088.5 1,686.3 11,760,209.8 9,276.9 5.1 0.0
50∗ 6,936,812.1 2,125.1 34,204,292.7 11,629.9 16.2 0.0
60 15,014,016.1 1,736.2 73,682,858.3 9,184.2 37.1 0.0
70 41,075,423.6 3,058.1 210,771,549.5 16,948.4 348.6 0.0

Table 4 gives details on the size of G1 and G2. As the number of cars increases, the size of G1,

i.e., the number of nodes (“#Nodes”) and arcs (“#Arcs”), soars significantly. In comparison,

G2 is much smaller and is built in 0.1s, which may be helpful if the computing resources are

limited.
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7.3 Sensitivity Analysis and Managerial Insights

In this section, we change the demand pattern and the PBS size to analyze their impact on

the CRSP and the NLBBD approach so as to derive managerial insights. All experiments were

performed on the extended dataset using the NLBBD based on G1 with the heuristic method.

Impact of Demand Pattern

We performed experiments on sub-datasets B-3-3, 2-M-3, and 2-3-J, where B increased from 2

to 5, M from 3 to 6, and J from 3 to 6, and regard the results of sub-dataset 2-3-3 as the baseline

to analyze the effects of changing the number of bodies (b̄), colors (m̄), and configurations (j̄).
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Figure 3: The Average Time Spent on Each Part as the Number of Bodies and the Number of
Colors Increase.

Figure 3 shows that the total computational time increases as b̄ and m̄ increases. More

bodies and colors enlarge G1, and more effort is required to find the upstream sequence. Initially,

the most time-consuming part is to solve L2 and L3, accounting for an average of 60%. When

b̄ is 3 (m̄ is 4), building G1 takes over by 58.3% (47.6%) and proceeds to consume the most

time. Moreover, an increase in b̄ causes more difficulties than in m̄. This is because, with the

color batch limit, the extension of G1 resulting from increasing m̄ is less than that resulting

from increasing b̄.

For the case of increasing j̄, since j̄ is independent of G1, we only present its effect on solving

L2 and L3. Figure 4 depicts the computational time taken to solve L2 and L3, as well as the

number of iterations (“#Iter”) between the two levels and the first level. These results are

averaged over the number of cars and the number of configurations. According to the sharp

increase in time and the more iterations, increasing either j̄ or d makes L2 and L3 harder to

solve.

Impact of PBS Size

The experiments to analyze the effects of changing the PBS size, including the number of lanes

(l̄) and the capacity of each lane (q̄), were performed on sub-dataset 2-3-3.
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Figure 4: The Average Time to Solve L2 and L3 and the Average Number of Iterations Between
the Two Levels and the First Level when Increasing the Number of Configurations.

We first analyze the total cost saved by our integrated approach over the sequential decision

method. The former jointly minimizes the cost of the three shops. In the latter, we first

determine the sequence that minimizes the cost of the two upstream shops. This sequence is

then readjusted to a downstream one that minimizes the cost of the assembly shop. The total

cost is the sum of these two costs, which is essentially that of the first iteration in the NLBBD.

Figure 5(a) depicts the cost differences between the two methods as the PBS size varies. We

see that the cost savings are $569.9 for l̄ = 2, q̄ = 1, $219.5 for l̄ = 2, q̄ = 2, and $215.4 for

l̄ = 3, q̄ = 1. The smaller the PBS is, the more cost our integrated method saves. It is more

profitable to invest in more lanes than capacity.
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Figure 5: The Average Cost Savings by the NLBBD Approach over the Sequential Decision
Method and the Average Reduction in Total Cost as the PBS Size is Changed.

Figure 5(b) shows the effect of varying l̄ and q̄ on the reduction in total cost, where “1→2”

represents l̄ (or q̄) is increased from 1 to 2. We see that enlarging the PBS has a negligible

effect. This is because, with the NLBBD, even a small PBS can achieve comparable low cost

as a large PBS. Once reaching a certain size, the CRSP can be solved as two independent
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sequencing problems.

Table 5: Detailed Computational Results of Changing the Number of Lanes (l̄) and Per-Lane Capacity
(q̄).

∆-F2. Gap (%) Avg. Time (s) #Iter #Opt. H Sol.

q̄ \l̄ 2 3 4 5 q̄ \l̄ 2 3 4 5 q̄ \l̄ 2 3 4 5 q̄ \l̄ 2 3 4 5

1 0.33 0 0 0 1 58.6 1.7 1.3 1.3 1 272.0 6.4 4.9 4.3 1 10 13 19 21
2 0 0 0 0 2 2.0 2.9 0.1 0.0 2 6.7 4.3 1 1 2 12 20 26 29
3 0 0 0 0 3 2.6 0.1 0.0 0.0 3 5.0 1 1 1 3 16 24 29 30
4 0 0 0 0 4 3.5 0.1 0.0 0.0 4 4.7 1 1 1 4 16 28 30 30
5 0 0 0 0 5 0.2 0.1 0.0 0.0 5 1.2 1 1 1 5 16 29 30 30

Table 5 details the effect of enlarging the PBS on our NLBBD approach. We present the

average computational results for instances with 10, 15, and 20 cars. In the “∆-F2. Gap (%)”

columns, each value is the gap between the lower bound ∆ and the optimal objective value of

L2. The minor gaps suggest that the ∆ provided by R is tight. The results in the “Avg. Time

(s)” columns contradict the existing conclusion that a larger PBS leads to increased complexity

and time [25]. With our approach, the computational time is significantly reduced as the PBS

is enlarged. Two trends can explain this reduction: the decrease in the number of iterations

(“#Iter”), and the increase in the number of instances solved by our heuristic method (“#Opt.

H Sol.”). With the extension of the PBS, two sequences of cars can be determined in stages.

For managers, a profitable PBS should have a minimum size (l̄ × q̄) that can make a hold of

“#Iter”=1.

8 Conclusion

This paper addresses a car resequencing problem, where a sequence of cars is constructed for

a body shop, a paint shop, and an assembly shop. To minimize the total cost, the upstream

sequence in the first two shops is readjusted to a downstream one for the last shop via a painted

body storage (PBS) buffer. We decompose this problem into three levels and solve it with a

nested LBBD method. The upstream sequence is constructed in the first level. Then, it is

altered in the second level to the downstream sequence. In the third level, we seek a car-

to-lane assignment that respects the sequence change. To enhance our method, we propose

a lower bound, three valid inequalities, a heuristic method, and two shortest-path problem

reformulations for the first-level sequencing problem: one is based on a graph (G1) with no

infeasible solutions, and the other is based on an aggregated graph (G2) and restricted by

demand constraints. The first reformulation transforms the LBBD iterative procedure into

solving a k-shortest path problem (kSPP), while the second is solved repeatedly.
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Supplement

1 Complete Formulation

The decision variables of the complete formulation are as follows:

• xibmj equals 1 if car i has body b, color m and configuration j, 0 otherwise, i ∈ V, b ∈
B,m ∈M, j ∈ J ;

• fi,i+1 equals 1 if car i and i+ 1 have different bodies, 0 otherwise, i ∈ V \ {d};

• gi,i+1 equals 1 if car i and i+ 1 have different colors, 0 otherwise, i ∈ V \ {d};

• yip equals 1 if car i goes to downstream position p in the assembly shop, 0 otherwise,

i ∈ V , p ∈ P ;

• hil equals 1 if car i is assigned to lane l, 0 otherwise, i ∈ V, l ∈ L;

• zivl equals 1 if car i enters the PBS and car v simultaneously leaves the PBS from lane l,

0 otherwise, i, v ∈ V, v 6 i, l ∈ L;

• upw is the absolute difference between the actual and ideal consumption of option w from

downstream position 1 to p, upw > 0, p ∈ P,w ∈ W ;

Then, the complete formulation of the CRSP is written as:

min α ·
∑

i∈V \{d}
fi,i+1 + β ·

∑
i∈V \{d}

gi,i+1 + γ ·
∑
p∈P

∑
w∈W

upw (1)

s.t.
∑
b∈B

∑
m∈M

∑
j∈J

xibmj = 1, i ∈ V, (2)∑
i∈V

xibmj = dbmj, b ∈ B,m ∈M, j ∈ J, (3)

p+c̄∑
i=p

∑
b∈B

∑
j∈J

xibmj 6 c̄, p ∈ {1, ..., d− c̄} ,m ∈M, (4)

fi,i+1 >
∑
m∈M

∑
j∈J

xibmj −
∑
m∈M

∑
j∈J

xi+1
bmj, i ∈ V \ {d} , b ∈ B, (5)

gi,i+1 >
∑
b∈B

∑
j∈J

xibmj −
∑
b∈B

∑
j∈J

xi+1
bmj, i ∈ V \ {d} ,m ∈M, (6)∑

l∈L
hil = 1, i ∈ V, (7)∑

p∈P
yip = 1, i ∈ V, (8)∑

i∈V
yip = 1, p ∈ P, (9)

d∑
p=p1

yi1p +

p1∑
p=1

yi2p + hi1l + hi2l 6 3,
i1 ∈ V \ {d} , p1 ∈ P,
i2 ∈ {i1 + 1, ..., d} , l ∈ L, (10)
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hkl + hvl +
∑
l′∈L

zi
vl′ − 2 6

i−1∑
i′=k

∑
l′∈L

zi
′

kl
′ ,

v ∈ V \ {1} , l ∈ L,
k ∈ {1, 2, ..., v − 1} ,
i ∈ {v, v + 1, ..., d} ,

(11)

i∑
v=1

∑
l∈L

zivl 6 1, i ∈ V, (12)

d∑
i=v

∑
l∈L

zivl 6 1, v ∈ V, (13)

∑
p∈P

yip · p >
(

1−
∑
l∈L

ziil

)
· i+ 1, i ∈ V, (14)

∑
p∈P

yip · p > 1 +
i−1∑
i′=1

i
′∑

v=1

∑
l∈L

zi
′

vl − d ·
(

1−
∑
l∈L

ziil

)
, i ∈ V \ {1} , (15)

∑
p∈P

yip · p 6 1 +
i−1∑
i
′=1

i
′∑

v=1

∑
l∈L

zi
′

vl + d ·
(

1−
∑
l∈L

ziil

)
, i ∈ V \ {1} , (16)

∑
p∈P

yip · p−
∑
p∈P

yvp · p > 1− d ·
(

1−
∑
l∈L

zivl

)
,

i ∈ V \ {1} ,
v ∈ {1, 2, .., i− 1} , (17)

i∑
i′=1

hi
′

l −
i∑

i′=1

i
′∑

v=1

zi
′

vl 6 q̄, i ∈ V, l ∈ L, (18)

d∑
i=v

zivl 6 hvl , v ∈ V, l ∈ L, (19)

upw >
∑
j∈J

rwj ·

 p∑
p′=1

∑
i∈V

∑
b∈B

∑
m∈M

xibmj · yip′

− p · σw, p ∈ P,w ∈ W, (20)

upw > p · σw −
∑
j∈J

rwj ·

 p∑
p′=1

∑
i∈V

∑
b∈B

∑
m∈M

xibmj · yip′

, p ∈ P,w ∈ W, (21)

xibmj, h
i
l, y

i
p, z

i
vl ∈ {0, 1} ,

i, v ∈ V, v 6 i, b ∈ B,
m ∈M, j ∈ J, p ∈ P, l ∈ L,

(22)

fi,i+1, gi,i+1, upw ∈ R, i ∈ V \ {d} , p ∈ P,w ∈ W. (23)

The objective function (1) minimizes the total cost associated with body and color changes,

as well as the absolute differences between the actual and ideal consumption for all options.

Constraints (2) and (3) ensure that each car is processed to exactly one car model and that the

demand for each model is met. Constraints (4) work as the color batch limit. Constraints (5)

and (6) define the variables used to indicate whether there is a change in body and color between

two consecutive cars, respectively. Constraints (7), (8), and (9) ensure that each upstream car

is uniquely positioned in the downstream sequence via one lane, and that each downstream

position is occupied by one car. The adherence to the FIFO rules for cars assigned to the same
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lane is guaranteed by constraints (10) and (11). For (10), if car i2 leaves the PBS before car i1
(i1 < i2), they cannot be assigned to the same lane. For (11), if car k and car v (k < v) are

assigned to the same lane, car k has already entered the assembly shop when car v leaves the

PBS. Constraints (12) (Constraints (13)) ensure that at any time, at most one car can enter

(leave) the PBS. Constraints (14), (15), and (16) state that if car i does not leave the PBS

immediately upon its arrival, its downstream position must be greater than i. Otherwise, its

downstream position should be one plus the number of cars in the assembly shop. Constraints

(17) ensure that if car v leaves the PBS as car i enters, the downstream position of car v must

be smaller than that of car i. Constraints (18) limit the number of cars in each lane within

the capacity. Constraints (19) guarantee that if car v is not assigned to lane l, it cannot leave

the PBS via lane l when any other car enters the PBS. The absolute difference of option w

consumed from downstream position 1 to p is linearized by constraints (20) and (21). Finally,

Constraints (22) and (23) restrict the value range of each decision variable.

2 Standard Logic-based Benders Decomposition

Because of the PBS, there are two car sequences in the CRSP. It is possible to decompose the

CRSP into two levels: one is a master problem (MP) for the upstream-sequence decision, and

the other is a subproblem (SP) for the remaining decisions. Since all decision variables except

upw are binary, we apply the logic-based Benders decomposition (LBBD) to decompose the

above complete formulation.

The upstream sequence is determined in the MP by assigning each car one body and one

color. We transform the original four-index variable xibmj into a three-index one xibm. Let

xibm = 1 if the car at upstream position i has body b and color m, 0 otherwise. Then, the MP

has exactly the same formulation as the L1 of the nested LBBD method.

Given the optimal solution x̂ to the MP, the decisions to be made in the SP are the con-

figuration and downstream position of each car and the car-to-lane assignment. We retain

variables hil, z
i
vl, and upw of the complete formulation in the SP. Let binary variable yipj = 1

if car i requires configuration j and goes to downstream position p. The objective function

of the SP is FSP (x̂) = min(y,h,z){γ ·
∑

p∈P
∑

w∈W upw}. The constraints of the SP consist of

constraints (7)–(21) and the value-range constraints of the decision variables. The only changes

are that term
∑

j∈J y
i
pj replaces the original variable yip, and constraints (24), (25), and (26)

replace constraints (3), (20), and (21), respectively, where Tbm = {i ∈ V |x̂ibm = 1}.∑
i∈Tbm

∑
p∈P

yipj = dbmj, b ∈ B,m ∈M, j ∈ J, (24)

upw >
∑
j∈J

rwj ·

 p∑
p
′
=1

∑
i∈V

yi
p′j

− p · σw, p ∈ P,w ∈ W, (25)

upw > p · σw −
∑
j∈J

rwj ·

 p∑
p′=1

∑
i∈V

yi
p′j

, p ∈ P,w ∈ W. (26)

After solving the SP, if the minimum cost of the assembly shop is underestimated by the
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value of Θ, i.e., Θ̂ < FSP (x̂), we add the following optimality cut (27) to the MP:

Optimality Cut : Θ > FSP (x̂) ·

 ∑
(i,b,m)∈X̄

xibm −
∣∣X̄ ∣∣+ 1

 (27)

where X̄ = {(i, b,m)|x̂ibm = 1, i ∈ V, b ∈ B,m ∈ B}. During the iterative process, we generate

and add this cut to the MP progressively until Θ̂k equals FSP (x̂k) in a specific kth iteration.

3 Compute Parameter ρik of L3

Algorithm 1: Algorithm to Compute the Value of ρik of L3

Input: V : The set of cars; ŷipj: A feasible solution of L2

Output: The value of ρik of L3

1 int p← 1, r ← 0; for i, k ∈ V, k 6 i do boolean ψi
k ← 0 ;

2 for i = 1 to |V | do

3 if
∑i

i′=1

∑
j∈J ŷ

i
′

pj = 0 then

4 if r = 0 then ψi
1, ψ

i
2, ..., ψ

i
i ← 0 ;

5 else ψi
1, ψ

i
2, ..., ψ

i
r ← 1; ψi

r+1, ..., ψ
i
i ← 0 ;

6 else
7 p← p+ 1; r ← r + 1;
8 for k = 1 to r do ψi

k ← 1;
9 for k = r + 1 to i do ψi

k ← 0;

10 end

11 end

12 for i, k ∈ V, k 6 i do ρik ← 1−∑i
p=1 (ψi

p ·
∑

j∈J y
k
pj) ;

13 return ρik

4 Undirected Graph Representation for a Downstream

sequence

Figure 1 illustrates the undirected graph GY built for a downstream sequence Ye with 10 cars.

This GY has three maximal cliques : C∗1 , C∗2 , and C∗3 , each with 4 vertices.

5 An Example to Illustrate the Heuristic Method

We consider a production schedule with d = 4 cars, b̄ = 2 bodies, m̄ = 2 colors, and j̄ = 2

configurations. The demand for each car model (b,m, j) is: 1 for (1, 1, 1), 1 for (1, 1, 2), 1 for

(2, 1, 1), and 1 for (2, 2, 2). The PBS has l̄ = 2 lanes, each with capacity q̄ = 2. Suppose the

configuration sequence obtained by solving R is Sc = {2, 1, 2, 1} and the upstream sequence

obtained from the first level is Su = {(1, 1, 1), (2, 1, 1), (3, 2, 1), (4, 2, 2)}. We now explain how
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(4,3)

(2,5)

(5,1)
(1,2)

(3,4)

(6,9)

(10,6)

(8,8)

(7,10)

(9,7)

Ye = {(1, 2), (2, 5), (3, 4), (4, 3), (5, 1),
(6, 9), (7, 10), (8, 8), (9, 7), (10, 6)}

C∗1 = {(2, 5), (3, 4), (4, 3), (5, 1)}
C∗2 = {(6, 9), (8, 8), (9, 7), (10, 6)}
C∗3 = {(7, 10), (8, 8), (9, 7), (10, 6)}

1

Figure 1: Representation of the undirected graph GY built for the downstream sequence Ye.

to perform steps 1 to 5 of the heuristic method to construct a downstream sequence y for L2

and a car-to-lane assignment h for L3.

• Step 1. Include all cars that have body b and color m in set Obm = {i|(i, bi,mi) ∈ Su, i ∈
V, bi = b,mi = m}, and sort them in ascending order of the car index, b ∈ B,m ∈M ;

O11 = {1, 2}, O21 = {3}, O22 = {4}

• Step 2. For each configuration j ∈ J , count all body-color combinations with positive

demands to define a map Qj = {(b,m) : Obm|dbmj > 0, b ∈ B,m ∈M};

Q1 = {(1, 1) : {1, 2}, (2, 1) : {3}}, Q2 = {(1, 1) : {1, 2}, (2, 2) : {4}}

• Step 3. Take configuration cp from Sc. Select the car with the lowest index i from all

Obm sets of map Qcp . Place car i at position p and assemble it in configuration cp, i.e.,

set ŷip,cp = 1. Then, delete car i from all Obm sets of map Qj, j ∈ J . Repeat for p from 1

to d.

Table 1: The Process of Performing Step 3.

Downstream
Position p

Configuration
cp

Change in Qj
Selected Upstream

Car i

Reconstruct
Downstream
Sequence y

1 2
Q1 = {(1, 1) : {/1, 2}, (2, 1) : {3}}
Q2 = {(1, 1) : {/1, 2}, (2, 2) : {4}} 1 ŷ1

12 = 1

2 1
Q1 = {(1, 1) : {/2}, (2, 1) : {3}}
Q2 = {(1, 1) : {/2}, (2, 2) : {4}} 2 ŷ2

21 = 1

3 2
Q1 = {(1, 1) : { }, (2, 1) : {3}}
Q2 = {(1, 1) : { }, (2, 2) : {/4}} 4 ŷ4

32 = 1

4 1
Q1 = {(1, 1) : { }, (2, 1) : {/3}}
Q2 = {(1, 1) : { }, (2, 2) : { }} 3 ŷ3

41 = 1

Table 1 illustrates the process of Step 3. Once Step 3 is completed, we get a downstream

sequence Y = {(1, 1), (2, 2), (3, 4), (4, 3)} that costs the assembly shop ∆.

• Step 4. Check if Y violates any valid inequality. If it does, Y is infeasible for L3, and

stop. Otherwise, try Step 5 to construct a heuristic car-to-lane assignment h for L3.

For the PBS in our example, the Y constructed in Step 3 violates no valid inequalities.

Therefore, we proceed to Step 5.
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• Step 5. Assign car i to the lane with the lowest index l, ensuring the cars already assigned

to it do not conflict with car i. Set ĥil = 1. Repeat for i from 1 to d.

We first assign car 1 to lane 1 and set ĥ1
1 = 1. Then, since the (i, p) pair of car 2

does not conflict with that of car 1, we can also assign car 2 to lane 1 and set ĥ2
1 = 1.

Similarly, car 3 can enter lane 1. For car 4, its (i, p) pair conflicts with that of car 3, so

we assign car 4 to lane 2 and set ĥ4
2 = 1. The car-to-lane assignment h constructed is:

ĥ1
1 = 1, ĥ2

1 = 1, ĥ3
1 = 1, ĥ4

2 = 1.

6 Illustration of the Aggregated Acyclic-Directed Graph

G2

(0 | 0, 0 | 0)

(1 | 1, 1 | 1)

(1 | 2, 1 | 1)

(1 | 2, 2 | 1)

(2 | 1, 1 | 2)

(2 | 2, 1 | 2)

(2 | 2, 2 | 1)

1

1+5

5
1

(2 | 2, 2 | 2)

(2 | 1, 1 | 1)

(2 | 2, 1 | 1)

1+5

5

(3 | 2, 2 | 2)

(3 | 2, 2 | 1)

(3 | 2, 1 | 1)

(3 | 1, 1 | 1)

(3 | 1, 1 | 2)

(3 | 2, 1 | 2)

1+5

5

5

1+55
1+5

1

1+5 5

1

(4 | 1, 1 | 1)

(4 | 2, 1 | 1)

(4 | 2, 2 | 2)

(4 | 2, 1 | 2)

(4 | 1, 1 | 2)

(4 | 2, 2 | 1)

1+5

5

1+5
5

1 5
1

1+5

1+5

5

Dummy
Source
Node

Terminal
Nodes

Position 2 Position 3 Position 4Position 1

1

Figure 2: Illustration of the Aggregated Acyclic-Directed Graph G2.

7 An Aggregated Shortest-Path Problem Reformulation

M2

To construct the demand constraints of M2, we introduce a binary parameter ζbmn1,n2
for each

arc (n1, n2) of G2. Let ζbmn1,n2
= 1 if arc (n1, n2) indicates extending a car with body b and color

m. Then, with decision variables xn1,n2 ∈ {0, 1}, (n1, n2) ∈ A2, M2 is written as:

(M2) min
∑

(n1,n2)∈A2

cn1,n2 · xn1,n2 + Θ (28)

s.t.
∑

n2:(ns,n2)∈A2

xns,n2 = 1, (29)

∑
nt∈Nt

∑
n1:(n1,nt)∈A2

xn1,nt = 1, (30)
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∑
n2:(n1,n2)∈A2

xn1,n2 −
∑

n2:(n2,n1)∈A2

xn2,n1 = 0, n1 ∈ N2\ (Nt ∪ {ns}) , (31)

∑
(n1,n2)∈A2

ζbmn1,n2
· xn1,n2 >

∑
j∈J

dbmj, b ∈ B,m ∈M, (32)

[Optimality Cuts] , (33)

Θ > ∆,Θ ∈ R, xn1,n2 ∈ {0, 1} , (n1, n2) ∈ A2. (34)

Constraints (29) and (30) ensure that a feasible path starts from the source node and ends at

only one terminal node. The flow balance is guaranteed by constraints (31). Constraints (32)

ensure that a feasible path meets the demand for all body-color combinations.

8 Demand Distribution of Each Attribute in Real-world

Instances & Generation of Production Demand Quo-

tas for Artificial Instances

Table 2: Demand Distribution of Each Attribute in 30 Real-world Instances.
Body Proportion Color Proportion Body Proportion Color Proportion Distribution of configuration

1 50%-70%

1 20%-50%

2 30%-50%

1 30%-70% Uniform Distribution
2 25%-40% 2 15%-35%

1 (33.3%), 2 (33.3%), 3 (33.3%)3 25%-40% 3 15%-35%

Configuration (j) Amount of option w needed (rwj )

1 r1
1: 1, r2

1: 0, r3
1: 1, r4

1: 1, r5
1: 1, r6

1: 1, r7
1: 1, r8

1: 0, r9
1: 1, r10

1 : 1
2 r1

2: 0, r2
2: 1, r3

2: 1, r4
2: 1, r5

2: 0, r6
2: 0, r7

2: 1, r8
2: 1, r9

2: 1, r10
2 : 1

3 r1
3: 0, r2

3: 0, r3
3: 0, r4

3: 1, r5
3: 0, r6

3: 1, r7
3: 1, r8

3: 0, r9
3: 1, r10

3 : 1

For each artificial instance that needs to produce d cars, we follow Table 2 to generate

its production demand quota. We first generate an integer τ with uniform distribution from

[b0.5 · dc, b0.7 · dc+ 1] as the number of cars with body 1. Then, let τ1, τ2, and τ3 denote

the number of cars with body 1 and each of the three colors (color 1, color 2, and color 3).

τ1 and τ2 are generated from [b0.2 · τc, b0.5 · τc+ 1] and [1, τ − τ1] with uniform distribution,

respectively. τ3 equals the remainder τ − τ1 − τ2. For the other d − τ cars with body 2, we

replace 0.2 · τ and 0.5 · τ with 0.3 · (d − τ) and 0.7 · (d − τ) to determine the number of cars

with each color similarly. The color batch limit c̄ is 5 for d 6 30 and 10 for d > 40. After that,

we get the color m∗ with the highest demand qm∗ , and the minimum number of color changes

is dqm∗ \ c̄e − 1. If dqm∗ \ c̄e − 1 > d − qm∗ , we repeat the color generation procedure until

dqm∗ \ c̄e − 1 6 d− qm∗ , which ensures that each instance has a feasible solution respecting the

color batch limit [5]. The configuration of each car is generated from the set J = {1, 2, 3} with

uniform distribution.
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NLBBD Iterative Procedure
START

Solve R to
get ∆ and Sc

Build G1

UB=MAX
k = 0

k ← k + 1

Find the kth
shortest path pk to
get Su

k and F1(Su
k )

Construct heuristic
solutions yk and hk

for L2 and L3

yk and
hk are
feasible?

Solve L2 and L3 to get
yk, hk, and F2(Su

k )

F2(Su
k ) = ∆

UB>
F1(Su

k )+
F2(Su

k )?

UB= F1(Su
k )+F2(Su

k ),

p∗ ← pk, Su∗ ← Su
k ,

y∗ ← yk, h
∗ ← hk

UB⩽ F1(Su
k )+∆

or F2(Su
k ) = ∆?

END

Yes

No

Yes

No

No

Optimal solution (p∗,Su∗,y∗,h∗)Yes

Figure 3: Flowchart of the NLBBD with G1.

9 Flowcharts of the NLBBD with G1 and G2

NLBBD Iterative Procedure

START

Solve R to
get ∆ and Sc

Build G2
SolveM2 to get
x̂n1,n2 , Su

k , and Θ̂k

Θ̂k = ∆?

Construct heuristic
solutions yk and hk

for L2 and L3

yk and
hk are
feasible?

Solve L2 and L3 to get
yk, hk, and F2(Su

k )

F2(Su
k ) = ∆

F2(Su
k ) =

Θ̂k?

Add Optimality Cut
(33) toM2

END

Yes

No

No

Yes

No

Yes

Optimal
solution

(x̂k,Su
k ,yk,hk)

Figure 4: Flowchart of the NLBBD with G2.
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