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Abstract. We address an integrated unit commitment and distribution problem 

within a two-stage stochastic framework. The problem involves multiple 

production units that manufacture a single product and distribute it to clients 

over a discrete and finite planning horizon. The clients face a stochastic demand. 

A given client is served by at most a single production unit during a given period 

of time. Production units are subject to minimum up/down time constraints. We 

develop two deterministic models for the problem and extend one to a two-

stage stochastic model, incorporating demand scenarios to account for 

uncertainty. Due to the computational complexity of solving this model using 

commercial solvers, we propose three heuristic approaches aimed at reducing 

the number of second stage binary variables, making the problem more 

tractable. Numerical experiments demonstrate the quality of the heuristics in 

finding good first stage decisions.  
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1. Introduction

A supply chain’s (SC) purpose is to transform raw materials into finished items and bring
them to customers. A standard SC is divided into several independent parts, such as the
item manufacturers and the distributors. Even if each part within the SC makes optimal
decisions regarding production, inventory, and distribution, the overall outcome can still be
suboptimal. For decision makers controlling different parts of the SC, it can be beneficial
to simultaneously optimize the decisions of these parts. In particular, optimizing at once
the production and distribution of a SC has raised high interest over the past few years (see
Darvish et al. [9], Fahimnia et al. [12] and Hrabec et al. [20]).

Production may be handled by several factories, referred to as production units. Deter-
mining the best production decisions in terms of timing and quantities to be produced is
challenging even with a single unit. Production planning, also referred to in the literature
as lot sizing, involves determining the optimal production level for each period over a time
horizon to satisfy a customer demand. Jans and Degraeve [21] and Brahimi et al. [6] provide
an extensive review of deterministic single-level dynamic lot sizing problems.

In the lot sizing literature, demand is often considered deterministic. As shown by Adulyasak
et al. [2] and Guarnaschelli et al. [17], this can lead to poor decisions and high costs since
generally there is a lot of uncertainty. Consequently, accounting for this uncertainty in
the decision-making process is desirable, even though it makes the problems more complex.
Demand scenarios are a common way to represent uncertainty. Their use helps keep the
problem tractable, which may not be the case when working with demand distributions.
Gruson et al. [16] use demand scenarios in their study of a stochastic three-level lot sizing
and distribution problem.

Unit commitment aims to minimize the costs of a production schedule for several produc-
tion units over a planning horizon. The specificity of this problem is that production units
have to commit to a certain production state for several periods.

We study a two-level integrated unit commitment and distribution problem in a two-stage
stochastic setting. A general manufacturing company has multiple production units, which
manufacture a single type of item over several periods and distribute it to clients. The
production units can store items and are not interconnected, meaning that they cannot
deliver items to each other. Each period, a unit can be either up or down. If a unit is
up, it has a fixed production level, which is a parameter of the problem; if it is down,
the production level is zero. This specificity shares similarities with discrete lot-sizing and
scheduling problems, where in a given period, either there is no production or the whole
capacity is used (Fleischmann [14]). Each unit has minimum up/down time constraints:
it must remain in the same state for a given number of periods. In the unit commitment
literature, these constraints are referred to as minimum up/down time constraints [4], a term
that will be used throughout this paper. Distribution to clients is such that a client can only
be served by one unit during a given period. However, this unit-client assignment can change
over the planning horizon. Each client is served using direct shipments.

The objective is to minimize the total costs, which are composed of the production cost,
the distribution cost, the holding cost at the production units, and the lost sales cost. Lost
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sales costs occur when demand cannot be met. We aim to compute an optimal production
and distribution plan for each unit.

Moreover, clients have stochastic and dynamic demands. The distribution of the demand
of each client is known and uncertainty is represented by demand scenarios. The clients’
demand over the entire planning horizon is revealed once the first stage decisions are made.
These first stage decisions involve the production state of the units (up or down) over certain
periods at the beginning of the planning horizon. The second stage decisions include the
unit states for the remaining periods, the distribution decisions and the resulting inventory
decisions over the whole planning horizon.

Even simple versions of the unit commitment problem (UCP), which can be reduced to
the studied problem, have been proven to be NP-hard (see Tseng [32]). It implies that the
problem under study is itself NP-hard.

To the best of our knowledge, our work is the first to integrate the consideration of
minimum up/down time constraints in the production and dynamic unit-client assignment
for the transportation within an uncertain demand context.

Our paper makes three contributions:

• Extension of existing literature: We extend the existing production-distribution lit-
erature by considering dynamic unit-client assignment decisions and minimum up/down
time constraints, proposing two deterministic models for this problem.

• Two-stage stochastic model: We extend one of the deterministic models to a
two-stage stochastic version, with uncertainty modeled using scenarios.

• Development and evaluation of heuristic solution approaches: Given the
inefficiency of using a commercial Mixed Integer Linear Programming (MILP) solver
for the stochastic problem, we propose three heuristics and conduct extensive numerical
experiments to assess their performance. These heuristics relax the studied problem
by reducing the number of second stage binary variables, using different approaches to
achieve this.

The paper is organized as follows. After a literature review related to our work presented
in Section 2, we present the studied problem in Section 3. In Section 4, we propose two
mathematical models of the deterministic version of the problem and extend one of them to
a two-stage stochastic version using scenarios for uncertainty modeling. Section 5 presents
the proposed heuristics, which find promising first stage decisions. Studied instances and
extensive numerical experiments are presented in Section 6. Finally, Section 7 provides
concluding remarks and perspectives of our work.

2. Literature review

In this section a literature review related to the studied problem is provided. It focuses on
two-stage stochastic optimization, integrated production-distribution and unit commitment.
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2.1. Two-stage stochastic optimization

Stochastic optimization aims to optimize an objective function by considering the proba-
bility distributions of uncertain parameters. Typically, these models optimize the expected
value of the objective function. This makes stochastic optimization particularly useful in
situations where the model’s decisions are repeatedly taken, resulting in an average cost close
to the computed expectation. Ruszczyński and Shapiro [27] and Birge and Louveaux [5]
provide details on stochastic optimization.

In some applications it is possible to make decisions before and after the uncertainty
realization. The former are called “here-and-now” or “first stage” decisions, and the latter are
called “wait-and-see” or “second stage” decisions. “Here-and-now” decisions must be identical
for all realizations of uncertainty, while “wait-and-see” decisions can depend on the realization
of uncertainty. Two-stage stochastic optimization comes as a natural modeling approach
for such problems. The relevance of this approach is shown by Grass and Fischer [15] who
provide a review of two-stage stochastic optimization in disaster management. Shapiro et al.
[28] provide a comprehensive overview of two-stage stochastic optimization.

Methods based on Bender’s decomposition are often used to solve two-stage stochastic
optimization problems [5]. This approach requires significant work, especially in case of
integer second stage variables [29].

2.2. Integrated production-distribution

The simultaneous optimization of production and distribution processes in SCs has
garnered significant attention in both research and industry [20]. The complexity of this
integrated production-distribution problem (PDP) is influenced by the number of levels
and the size of each level within the SC. Typical levels include suppliers, production units,
warehouses, and clients. Additionally, factors such as the number of transportation links
between these levels, the possibility of routes between elements at the same level, the potential
for clients to be served by one or more origins, the variety of manufactured items, and the
length of the planning horizon contribute to the overall difficulty of the problem [12].

Several studies have addressed different aspects of this problem. Haq et al. [19], and Hamedi
et al. [18] consider a single-product model. Dhaenens-Flipo and Finke [10] study a multi-unit,
multi-product, multi-warehouse, multi-period, multi-client industrial problem considering
direct shipments, formulating and modeling the deterministic PDP and using a commercial
solver for its solution. Amorim and Almada-Lobo [3] examine a multi-objective PDP within
the context of perishable products, comparing sequential and integrated approaches to
production and distribution optimization. Fahimnia et al. [12] offer a thorough and detailed
review of deterministic PDP, covering a broad spectrum of problems, methodologies, and
practical applications within this domain. Engebrethsen and Dauzère-Pérès [11] provide a
review of inventory models with multiple transportation modes.

PDP optimization in the context of uncertain client demand has naturally extended
deterministic works. Guarnaschelli et al. [17] address a two-level, two-stage stochastic PDP
within the context of the dairy industry, with supply and demand uncertainty. In this
case, production, units’ inventory and delivery decisions are made in the first stage, while
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warehouse inventory decisions are handled in the second stage, based on demand and supply
uncertainties. The authors compared the deterministic and stochastic models, showing the
importance of taking uncertainty into account while modeling the problem. Gruson et al.
[16] study a three-level, two-stage stochastic PDP, employing a Benders decomposition and
a Benders-based branch-and-cut algorithm to solve the problem. In their work, the setup
decisions are made in the first stage, while the production, transportation, and inventory
decisions are handled in the second stage. While most studies typically consider direct
deliveries to clients, other studies have included routing decisions. For instance, Adulyasak
et al. [2] introduce a two-stage production routing problem with uncertain demand, where
the first stage decisions involve setup and routing, and the second stage decisions concern
the produced and delivered quantities. Kermani et al. [22] consider a two-stage production
routing problem with uncertain demand, where the first stage involves production setup
decisions, and the second stage concerns routing decisions.

Our work extends the existing production-distribution literature by considering minimum
up/down time constraints in the production environment.

2.3. Unit commitment

The unit commitment problem (UCP) has been widely treated by the research community
since the 1940s. Abdou and Tkiouat [1] present a chronological review of advancements in
the study of this problem. This problem is typically encountered in the context of energy
production. Usually, the costs are composed of the production costs, unit start up and shut
down costs [7]. The production cost can be either fixed or proportional to the produced
quantity.

The standard constraints of this problem are the following. Given a discrete and finite
planning horizon, a certain demand has to be met in each period. Each unit can be either
up or down in each period and must satisfy minimum up/down-time constraints [4]. Other
constraints in the unit commitment literature include the consideration of operating ramp-up
rates for certain types of units [30]. These constraints control how quickly a production unit
can increase its output over a given period.

Usually in the UCP, the transmission network is considered as a static element, meaning
there are no distribution decisions [33]. However, a certain class of unit commitment problems
exists, in which some network decisions are incorporated. Indeed, sometimes opening or
closing a certain electrical line may result in overall energy re-routing and allows to use less
expensive energy sources [13].

UCP is difficult in practice. Van Ackooij et al. [33] present an overview of the methodologies
used to solve the problem and separate them into four classes: dynamic programming [24],
MILP approaches [23], decomposition approaches [8] and heuristic approaches [36]. Recently,
machine learning techniques, such as random forests, neural networks, and support vector
machines, have been increasingly combined with MILP approaches to address the UCP. Yang
and Wu [35] provide an overview of these methods.

In the UCP there are several sources of uncertainty. One can cite uncertainty in energy
demand, on energy prices or on unit output. Van Ackooij et al. [33] provide an extensive
review of the stochastic version of UCP, categorizing the approaches to deal with it. The two
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major ones are robust and stochastic optimization. The robust optimization is based on a
set-based uncertainty model, where solutions must remain feasible for all possible uncertainty
realizations, with the objective typically being to optimize the worst-case. Wang et al. [34]
propose a robust optimization model solving a case of UCP with uncertainty belonging to
an interval. Stochastic optimization is based on the probability distribution of uncertain
parameters and typically aims to optimize the expected value of the objective function.
Rahmani et al. [25] propose a two-stage stochastic model solving a particular case of UCP.

Our work extends the existing UCP literature by considering distribution decisions.

3. Problem formulation

In this section we present the formulation of the deterministic version of the integrated unit
commitment and distribution problem (UCDP) as well as the description of the stochastic
parameters.

3.1. Deterministic version

A general manufacturing company operates a set U of units, which produce and distribute
a single type of item to a set C of clients over a discrete planning horizon T = {1, . . . , |T |}.

At each period t, a unit u can be in one of two states: up or down. If the unit is up,
its production is Pu; if it is down its production is zero. Each unit must satisfy minimum
up/down time constraints: a unit u must remain in the same state for at least T̂ periods
after a state change. For each unit u, initial conditions (w̃u, t̃u) are known, where w̃u is the
state of the unit u before period 1 and t̃u ⩽ T̂ is the number of periods for which the state
must remain unchanged (if t̃u = 0, the state can be chosen freely at the beginning of the
planning horizon).

Each unit u incurs three types of production costs: a fixed production cost cpu each period
the unit is up; a turn-up cost cupu each period the unit is turned on; and a turn-down cost cdu
each period the unit is turned off. During each period each client can be served by only one
unit, although this unit-client assignment may change over the planning horizon. The cost of
distributing a unit of item from unit u to client c during period t is kt

u,c. Unit u can store
produced items in its inventory, incurring a holding cost ht

u per unit of item during period t.
An initial stock s0u is available at the unit u at the beginning of the planning horizon. The
demand of client c in period t is dtc. Any unit of unsatisfied demand for client c in period t
incurs a lost sale cost ltc. The objective is to minimize the total production, inventory, state
change, delivery and lost sales costs over the planning horizon.

The decisions to be made in each period include selecting the state of each unit and
making distribution decisions, which involve unit-client assignments and determining the
quantities delivered from units to clients.

3.2. Uncertain parameters

In the stochastic version of UCDP the parameter dtc, representing the demand of client c
in period t, is uncertain. State decisions for units must be made for the next T̂ periods in
advance, while state decisions after period T̂ and delivery decisions over the whole horizon
can be made after the realization of demand uncertainty for each period.
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4. Modeling

In this section, we present two formulations for the deterministic problem and a two-
stage stochastic model for the studied problem. The two deterministic models were used
in preliminary experiments to determine the best one to extend to a two-stage stochastic
version, where uncertainty is modeled using demand scenarios.

4.1. Deterministic models

In this section we provide two deterministic models for the studied problem. We call
a state profile a sequence of states over the whole planning horizon, which respects the
minimum up/down time constraints. Let M be the set of all possible state profiles common
to all units. Some of the state profiles might not be valid for a given unit because of its
initial conditions. A given state profile m has a total operating cost of gm, which includes
the production and the state change costs over the planning horizon. The binary parameter
wt

m indicates the state of the unit in period t according to the state profile m. If wt
m is equal

to 1 (resp. 0), the unit is up (resp. down) in period t. The cardinality of the set M depends
on the values of parameters |T | and T̂ . Table 1 gives the cardinality of the set M depending
on the parameters, which was computed using recursion. While the number of profiles is
manageable for small instances, it increases rapidly as the problem size grows.

T̂

|T |
12 18 24

2 288 5168 92736
3 82 812 8046
4 38 262 1814

Table 1: Number of possible state profiles

The first model, which we call natural, uses binary variables to represents states of the
units, while the second one, which we call profile, takes as input the set of all possible state
profiles and uses binary variables to assign a given profile to a unit.

4.1.1. Natural model

In this section we present a first natural model for UCDP. Table 2 summarizes the variables
of this natural model.
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Continuous variables
xt
u,c quantity of item delivered from unit u to client c during period t

stu stock of item at unit u at the end of period t
ptu quantity of item produced by unit u during period t
rtc unmet demand of client c in period t
Binary variables
wt

u up/down unit u state in period t, taking the value 1 if unit u is in the up state during
period t and 0 otherwise

nt
u unit u turn up state at the beginning of period t, taking the value 1 if unit u is turned up

at the beginning of period t and 0 otherwise
otu unit u turn down state at the beginning of period t, taking the value 1 if unit u is turned

down at the beginning of period t and 0 otherwise
atu,c unit u assignment to client c during period t, taking the value 1 if unit u is assigned to

client c in period t and 0 otherwise

Table 2: UCDPnat variables

The problem UCDP is formulated in its natural form as follows:

(UCDPnat)

min
∑
t∈T

(∑
u∈U

cpwt
u +

∑
u∈U

∑
c∈C

kt
u,cx

t
u,c +

∑
u∈U

ht
us

t
u +

∑
u∈U

(cupu nt
u + cduo

t
u) +

∑
c∈C

ltcr
t
c

)
(1)

s.t. wt
u = w̃u ∀u ∈ U, 1 ⩽ t ⩽ t̃u (2)

n1
u ⩾ w1

u − w̃u ∀u ∈ U (3)

o1u ⩾ w̃u − w1
u ∀u ∈ U (4)

nt
u ⩾ wt

u − wt−1
u ∀u ∈ U, 2 ⩽ t ⩽ |T | (5)

otu ⩾ wt−1
u − wt

u ∀u ∈ U, 2 ⩽ t ⩽ |T | (6)

nt
u ⩽ wt′

u ∀u ∈ U, t ∈ T, t ⩽ t′ ⩽ t+ T̂ − 1 (7)

1− otu ⩾ wt′

u ∀u ∈ U, t ∈ T, t ⩽ t′ ⩽ t+ T̂ − 1 (8)

ptu = Puw
t
u ∀u ∈ U, t ∈ T (9)∑

u∈U

atu,c = 1 ∀c ∈ C, t ∈ T (10)

xt
u,c ⩽ dtca

t
u,c ∀c ∈ C, u ∈ U, t ∈ T (11)∑

u∈U

xt
u,c + rtc = dtc ∀c ∈ C, t ∈ T (12)

stu = st−1
u + ptu −

∑
c∈C

xt
u,c ∀t ∈ T, u ∈ U (13)

p, x, s, r ⩾ 0 (14)

a, w, n, o ∈ {0, 1} . (15)
The objective function (1) minimizes the sum of the production cost, the distribution

cost, the holding cost, the cost of changing the state of units, and the lost sales cost.
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Constraint (2) models the initial state conditions. Constraints (3), (4), (5), and (6) are
linking the state of the unit and the change-over variables (i.e., turn up or turn down
decisions). Constraints (7) and (8) are minimum up/down time constraints. Constraint (9)
links the produced quantity to the unit state. Constraint (10) imposes that every client is
served by only one unit in each period and constraint (11) links the unit-client assignment
and the delivered quantities. Constraint (12) represents the demand satisfaction for each
client c. Constraint (13) models the inventory balance at each unit. Constraints (14) and (15)
define the domains of the variables.

Remark 4.1. It is well known that variables o may be expressed as a linear combination of
variables w and n [26], but we choose to present them separately for the sake of readability.

Remark 4.2. As shown by Rajan et al. [26], constraints (7) and (8) can be rewritten as:

t∑
t′=max(1,t−T̂+1)

nt
u ⩽ wt

u ∀u ∈ U, t ∈ T

t∑
t′=max(1,t−T̂+1)

otu ⩽ 1− wt
u ∀u ∈ U, t ∈ T .

(16)

In our preliminary studies, using either (16) or (7) and (8) had no impact on the resolution
time.

4.1.2. Profile model

In this section we present a second model that uses state profiles. We define a binary
variable zu,m, which is equal to 1 if unit u follows the state profile m over the planning horizon.
Each unit can choose only one state profile. The problem UCDP is formulated in its profile
form as follows:

(UCDPprof)

min
∑
u∈U

∑
m∈M

gmzu,m +
∑
u∈U

∑
c∈C

kt
u,cx

t
u,c +

∑
u∈U

ht
us

t
u +

∑
c∈C

ltcr
t
c (17)

s.t. (10) to (14)∑
m∈M

zu,m = 1 ∀u ∈ U (18)∑
m∈M

wt
mzu,m = w̃u ∀u ∈ U, 1 ⩽ t ⩽ t̃u (19)

ptu = Pu

∑
m∈M

wt
mzu,m ∀u ∈ U, t ∈ T (20)

a, z ∈ {0, 1} . (21)
The objective function (17) models the same costs as (1), using the state profile variables.

Constraint (18) imposes the uniqueness of the state profile assigned to each unit. Constraints
(19) to (21) are the adapted version of constraints (2), (9) and (15) respectively.
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Remark 4.3. Rajan et al. [26] proved that when constraints (16) are used in UCDPnat the
objective values of the relaxed versions of UCDPnat and UCDPprof are equal. The validity of
this result remains an open question when using constraints (7) and (8) in UCDPnat.

4.2. Stochastic model

Preliminary experiments showed that solving UCDPnat was faster than solving UCDPprof

(see Section 6). In this section we present the two-stage stochastic extension of UCDPnat.
As mentioned previously, the clients’ demand dtu is now an uncertain parameter. Therefore, a
random vector d = (d̃11, . . . , d̃

T
|C|) is considered, where d̃tc represents the random demand of

client c in period t. We denote by w⩽T̂ the vector of unit state first stage decision variables
(w1, . . . , wT̂ ), by n⩽T̂ the vector of unit turn up first stage decision variables (n1, . . . , nT̂ ), and

by o⩽T̂ the vector of unit turn down first stage decision variables (o1, . . . , oT̂ ). The second
stage decision variables are the unit-client assignment a, the delivered quantities x, the unit
state variables wt for period indices t > T̂ , the unit turn up variables nt for period indices
t > T̂ , the unit turn down variables ot for period indices t > T̂ , stock variables s, lost sales
variables r and production variables q. Note that the latter are completely determined by
the unit states and could also be separated in first and second stage variables, but it has no
impact on the resolution of the problem. We assume that the objective is to minimize the
expected value of the previously introduced cost function (1). We can write the two-stage
stochastic programming model as:

(2S-UCDP)

min
T̂∑
t=1

∑
u∈U

(cpuw
t
u + cupu nt

u + cduo
t
u) + Ed[Q(w⩽T̂ , o⩽T̂ , n⩽T̂ ,d)] (22)

s.t. (2) to (4)

nt
u ⩾ wt

u − wt−1
u ∀u ∈ U, t ⩽ T̂ (23)

otu ⩾ wt−1
u − wt

u ∀u ∈ U, t ⩽ T̂ (24)

nt
u ⩽ wt′

u ∀u ∈ U, t ⩽ T̂, t ⩽ t′ ⩽ T̂ (25)

1− otu ⩾ wt′

u ∀u ∈ U, t ⩽ T̂, t ⩽ t′ ⩽ T̂ (26)

w, n, o ∈ {0, 1} , (27)

where, for a specific realization d, the quantity Q(w⩽T̂ , o⩽T̂ , n⩽T̂ ,d) is the optimal value of
the following second stage problem:

(Q)

min

|T |∑
t=T̂+1

∑
u∈U

(cpuw
t
u + cupu nt

u + cduo
t
u) +

|T |∑
t=1

(
∑
u∈U

∑
c∈C

kt
u,cx

t
u,c +

∑
u∈U

ht
us

t
u +

∑
c∈C

ltcr
t
c) (28)

s.t. (5) to (10) and (13) to (15)

xt
u,c ⩽ d̃tca

t
u,c ∀c ∈ C, u ∈ U, t ∈ T (29)∑

u∈U

xt
u,c + rtc = d̃tc ∀c ∈ C, t ∈ T . (30)
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Constraints (23) to (26) are the same as constraints (5) to (8), with time indices adapted
for first stage variables. Constraints (29) and (30) are the stochastic version of constraints
(11) and (12). Because it contains random variables, the two-stage stochastic programming
model 2S-UCDP is intractable. To overcome it, we assume that there is a finite number of
possible demand scenarios. We denote by Ω the set of all considered demand scenarios. Let
πω be the probability of realization of scenario ω and dtc,ω be the demand of client c during
period t for scenario ω. We add an index ω to the second stage variables, i.e., the distribution,
stock, lost sales variables for the whole planning horizon and the unit state variables for all
periods except the first T̂ periods. The scenario-based two-stage stochastic problem is:

(2S-UCDPΩ)

min
T̂∑
t=1

∑
u∈U

(cpuw
t
u + cupu nt

u + cduo
t
u) +

∑
ω∈Ω

πω

( |T |∑
t=T̂+1

∑
u∈U

(cpuw
t
u,ω + cupu nt

u,ω + cduo
t
u,ω)+

|T |∑
t=1

(
∑
u∈U

∑
c∈C

kt
u,cx

t
u,c,ω +

∑
u∈U

ht
us

t
u,ω +

∑
c∈C

ltcr
t
c,ω)

)
(31)

s.t. (2) to (4), (14), (15) and (23) to (26)

nT̂+1
u,ω ⩾ wT̂+1

u,ω − wT̂
u ∀u ∈ U, ω ∈ Ω (32)

oT̂+1
u,ω ⩾ wT̂

u − wT̂+1
u,ω ∀u ∈ U, ω ∈ Ω (33)

nt
u,ω ⩾ wt

u,ω − wt−1
u,ω ∀u ∈ U, T̂ + 2 ⩽ t ⩽ |T |, ω ∈ Ω (34)

otu,ω ⩾ wt−1
u,ω − wt

u,ω ∀u ∈ U, T̂ + 2 ⩽ t ⩽ |T |, ω ∈ Ω (35)

nt
u ⩽ wt′

u,ω ∀u ∈ U, 2 ⩽ t ⩽ T̂ < t′ ⩽ T̂ + t− 1, ω ∈ Ω (36)

1− otu ⩾ wt′

u,ω ∀u ∈ U, 2 ⩽ t ⩽ T̂ < t′ ⩽ T̂ + t− 1, ω ∈ Ω (37)

nt
u,ω ⩽ wt′

u,ω ∀u ∈ U, T̂ < t ⩽ t′ ⩽ T̂ + t− 1, ω ∈ Ω (38)

1− otu,ω ⩾ wt′

u,ω ∀u ∈ U, T̂ < t ⩽ t′ ⩽ T̂ + t− 1, ω ∈ Ω (39)

ptu = Puw
t
u ∀u ∈ U, t ⩽ T̂ (40)

ptu,ω = Puw
t
u,ω ∀u ∈ U, T̂ < t ⩽ |T |, ω ∈ Ω (41)∑

u∈U

atu,c,ω = 1 ∀c ∈ C, t ∈ T, ω ∈ Ω (42)

xt
u,c,ω ⩽ dtc,ωa

t
u,c,ω ∀c ∈ C, u ∈ U, t ∈ T, ω ∈ Ω (43)∑

u∈U

xt
u,c,ω + rtc,ω = dtc,ω ∀c ∈ C, t ∈ T, ω ∈ Ω (44)

stu,ω = st−1
u,ω + ptu −

∑
c∈C

xt
u,c,ω ∀u ∈ U, t ⩽ T̂, ω ∈ Ω (45)

stu,ω = st−1
u,ω + ptu,ω −

∑
c∈C

xt
u,c,ω ∀u ∈ U, T̂ < t ⩽ |T |, ω ∈ Ω . (46)

Constraints (32) to (46) are the scenario version constraints of UCDPnat.
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5. Heuristics

Using commercial MILP solvers to solve 2S-UCDPΩ is not efficient in practice (see
Section 6, in particular Figure 5). In this section, we propose three heuristics to address this
inefficiency. The goal of these heuristics is to find promising first stage decisions. The quality
of these decisions is evaluated by fixing their values in the resolution of 2S-UCDPΩ. The main
difficulty of 2S-UCDPΩ is the high number of second stage binary variables. The common
idea behind all the proposed heuristics is to reduce this number. Two different approaches are
explored to achieve this. The first one is relaxing some of the second stage binary variables.
The second one is fixing the value of some of the second stage binary variables. Additionally,
a combination of these approaches is studied.

Remark 5.1. Given the form of 2S-UCDPΩ, in particular the fact that lost sales are allowed,
every first stage decision is feasible. Thus, feasibility is not a concern in the proposed
heuristics.

5.1. First heuristic — relaxing second stage binary variables

The first heuristic takes as a parameter T̃ (T̂ < T̃ < |T |) and consists in solving a
modified version of 2S-UCDPΩ, in which the second stage binary variables for the periods
t, T̃ ⩽ t ⩽ |T |, are relaxed. Constraint (15) is replaced by

at, wt, nt, ot ∈ {0, 1} ∀t < T̃ (47)

at, wt, nt, ot ∈ [0, 1] ∀t ⩾ T̃ . (48)

We call this heuristic the period-based relaxing heuristic (RH). Figure 1 illustrates the first
and second stage variables for RH, with T̃ = 10 and T̂ = 3. Periods highlighted in green
represent constraint (47), while those in red correspond to constraint (48).

t
1 2 3 4 5 6 7 8 9 10 11 12 13

Binary Variables (Stage 1) Binary Variables (Stage 2) Relaxed Variables (Stage 2)

Figure 1: Scheme for first and second stage binary variables for RH

5.2. Second heuristic — fixing second stage binary variables

As we want to lower the number of second stage binary variables, one way to do this is
to forbid some unit-client assignments. In particular we want each client to be assigned to
one of its q closest units, where q is a parameter. We call this heuristic the proximity-based
fixing heuristic (FH). For client c we define U q

c as the set of its q closest units. The second
heuristic consists in solving a modified version of 2S-UCDPΩ, in which we add the following
constraint:

atu,c = 0 ∀c ∈ C, u /∈ U q
c , t ∈ T . (49)
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5.3. Third heuristic — relaxing and fixing second stage binary variables

The combined relaxing and fixing heuristic (RFH) is a combination of the first and second
heuristics. It takes as parameters T̃ and q previously introduced. We simultaneously relax the
second stage binary variables for the periods t, T̃ ⩽ t ⩽ T , and allow clients to be assigned
only to one of its q closest units.

6. Numerical experiments

In this section, after introducing the studied instances, we present the numerical results
obtained when solving UCDPnat, UCDPprof and 2S-UCDPΩ. We also evaluate the quality of
first stage decisions found by the heuristics presented in Section 5 and those found by the
mean value approach (MVA), which consists in solving UCDPnat, using the average demand
values

6.1. Instances and setting

As this problem is newly introduced, no benchmark instances are available in the literature.
Therefore, we generate our instances as follows. The U.S. map was used to position the
units and clients, and to calculate delivery costs. Specifically, the number of clients is set
to 49, representing the 48 contiguous U.S. states and the District of Columbia. For each
geographical area, we assume that the client is located at its center of gravity. The number of
production units |U | is set to 5, with each unit located at the center of gravity of one of the
following U.S. cities: Boise, Santa Fe, St. Paul, Nashville, and Albany. The planning horizon
T is composed of 18 periods, with a required minimum up/down period T̂ of 3 periods. The
overall demand at the clients is generated for each period from U([500, 5000]). The individual
demand for each client is then computed by multiplying the proportion of the U.S. population
residing in the geographical area corresponding to the client by the overall demand. Cost
for changing states (cupu and cdu) are generated from U([7500, 13500]) (with cupu =cdu), and the
production fixed cost cpu is set to 1

4
cupu .

For all units u and periods t the holding cost ht
u is 0.5 and for all clients c the lost sales

unit cost ltc is 1000. Delivery costs kt
u,c, ranging between 0.1 and 7.8, are calculated by

multiplying the distance between the unit and the client by 0.002, representing the cost per
kilometer per transported unit of item. Figure 2 shows a histogram of the delivery costs. The
initial stock s0u for all units is set to 500. The initial state conditions (w̃u, t̃u) for all units are
(0, 0), meaning units start in the down state and are free to change state at the beginning
of the planning horizon. Production capacities Pu are set equal for all units to either 750,
875, or 1000. We generated 5 deterministic instances of demands and costs, changed the
production capacity among the stated values, yielding 15 deterministic instances in total.

To transform the deterministic instances into stochastic instances, we introduce the
amplitude of uncertainty τ . A demand scenario is generated by independently drawing the
demand dtc,ω for each client c and period t uniformly from the interval [dtc(1− τ), dtc(1 + τ)].
For each τ value in {0.1, 0.3, 0.5} we generate 10 demand scenarios. The scenarios are
assumed to be equiprobable. This procedure results in 45 stochastic instances derived from
15 deterministic ones.
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For the experiments, we used Gurobi 10.0.0 and a Python wrapper gurobipy, developed by
Gurobi. All experiments were conducted on 6 cores of an Intel Xeon 2.10GHz computer, with
a default MILP optimality gap of 10−4. Time limits for numerical experiments are specified
in their respective sections.

Figure 2: Transport costs histogram

6.2. Results for UCDPnat and UCDPprof

To assess the performances of UCDPnat and UCDPprof, the 15 deterministic instances
have been solved using Gurobi with a one-hour time limit for both models. Figure 3 shows
the solution times for both models for all the instances, as well as the average solution times.
Both models were solved to optimality within the time limit for all instances. On average
UCDPnat was solved almost twice as fast as UCDPprof and for 12 instances out of 15, UCDPnat

was solved faster.
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Figure 3: UCDPnat and UCDPprof solution times

We also analyzed the unit to which each client was assigned. To that end, we define the
proximity index, which indicates the rank in terms of distance of the unit to which the client
is assigned, with 1 being the closest and |U | the farthest. Figure 4 presents a histogram of the
proximity index of the unit assigned to the client among the 13230 unit-client assignments
resulting from the optimal solutions for the 15 deterministic instances. It indicates that in
nearly 70% of cases, clients are assigned to their closest unit.

Figure 4: Frequency of proximity index for client-unit assignment (deterministic case)
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6.3. Results for 2S-UCDPΩ

We use Gurobi to solve 2S-UCDPΩ for the 45 stochastic instances, with a two-hour time
limit. No instance was solved to optimality within the time limit. Figure 5, which is a
histogram of the optimality gap (%) for these experiments, shows that the gap remained
significant after two hours of solving time. The average optimality gap for the instances when
the time limit is achieved is 10%.

Figure 5: Optimality gap histogram for 2S-UCDPΩ

As the optimal solution of 2S-UCDPΩ was not found for all the instances, we were not
able to measure the value of the stochastic solution, which measures the expected gain from
solving the stochastic model rather than the deterministic one (Birge and Louveaux [5]).

6.4. Results for heuristics

We evaluate the performance of the three heuristics introduced in Section 5 and of
the MVA (which is a standard heuristic) on the 45 stochastic instances. As mentioned in
Remark 5.1, the heuristics always provide feasible solutions. Next, we will compare the
quality of the obtained solutions.

For each method (three new heuristics and MVA) and instance, we use Gurobi to solve
the instance using the heuristic to get first stage decisions, with a one-hour time limit.
Heuristic parameters (T̃, q) were set to (10, 2), based on preliminary experiments showing that
smaller values performed poorly. Higher values were not tested due to the increasing problem
complexity. Figure 4 shows that in more than 90% of the 13230 unit-client assignments for the
15 deterministic instances, the client was assigned to one of its two closest units, supporting
the choice of parameter q. The obtained first stage decisions are then subsequently fixed
in 2S-UCDPΩ and this reduced problem is solved using Gurobi with a one-hour time limit.
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Table 3 provides a performance summary of these experiments. The first column is the
production capacity Pu and the second one is the uncertainty amplitude τ . The third column
presents the average relative performance (%)

v−veMVA

v
of MVA for the studied instances. Here,

v is the best found objective value of 2S-UCDPΩ within a two-hour time limit and veMVA is
the objective value of the solution of 2S-UCDPΩ with fixed first stage decisions from MVA.
The fourth, fifth, and sixth columns present the relative performance (%) values for RH, FH,
and RFH. Positive values indicate an improvement in performance when using the method
(heuristic or MVA) compared to the stochastic model 2S-UCDPΩ.

Table 4 provides a solution time summary of these experiments. The first column is the
production capacity Pu and the second one is the uncertainty amplitude τ . Column three is
divided into three subcolumns, presenting for MVA: the average time (s) to find first stage
decisions, the average time (s) to solve 2S-UCDPΩ with fixed first stage decisions from MVA,
and the total average time (s), which is the sum of the previous two. The fourth, fifth, and
sixth columns present the same solution time values for the RH, FH, and RFH heuristics,
respectively.

We refer the reader to Tables A.5, A.6, A.7, and A.8 in the appendix for more detailed
results.

MVA RH FH RFH

Pu τ
v−veMVA

v
(%)

v−veRH

v
(%)

v−veFH

v
(%)

v−veRFH

v
(%)

750

0.5 2.85 2.93 2.14 2.80
0.3 2.89 2.55 1.15 2.45
0.1 3.09 3.01 2.07 2.62
avg. 2.94 2.83 1.79 2.62

875

0.5 1.00 3.56 3.49 3.49
0.3 4.58 5.15 5.41 5.50
0.1 2.85 2.45 2.38 2.81
avg. 3.72 0.91 3.76 3.93

1000

0.5 5.79 6.77 5.99 6.64
0.3 3.45 3.82 3.51 3.85
0.1 2.59 3.49 3.74 3.75
avg. 3.94 4.69 4.41 4.74

avg. 3.23 3.75 3.32 3.76

Table 3: Average relative performance of the heuristics compared to 2S-UCDPΩ
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MVA RH FH RFH
Pu τ 1st st. eval. total 1st st. eval. total 1st st. eval. total 1st st. eval. total

750

0.5 2175 2336 3223 2055 5278 3600 1912 5512 1892 2006 3899
0.3 161 2318 2479 3223 2055 5278 3600 2700 6300 2048 2516 4565
0.1 2172 2233 3600 1579 5179 3600 1848 5448 1954 1545 3499
avg. 161 2222 2383 3355 1872 5227 3600 2154 5754 1965 2023 3988

875

0.5 2771 3160 3600 2569 6169 3600 2496 6096 2227 2481 4708
0.3 389 2691 3080 2998 2668 5666 3600 1921 5521 2291 2802 5093
0.1 2490 2879 2965 2469 5435 3600 1875 5475 2812 2575 5387
avg. 389 2651 3040 3188 2569 5757 3600 2098 5698 2443 2619 5062

1000

0.5 2170 2303 3600 1803 5403 3600 2243 5843 2318 2008 4325
0.3 133 2333 2466 3600 2845 6445 3600 1861 5461 2210 2244 4455
0.1 2449 2582 3600 2690 6290 3600 2856 6456 2382 2827 5209
avg. 133 2318 2451 3600 2446 6046 3600 2320 5920 2303 2360 4663

avg. 228 2397 2625 3381 2296 5677 3600 2191 5791 2237 2334 4571

Table 4: Average solution times (s)

All the heuristics and MVA have better a performance on average than 2S-UCDPΩ. RFH
has the best relative average performance, while MVA has the worst one. MVA has the
best average total solution time, which is due to the fact that this method finds first stage
decisions much quicker than the other heuristics. There is no significant difference in the
average solution time of 2S-UCDPΩ with fixed first stage decisions, depending on the used
heuristic to obtain these first stage decisions.

In most instances, we observe very low lost sales costs, except in certain cases where
the first stage decisions are fixed using the MVA. This highlights another advantage of the
heuristics, accounting for uncertainty explicitly.

7. Concluding remarks

We formulate the integrated unit commitment and distribution problem and provide two
deterministic models and one two-stage stochastic model. After comparing the efficiency
of the two deterministic models we conduct numerical experiments for the stochastic case.
As the direct use of the commercial solver is not efficient to solve the studied stochastic
instances, we introduce three heuristics, finding first stage decisions for the studied problem.
The common idea behind all the proposed heuristics is to reduce the number of second stage
binary variables. Extensive numerical experiments show that the proposed heuristics are
more efficient in practice than the resolution of the deterministic model to find first stage
decisions. On average, the best-performing heuristic outperforms the deterministic model,
although it takes more time.

Two research directions can be further explored. The first one aims at comparing the
long term effects of the use of introduced heuristics. This study is noteworthy as an effective
short-term optimization can potentially have detrimental effects on long-term outcomes. This
can be achieved through a rolling horizon scheme and scenario simulation. The second one
seeks to study the impact of optimization if some service level constraints (see Tempelmeier
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[31]) are introduced in the problem. It can allow the studied problem to be closer to real
industrial cases.
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Appendix A. Complete numerical results

Tables A.5, A.6, A.7, and A.8 summarize the experiments for MVA, RH, FH, and RFH,
respectively. The first three columns are common across these tables: instance, uncertainty
amplitude τ , and best found objective value v of 2S-UCDPΩ within the two-hour time limit.
The remaining columns provide results for method meth. Column four gives the solving
time (s) tmeth or the optimality gap (%) gmeth if the one-hour time limit is reached. Column
five gives the objective value of 2S-UCDPΩ with fixed first stage decision from meth vemeth.
Column six presents the solving time (s) of the latter temeth or its optimality gap (%) gemeth

if the one-hour time limit is reached. The last column shows the relative performance (%)
v−vemeth

v
.
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Table A.5: Performance of MVA first stage solution

inst. τ v
MVA MVA first stage v−ve

MVA

v (%)
tMVA (gMVA (%)) veMVA teMVA (geMVA (%))

Pu = 750

inst.1
0.5 291988 285161 781 2.34
0.3 288069 36 280822 1461 2.52
0.1 301618 276901 386 8.19

inst.2
0.5 292059 273482 999 6.36
0.3 289793 32 270936 835 6.51
0.1 276486 270151 1136 2.29

inst.3
0.5 341220 329541 (0.04) 3.42
0.3 344188 270 330308 (0.05) 4.03
0.1 340553 329972 (0.07) 3.11

inst.4
0.5 332204 329881 1893 0.70
0.3 322845 151 320990 2096 0.57
0.1 324947 322832 2137 0.65

inst.5
0.5 317541 312997 (0.03) 1.43
0.3 317135 314 314568 (0.02) 0.81
0.1 317692 313931 (0.01) 1.18

Pu = 875

inst.1
0.5 281303 297363 (0.05) -5.71
0.3 295438 349 276840 (0.06) 6.30
0.1 292374 266212 (0.10) 8.95

inst.2
0.5 243873 242277 512 0.65
0.3 244668 28 241725 323 1.20
0.1 240855 240856 463 0.00

inst.3
0.5 321399 293627 3081 8.64
0.3 329152 20 304242 2443 7.57
0.1 296609 302505 1188 -1.99

inst.4
0.5 316989 322326 3064 -1.68
0.3 327423 173 312515 3489 4.55
0.1 330708 311070 (0.01) 5.94

inst.5
0.5 299137 289804 (0.04) 3.12
0.3 300404 1376 290568 (0.03) 3.27
0.1 293131 289175 (0.04) 1.35

Pu = 1000

inst.1
0.5 248285 244285 387 1.61
0.3 245968 52 241099 677 1.98
0.1 244074 241188 604 1.18

inst.2
0.5 267162 235953 757 11.68
0.3 249984 154 235039 395 5.98
0.1 259765 235092 843 9.50

inst.3
0.5 321181 281783 (0.01) 12.27
0.3 305371 235 283731 (0.03) 7.09
0.1 288699 276672 (0.02) 4.17

inst.4
0.5 293546 295286 (0.01) -0.59
0.3 288138 36 284801 3395 1.16
0.1 285201 295086 (0.02) -3.47

inst.5
0.5 275629 264586 2508 4.01
0.3 267045 188 264229 (0.01) 1.05
0.1 267364 263227 (0.03) 1.55
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Table A.6: Performance assessment of RH first stage solution

inst. τ v
RH RH first stage v−ve

RH

v (%)
tRH (gRH (%)) veRH teRH (geRH (%))

Pu = 750

inst.1
0.5 291988 (4.35) 286924 198 1.73
0.3 288069 (5.62) 285048 158 1.05
0.1 301618 (2.76) 277338 352 8.05

inst.2
0.5 292059 (1.78) 272124 1439 6.83
0.3 289793 (3.04) 271412 759 6.34
0.1 276486 (1.23) 269705 854 2.45

inst.3
0.5 341220 (3.70) 330613 (0.03) 3.11
0.3 344188 (1.78) 330282 (0.04) 4.04
0.1 340553 (2.78) 329894 (0.04) 3.13

inst.4
0.5 332204 (2.24) 327178 1436 1.51
0.3 322845 (2.24) 321243 1786 0.50
0.1 324947 (1.62) 323756 1395 0.37

inst.5
0.5 317541 1717 312957 (0.02) 1.44
0.3 317135 1801 314557 (0.02) 0.81
0.1 317692 (0.70) 314415 1696 1.03

Pu = 875

inst.1
0.5 281303 (5.99) 268373 (0.02) 4.60
0.3 295438 (7.37) 268045 (0.02) 9.27
0.1 292374 (7.15) 268100 (0.02) 8.30

inst.2
0.5 243873 (4.17) 242277 501 0.65
0.3 244668 (4.48) 241725 309 1.20
0.1 240855 (4.15) 240856 453 0.00

inst.3
0.5 321399 (1.70) 293627 3036 8.64
0.3 329152 590 304242 2327 7.57
0.1 296609 426 302505 1094 -1.99

inst.4
0.5 316989 (4.75) 312964 2108 1.27
0.3 327423 (5.83) 310966 (0.01) 5.03
0.1 330708 (7.12) 314103 (0.02) 5.02

inst.5
0.5 299137 (6.27) 291278 (0.03) 2.63
0.3 300404 (7.29) 292334 3504 2.69
0.1 293131 (6.80) 290424 (0.04) 0.92

Pu = 1000

inst.1
0.5 248285 (4.90) 244285 373 1.61
0.3 245968 (5.11) 241099 648 1.98
0.1 244074 (6.20) 241188 589 1.18

inst.2
0.5 267162 (9.01) 236526 2463 11.47
0.3 249984 (9.75) 235477 3219 5.80
0.1 259765 (10.61) 238637 2505 8.13

inst.3
0.5 321181 (8.01) 281571 1610 12.33
0.3 305371 (5.98) 284389 (0.03) 6.87
0.1 288699 (4.04) 276820 (0.01) 4.11

inst.4
0.5 293546 (1.39) 280602 2805 4.41
0.3 288138 (2.63) 278292 3160 3.42
0.1 285201 (1.97) 278215 3156 2.45

inst.5
0.5 275629 (2.24) 264586 1765 4.01
0.3 267045 (1.29) 264232 (0.01) 1.05
0.1 267364 (1.90) 263229 (0.03) 1.55
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Table A.7: Performance assessment of FH first stage solution

inst. τ v
FH FH first stage v−ve

FH

v (%)
tFH (gFH (%)) veFH teFH (geFH (%))

Pu = 750

inst.1
0.5 291988 (5.81) 290637 1248 0.46
0.3 288069 (8.26) 286721 (0.05) 0.47
0.1 301618 (5.38) 280850 728 6.89

inst.2
0.5 292059 (7.77) 274093 896 6.15
0.3 289793 (11.28) 270064 1599 6.81
0.1 276486 (10.15) 276203 2033 0.10

inst.3
0.5 341220 (7.68) 331153 (0.05) 2.95
0.3 344188 (10.06) 332198 (0.06) 3.48
0.1 340553 (9.98) 331278 (0.07) 2.72

inst.4
0.5 332204 (1.89) 328637 1410 1.07
0.3 322845 (0.86) 321848 1103 0.31
0.1 324947 (0.02) 324029 1297 0.28

inst.5
0.5 317541 (5.40) 317353 2408 0.06
0.3 317135 (7.79) 333923 (0.04) -5.29
0.1 317692 (1.28) 316535 1582 0.36

Pu = 875

inst.1
0.5 281303 (8.91) 268372 (0.02) 4.60
0.3 295438 (11.56) 268045 (0.02) 9.27
0.1 292374 (10.63) 268100 (0.02) 8.30

inst.2
0.5 243873 (1.30) 242277 490 0.65
0.3 244668 (4.41) 241725 298 1.20
0.1 240855 (3.53) 240856 436 0.00

inst.3
0.5 321399 (5.79) 293627 2872 8.64
0.3 329152 (5.21) 296294 192 9.98
0.1 296609 (3.96) 296574 176 0.01

inst.4
0.5 316989 (8.68) 312964 2077 1.27
0.3 327423 (10.56) 311211 1916 4.95
0.1 330708 (11.62) 319172 2025 3.49

inst.5
0.5 299137 (6.98) 292277 3443 2.29
0.3 300404 (7.53) 295548 (0.01) 1.62
0.1 293131 (7.60) 292782 3138 0.12

Pu = 1000

inst.1
0.5 248285 (6.59) 252447 (0.02) -1.68
0.3 245968 (3.80) 241958 286 1.63
0.1 244074 (3.14) 241188 590 1.18

inst.2
0.5 267162 (13.55) 238148 1660 10.86
0.3 249984 (14.24) 237040 1133 5.18
0.1 259765 (11.83) 235332 3380 9.41

inst.3
0.5 321181 (9.48) 281571 1533 12.33
0.3 305371 (9.34) 286289 1228 6.25
0.1 288699 (5.95) 276820 (0.01) 4.11

inst.4
0.5 293546 (5.34) 280602 2783 4.41
0.3 288138 (5.87) 278292 3058 3.42
0.1 285201 (5.24) 278215 3109 2.45

inst.5
0.5 275629 (4.37) 264586 1641 4.01
0.3 267045 (4.09) 264229 (0.01) 1.05
0.1 267364 (3.73) 263227 (0.03) 1.55
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Table A.8: Performance assessment of RFH first stage solution

inst. τ v
RFH RFH first stage v−ve

RFH

v (%)
tRFH (gRFH (%)) veRFH teRFH (geRFH (%))

Pu = 750

inst.1
0.5 291988 2199 286924 201 1.73
0.3 288069 (1.26) 286719 (0.05) 0.47
0.1 301618 (1.62) 281482 353 6.68

inst.2
0.5 292059 182 271737 1197 6.96
0.3 289793 163 268784 1623 7.25
0.1 276486 71 269705 814 2.45

inst.3
0.5 341220 (2.20) 331203 (0.04) 2.94
0.3 344188 (1.47) 331639 (0.04) 3.65
0.1 340553 (0.95) 331497 (0.01) 2.66

inst.4
0.5 332204 3333 328637 1433 1.07
0.3 322845 2595 322139 1569 0.22
0.1 324947 2298 324029 1300 0.28

inst.5
0.5 317541 148 313460 (0.01) 1.29
0.3 317135 284 315095 2189 0.64
0.1 317692 200 314415 1659 1.03

Pu = 875

inst.1
0.5 281303 (2.89) 268366 (0.02) 4.60
0.3 295438 (2.45) 268044 (0.02) 9.27
0.1 292374 (4.02) 268097 (0.02) 8.30

inst.2
0.5 243873 147 242277 479 0.65
0.3 244668 444 237772 1037 2.82
0.1 240855 3142 237333 1048 1.46

inst.3
0.5 321399 187 293627 2785 8.64
0.3 329152 213 304242 2173 7.57
0.1 296609 119 302505 1028 -1.99

inst.4
0.5 316989 (1.80) 312964 2080 1.27
0.3 327423 (4.31) 310966 (0.01) 5.03
0.1 330708 (3.33) 313097 (0.01) 5.33

inst.5
0.5 299137 (1.83) 292277 3460 2.29
0.3 300404 (2.62) 291988 (0.03) 2.80
0.1 293131 (2.28) 290421 (0.04) 0.92

Pu = 1000

inst.1
0.5 248285 (0.01) 244285 356 1.61
0.3 245968 (0.01) 241958 281 1.63
0.1 244074 (0.02) 241188 582 1.18

inst.2
0.5 267162 (0.51) 238148 1649 10.86
0.3 249984 (1.34) 237040 1125 5.18
0.1 259765 (4.19) 235332 3294 9.41

inst.3
0.5 321181 1178 281691 (0.02) 12.30
0.3 305371 159 281069 3119 7.96
0.1 288699 1081 276672 (0.02) 4.17

inst.4
0.5 293546 3009 280602 2761 4.41
0.3 288138 (0.64) 278292 3097 3.42
0.1 285201 3424 278215 3061 2.45

inst.5
0.5 275629 201 264586 1673 4.01
0.3 267045 92 264229 (0.01) 1.05
0.1 267364 204 263227 (0.03) 1.55
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