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1. Introduction

Production planning is a very important activity for manufacturing companies. Thus, they invest numerous

efforts into effective production planning. Operations researchers have proposed several models and solution

approaches, discussing the efficiency of production planning in manufacturing companies. One of the most

studied problem related to production planning is the Capacitated Lot Sizing Problem (CLSP). The CLSP

consists in determining the production timing and level over a discrete and finite time horizon while minimizing

operational costs. The operational costs are production costs, setup costs, and holding costs.

According to Aghezzaf et al. [3], production planning assumes the system will function at its maximum

performance during the planning horizon. But, in practice, it happens that there is a sudden interruption of

the production system, which stops production. In this case, maintenance operations are carried out to restore

the broken machine. It is therefore necessary to plan preventive maintenance operations which help to avoid

sudden interruptions Kojchen and Monchy [21]. Preventive maintenance includes preplanned and scheduled

adjustments, major overhauls, inspections, and lubrications, to maintain equipments and facilities in a condition

where breakdowns and the need for emergency repairs are minimized Ashayeri et al. [8].

Often, maintenance planning is carried out before production planning. This leads to suboptimal production

plans, in terms of cost, since maintenance decisions are constraints for production planning (e.g., the capacity is

impacted by maintenance decisions). It is therefore of interest to make a synchronization between both plannings

to decrease the costs generated by the production interruptions. According to Ashayeri et al. [8], this approach

has not receive enough management attention. Their hypothesis for the lack of management attention is the belief

that maintenance costs cannot be controlled. In the last years, few studies have addressed combined maintenance

and lot sizing problems despite the interest for companies and the potential benefits. For instance, Schreiber

et al. [31] show that integrated production and maintenance planning significantly reduces machine downtime

and increases the production pace.

The purpose of this paper is to address this area of research by combining maintenance planning and lot

sizing problem. We take as starting point the study of Shamsaei and Van Vyve [32] and include maintenance

decisions into the CLSP. Unlike the classical CLSP, we consider that the capacity available in each time period

is not a parameter, but instead a decision variable linked to the maintenance decisions: when a maintenance is

carried out, the capacity goes back to a defined maximum value, whereas capacity decreases from one period to

the next one if no maintenance is carried out. The decrease of capacity follows a degradation function which is

an input in our study. We further consider non-cyclical preventive maintenance, which is the most studied for

planning maintenance operations Fitouhi and Nourelfath [15], Aghezzaf et al. [3], Shamsaei and Van Vyve [32].

Shamsaei and Van Vyve [32] state that non-cyclical maintenance reduces the total costs compared to cyclical

maintenance in their study. Cyclic maintenance is scheduled periodically, unlike non-cyclical maintenance, which

allows maintenance to be carried out at any time. We call our resulting problem the integrated capacitated lot

sizing and maintenance planning problem (CLSPM).

The contribution of our study is threefold. First, we propose a new way of defining maintenance decision

variables compared to the literature. The advantage of our new variables is to keep information about the last
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maintenance performed over the time horizon. This allows us to consider several degradation functions for the

machine. On the modeling side, we further consider that the degradation may happen if and only if production

occurs. Second, we develop a relax-and-fix with a fix-and-optimize approach to solve this problem. The CLSP

itself is an NP-hard problem and integrating maintenance decisions makes the problem harder. We therefore

tackle the problem heuristically. We build an initial solution using a relax-and-fix heuristic. We then use a

fix-and-optimize approach to improve the solution obtained after the relax-and-fix process. Third, we perform

a thorough numerical campaign. This campaign is divided into two main sets of experiments. The first one, on

MIP models, to analyze the impact of the different degradation functions and to highlight the possibilities offered

by our new maintenance variables. The second one, on the heuristics, to assess its performance compared to the

MIP models.

The remainder of this paper is organized as follows. In Section 2, we discuss the major studies addressing

synchronization between production planning and maintenance planning. In Section 3, we present in detail the

mathematical formulations for our problem, including a new way to define the maintenance decision variables.

Section 4 shows the relax-and-fix with fix-and-optimize algorithms designed to heuristically solve the problem.

Computational results are presented in Section 5. Finally, concluding remarks and future work are given in

Section 6.

2. Literature review

This section reviews the literature related to our study. We start by reviewing the literature on the integration

of maintenance into lot sizing problems. We focus on the solution method used as well as on the way machine

degradation is taken into account. We then review the use of relax-and-fix and fix-and-optimize approaches to

solve lot sizing problems.

2.1. Maintenance and lot sizing

Maintenance operations are a tactical decision that affect production planning and, in turn, the fulfillment of

demand. This involves determining the appropriate strategy to keep production machinery in good condition, so

as production can take place. Consequently, research has been conducted in this area, illustrating several ways to

integrate maintenance operations into lot-sizing problems. In this section we take a look at different maintenance

features that have been addressed in lot sizing problems, along with solution methods used and the way machine

degradation is taken into account. Note that this section is not intended to be exhaustive. The interested reader

is referred to the reviews of Garg and Deshmukh [18] and De Jonge and Scarf [12].

2.1.1. Maintenance features

Several main features of maintenance have been taken into account in the literature. The first one is cyclic and

non-cyclic maintenance strategies. In a cyclic strategy, maintenance follows a specific pattern. On the contrary, a

non-cyclic strategy allows maintenance operations to occur at any time. Non-cyclic strategies give more freedom

and therefore lead to harder problems to solve. The study of such strategies has been addressed in Aghezzaf
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et al. [3], Aghezzaf and Najid [2], Fitouhi and Nourelfath [15, 16], Aghezzaf et al. [4] and Shamsaei and Van Vyve

[32].

Another studied feature of maintenance is the case of imperfect maintenance operations. An imperfect pre-

ventive maintenance operation fails in putting back the system in an as good as new state. Imperfect maintenance

operations have been considered in Levitin and Lisnianski [25], El-Ferik [14], Le Tam et al. [24] and Wang et al.

[36].

Other features include the consideration of multi-level production systems (Aghezzaf and Najid [2]), parallel

production lines or multiple machines (Aramon Bajestani et al. [6], Zhu [40]), maximum time before a maintenance

action must occur (Lu et al. [27]), the study of specific maintenance policies (Gao et al. [17]), maintenance time-

windows (Najid et al. [28], Alaoui-Selsouli et al. [5]), or the moment when maintenance can be performed during

a time period (Absi et al. [1]).

2.1.2. Machine degradation

An important aspect of the links between maintenance and lot sizing problems lie in the way capacity is

affected by both production and maintenance decisions. In that respect, different machine degradation modeling

have been used in the literature. It includes an exponential degradation, where the capacity available at a given

period is equal to a proportion of the capacity available in the previous period, unless a maintenance activity has

been performed. Such modeling is used in Aghezzaf et al. [3], Shamsaei and Van Vyve [32]

Another used method to model machine degradation is the use of failure rates. In such cases, it is assumed that

a specific probability failure density function is known in advance. The distribution used are usually Weibull

or Gamma distributions, to obtain an analytical expression of the capacity reduction due to failure of some

components. Weibull distribution is the most used distribution in reliability engineering because it provides a

good fit with data in many applications and arises naturally in theory Arts [7]. Failure rates have been used in

Aghezzaf et al. [3], Aghezzaf and Najid [2], Najid et al. [28], Fitouhi and Nourelfath [15], Alaoui-Selsouli et al.

[5], Lu et al. [27], Aghezzaf et al. [4], Le Tam et al. [24], Wang et al. [36], Gao et al. [17], and Zhu [40]. Any

failure that happens reduces the capacity of the machine.

Machine degradation can be also taken into account not using capacity degradation, but age reduction. In

this case, the machine or the components of the machine ages and it increases a given failure probability, unless

preventive maintenance is performed. Age reduction has been tackled in Levitin and Lisnianski [25], El-Ferik

[14] and Absi et al. [1].

Another widely used way of modeling machine degradation is to take into account different machine states.

This can be included in a Markov scheme, such as in Sloan and Shanthikumar [33] and Aramon Bajestani et al.

[6], or with regular probabilities as in Fitouhi and Nourelfath [16].

Note that the integration of maintenance planning into scheduling problems has also received quite some

attention in the operation research literature. The interested reader is referred to Sortrakul et al. [34], Yang

et al. [38], Chaabane et al. [10] and Babaeimorad et al. [9] for specific problems, and to Geurtsen et al. [19] who

provide a detailed review of both the integration of maintenance and resources within a production process.
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2.1.3. Solution methods

Solving integrated maintenance and lot sizing problems is not an easy task. Several solution methods have

been used. Those include modeling the problems as MILP and using solver to solve them. This is the case is

Sloan and Shanthikumar [33], Aghezzaf et al. [3], Najid et al. [28], Aghezzaf et al. [4], Shamsaei and Van Vyve

[32] and Zhu [40]. MILP solvers are also used in an iterative way, for instance in Fitouhi and Nourelfath [15].

Note that mathematical modeling is also exploited to obtain optimality conditions on the solution. This is the

case in Sloan and Shanthikumar [33], El-Ferik [14] and Gao et al. [17]. Sloan and Shanthikumar [33] further

embed the optimality conditions into a simulation framework.

Such integrated problems have also been tackled using heuristics and decomposition methods. In particular,

Aghezzaf and Najid [2] and Lu et al. [27] use lagrangian relaxation, Aghezzaf et al. [4] and Alaoui-Selsouli et al.

[5] use a fix-and-optimize heuristic, and Le Tam et al. [24] use a combined relax-and-fix and fix-and-optimize

approach.

Other methods have also been used, but more rarely. We can mention here the use of genetic algorithm by

Levitin and Lisnianski [25] and Wang et al. [36], the use of simulated annealing by Fitouhi and Nourelfath [16],

the use of a Markov decision process by Aramon Bajestani et al. [6], or more recently the proposition of dynamic

programming approaches by Absi et al. [1].

Table 1 summarizes the works mentioned in this section, focusing on maintenance features, solution meth-

ods, and machine degradation. When machine degradation is considered through failure rates, we specify the

distribution used in the numerical experiments.

2.2. Relax-and-Fix/Fix-and-Optimize and lot sizing

Relax-and-fix (RF) and fix-and-optimize (FO) are successful approaches developed to tackle the complexity

of the capacitated lot-sizing problem [30]. Instead of solving the whole formulation, the RF heuristic reduces the

complexity of the problem by solving a series of partially relaxed mixed-integer programming models (Roshani

et al. [29]). The fix-and-optimize (FO) heuristic uses the same principle as relax-and-fix but without any relaxed

variables.

As mentioned in Sahling et al. [30], one important feature of both RF and FO are the ways subsets of variables

are built. Several strategies have been used in the literature. The most natural one is to use temporal subsets,

based on the periods (see, e.g., Helber and Sahling [20], Lang and Shen [23], Roshani et al. [29] and You et al.

[39]). It is also possible to build sets based on the different items (Sahling et al. [30], Lang and Shen [23] and You

et al. [39]), or on the possibility to substitute items (Lang and Shen [23]). More recently, a value-wise approach

has been proposed in Toledo et al. [35], based on the values of the relaxed variables. Other building possibilities

are more problem specific. For instance, the sets may be built based on the different families of items, on the

production processes (Sahling et al. [30] and Helber and Sahling [20]), on the resources used (Sahling et al. [30]

and Helber and Sahling [20]), or a combination of those (Chen [11] and Li et al. [26]). Note that for the temporal

and item-based approaches, the selection of periods or items can be done according to the data input, or can be

random as in You et al. [39]. In our case, we tried several strategies but just kept the temporal one, based on

preliminary experiments.
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Table 1: Summary of papers related to integrated maintenance and lot sizing problems

Reference Maintenance feature Solution method Machine degradation

Aghezzaf et al. [3] Cyclic and non-cyclic MILP Failure rate

Aghezzaf and Najid [2] Multi-level system Lagrange relaxation Failure rate

Fitouhi and Nourelfath [15] Non-cyclic MILP Failure rate (Weibull)

Shamsaei and Van Vyve [32] Cyclic and non-cyclic MILP Exponential capacity reduc-

tion

Levitin and Lisnianski [25] Imperfect maintenance Genetic algorithm Age reduction

El-Ferik [14] Imperfect maintenance Simulation Age reduction (Weibull)

Aghezzaf et al. [4] Imperfect maintenance MILP and fix-and-optimize Failure rate (Gamma)

Le Tam et al. [24] Imperfect maintenance relax-and-fix and fix-and-

optimize

Failure rate (Gamma)

Sloan and Shanthikumar [33] - MILP Machine state (Markov)

Najid et al. [28] Time-window MILP Failure rate

Alaoui-Selsouli et al. [5] - Lagrangian Failure rate (Weibull)

Lu et al. [27] Max time before maintenance Lagragian heuristic Failure rate (Weibull)

Aramon Bajestani et al. [6] Multi-machine Markov decision process and

MILP

Machine state (Markov)

Fitouhi and Nourelfath [16] Non-cyclic Simulated annealing Machine state

Wang et al. [36] Imperfect maintenance Genetic algorithm Failure rate (exponential)

Gao et al. [17] Maintenance policies Mathematical modeling Failure rate (exponential and

Weibull)

Absi et al. [1] Maintenance timing Dynamic programming Age reduction

Zhu [40] Parallel lines MILP failure rate (Weibull)

Our study Non-cyclic MILP and Heuristic Diverse capacity reductions
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Both RF and FO have been applied successfully to different lot sizing problems. The RF heuristic has

been applied to a CLSP with remanufacturing (Roshani et al. [29]). The FO heuristic has been applied to the

multi-level CLSP (Toledo et al. [35]), possibly with positive lead times (Helber and Sahling [20] and Chen [11]),

with setup carry-overs (Sahling et al. [30]) and even in a stochastic context (Li et al. [26]), or in a time-varying

environment (You et al. [39]). In a time-varying environment, costs and production capacity are dynamic through

time. The FO heuristic has also been applied to the CLSP with sequence-dependent setups and substitutions

(Lang and Shen [23]), or to a variant with parallel machines, backlogging and time windows (Xiao et al. [37]).

The RF and FO heuristics have also been applied jointly in a two-stage manner, as in Lang and Shen [23]

and Toledo et al. [35]. They can further be used alone, several times, or in combination with other approaches.

When used several times, it is possible to use different set building strategies as in Sahling et al. [30]. When

used in a combination with other approaches, it is often used with variable neighborhood search methods, as in

Toledo et al. [35], Chen [11] and Li et al. [26].

Xiao et al. [37] introduce MIP-based fix-and-optimize algorithms for the parallel machine capacitated lot-

sizing and scheduling problem. The authors introduce a local search phase and the neighborhood modification

phase in the FO heuristic. They also show that the performance of the proposed algorithms is satisfactory for

real-world instances.

3. The integrated capacitated lot sizing and maintenance problem

In this section, we first formally describe the integrated capacitated lot sizing and maintenance problem

(CLSPM). Next, we present the mathematical models of lot sizing and how maintenance operations are integrated

into these models. In this respect, we introduce the new models by reformulating the maintenance decision

variables to keep more information about maintenance operations.

3.1. Problem description

We consider a set I of items that need to be produced over a planning horizon. The planning horizon T is finite

and divided into several periods. Production is carried out with a single machine which is limited by capacity.

At each period t, a demand dit for each item i must be satisfied. This demand is dynamic and deterministic, i.e.,

it varies from one period to the next one but they are known at the start of the planning horizon.

The production process implies the degradation of the machine that we model through a reduction of machine

capacity. We consider different degradation function that allows us to define the capacity available in each time

period, depending on the maintenance decisions, setup decisions, and the capacity available in the previous

period.

The production of each item i in period t requires setup on the production machine which generates fixed

setup costs scit. The production of each item generates a variable holding cost per item-unit and per period, hit.

Finally, carrying out a maintenance operation in period t incurs a fixed cost mct. The objective of the problem

is to minimize the sum of all these setup, holding and maintenance costs.
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In each time period, we must decide on the production quantities for each item. If we produce, this implies

a setup for production. We also decide on the inventory that we carry from one period to the next one. Finally,

we decide on the maintenance operations.

3.2. Mathematical formulation

In this section we will show two mathematical formulations for the problem. The first one differs from

the work of Shamsaei and Van Vyve [32] in two ways. First, they consider binary decision variables for the

maintenance decisions, indicating if there is a maintenance operation performed in period t. We introduce a new

way of modeling maintenance decisions. We define zkt as a binary variables that indicates if, in period t, the last

time a maintenance was performed was in period k. Such definition allows us to track maintenance decisions,

and consider different degradation function. Second, for the lot sizing part, Shamsaei and Van Vyve [32] use the

classical lot sizing variables. We instead use a transportation reformulation, which is shown in the literature to

provide a stronger LP relaxation than the classical formulation (Krarup and Bilde [22]). The second formulation

we will show is a Dantzig-Wolfe reformulation of the first one.

Following the problem description, Table 2 summarizes all the sets, parameters and decision variables used

in the mathematical models.

Table 2: Notation used in the models

Sets Definition

T Set of periods in the planning horizon, indexed by t

I Set of items, indexed by i

Parameters Definition

scit Fixed production setup cost for item i ∈ I in period t ∈ T

hcit Holding cost per unit of item i ∈ I hold in the inventory at the end of period t ∈ T

mct Fixed maintenance cost if a maintenance is performed in period t ∈ T

dit Demand for item i ∈ I in period t ∈ T

Cmax Maximum (nominal) capacity of the machine

Variables Definition

yit Binary variable equal to one if item i ∈ I is produced in the period t ∈ T , and zero otherwise

zkt Binary variable equal to one if the last maintenance before period t ∈ T was performed in period k ≤ t, and zero

otherwise

xikt Production quantity of item i ∈ I produced in period k ∈ T to satisfy the demand of period t ∈ T , with k ≤ t

ct Available capacity of the machine in period t ∈ T

The CLSPM can then be modelled as follows:

(FL− EM) min
x,y,c,z

∑
i∈I

∑
t∈T

 t∑
k=1

t−1∑
j=k

hcij

xikt

+
∑
i∈P

∑
t∈T

scityit +
∑
t∈T

mctztt (1)

s.t.
t∑

k=1

xikt = dit ∀ i ∈ I, t ∈ T (2)
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xikt ≤ dityik ∀ i ∈ I, k ∈ T, t ∈ T, t ≥ k (3)

∑
i∈I

|T |∑
k=t

xitk ≤ ct ∀ t ∈ T (4)

ct = f(z) ∀ t ∈ T (5)

c1 ≤ Cmaxz11 (6)

zkt ≤ zkk ∀t ∈ T, k ≤ t (7)

t∑
k=1

zkt ≤ 1 ∀t ∈ T (8)

zkt ∈ {0, 1} ∀ k ∈ T, t ∈ T, k ≤ t (9)

ct ≥ 0 ∀ t ∈ T (10)

xikt ≥ 0 ∀ i ∈ I, k ∈ T, t ∈ T, t ≥ k (11)

yit ∈ {0, 1} ∀ i ∈ P, t ∈ T. (12)

The objective function (1) minimizes the total costs including setup, inventory and maintenance costs. Based

on the defined maintenance variables, the overall maintenance cost is expressed by
∑
t∈T

mCtztt, since if ztt is

equal to one, the maintenance operation is performed at period t. Constraints (2) express the satisfaction of the

demand for each item at each period. Constraints (3) are the setup forcing constraints. Constraints (4) define

the available capacity of the machine for each time period. Constraints (5) define the evolution of the available

capacity depending on the degradation function f . Constraint (6) links the capacity and maintenance actions

for the first period, so as we pay a maintenance cost to initiate production. Constraints (7) ensure that if the

last maintenance was done in period k, k < t, then there must be a maintenance action in period k. This enables

linking all the zkt variables to the maintenance cost since only the zkk variables appear in the objective function.

Constraints (8) state that for each period t ∈ T there is only one period for which the last maintenance has

been performed before. Finally, constraints (9)-(12) define the domains of the decision variables. Note that the

mathematical model presented above considers machine degradation over time regardless of if production occurs.

3.3. Capacity degradation functions

We consider three possible capacity degradation functions: exponential, linear, and dirac. Those three possi-

bilities are described in the following subsections.

3.3.1. Exponential degradation

We consider that the capacity follows an exponential degradation. We define the capacity reduction coefficient

α between 0 and 1 that allows us to represent the level of the machine degradation. In other words, without any

maintenance operation carried out, the capacity in period t + 1 is equal to α times the capacity in period t. A

high capacity reduction factor means that the level of machine degradation is low, whereas a low value indicates

higher degradation. In this case, the degradation function is f(z) = Cmax

∑t
k=1 α

t−kzkt.
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3.3.2. Linear degradation

We consider that the capacity follows a linear degradation. We define a capacity reduction value β that

is a proportion of the maximum available capacity Cmax. In this case, the degradation function is f(z) =

Cmax − βCmax

∑t
k=1(t− k)zkt.

3.3.3. Dirac degradation

We consider here that the capacity stays the same as long as the last maintenance action occurred no more

than γ periods before the current period. If the last maintenance occurred strictly more than γ periods before

the current period, then the available capacity is set to a low value, that we denote as Clow. In this case, the

degradation function is f(z) = Cmax

∑t
k=t−γ zkt+Clow

∑t−γ−1
k=1 zkt. Such kind of degradation function highlights

the benefits of having maintenance variables that track the last maintenance period.

3.4. Dantzig-Wolfe reformulation

We can apply a Dantzig-Wolfe reformulation on (1)-(12). The Dantzig-Wolfe (DW) [13] decomposition allows

a mathematical program to be expressed as a set of independent sub-problems that are easier to solve. It also

identifies a set of constraints as ”coupling” constraints. We propose a DW decomposition based on the previous

model by defining the maintenance decisions as maintenance plans over the planning horizon. A maintenance

plan represents a set of maintenance decisions that define the periods during which maintenance is performed or

not. We define Ω as the set of all possible maintenance plans. Let Mj be the overall cost of maintenance plan

j ∈ Ω and let Cj
t be the available capacity during period t ∈ T in maintenance plan j ∈ Ω. Note that for the

sake of simplicity, we do not index the parameter Cj
t with the degradation function f , even if the degradation

function has a direct impact on the value of those parameters. Let wj be a binary variable that takes the value

1 iff maintenance plan j ∈ Ω is chosen, and 0 otherwise. The DW reformulation is as follows:

(FL−MDW ) min
x,y,c,w

∑
i∈P

∑
t∈T

 t∑
k=1

t−1∑
j=k

hcij

xikt

+
∑
i∈P

∑
t∈T

fityit +
∑
j∈Ω

Mjwj (13)

s.t. (2)− (4), (10)− (12)∑
j∈Ω

wj = 1 (14)

ct =
∑
j∈Ω

Cj
twj ∀ t ∈ T (15)

wj ∈ {0, 1} ∀ j ∈ Ω. (16)

Constraint (14) forces the selection of a single maintenance plan. Machine’s capacity at each period is

expressed with constraints (15). This is equivalent to constraints (5). Constraints (16) represent the domain

of the variables. The literature indicates that a Dantzig-Wolfe can only improve the linear relaxation. This is

however not the case here.
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Proposition 1. Let V1 be the value of the linear relaxation of (FL − EM) formulation and V2 be the value of

the linear relaxation of (FL−MDW ) formulation, then V1 = V2.

Proof. See Appendix A

Note that despite this theoretical result we tried to solve the linear relaxation of FL − MDW via column

generation. This however did not prove successful, in terms of CPU time, compared to a direct resolution of

FL− EM .

3.5. Impact of production on capacity degradation

One natural extension of the CLSPM is to consider that capacity decreases iff there is production that takes

place. We call this variant CLSPM-P. To that end, let Yt be a variable that takes the value one if any production

occurs in period t ∈ T , and zero otherwise. The resulting formulation is as follows:

(FL− EM) min
x,y,c,z,Y

∑
i∈I

∑
t∈T

 t∑
k=1

t−1∑
j=k

hcij

xikt

+
∑
i∈P

∑
t∈T

scityit +
∑
t∈T

mctztt (17)

s.t. (2)− (4), (10)− (12)

ct+1 ≤ f(ct, z) + Cmaxzt+1,t+1 + Cmax(1− Yt) ∀ t ∈ T (18)

ct+1 ≤ ct + Cmaxzt+1,t+1 + CmaxYt ∀ t ∈ T (19)

ct ≤ Cmax ∀ t ∈ T (20)

yit ≤ Yt ∀ i ∈ P, t ∈ T (21)

Yt ≤
∑
i∈P

yit ∀ i ∈ P, t ∈ T (22)

Yt ∈ {0; 1} ∀ t ∈ T. (23)

Constraints (18)-(19) define the evolution of the available capacity depending on the degradation function

f , on the maintenance action, and on the setup decisions Y . Constraints (21) indicate if any production took

place in a given period. Constraints (22) forces the Y variables to be equal to 0 if no production occurs. Such

constraints are necessary, compared to similar ones for the setup variables, since the Y variables do not appear

in the objective function. Finally, constraints (23) define the domains of the decision variables. In such case, the

degradation function f is as follows:

f(ct, z) =


αct if the degradation is exponential

ct − β if the degradation is linear

Clow + (Cmax − Clow)
∑t

k=t+1−γ zk,t+1 if the degradation is dirac
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4. Solving the CLSPM via a relax-and-fix and fix-and-optimize heuristic

In this section we present a heuristic we design to solve the CLSPM. The heuristic decomposes into two

heuristics: relax-and-fix (RF) and fix-and-optimize (FO). The relax-and-fix heuristic is used to build an initial

solution while the fix-and-optimize heuristic is used to improve the solution obtained by using RF.

4.1. Relax-and-fix

The relax-and-fix heuristic (see Section 2.2) is an approach that has proven effective in addressing diverse lot

sizing problems. It is an iterative construction heuristic that allows us to obtain a solution to a given problem

by solving several small mixed-integer linear problems (MILP). In each iteration, the set of binary variables is

divided into three disjoint sets: variables fixed, variables to be optimized, and relaxed variables. We define those

sets through the time periods where the binary variables are fixed, optimize or relaxed. Those sets are denoted

by F ,O and R, respectively.

Two key elements for the success of the relax-and-fix approach are the size of the sets F ,O and R, and the

strategy used to build the sets. In our case, we used a temporal approach, meaning that we follow the time

horizon to build the sets F ,O and R. Such approach has proven successful in the past (see, e.g., Helber and

Sahling [20]). In other words, let t− and t+ denote two time periods, with t− < t+. We set F = {t|t ≤ t−},

O = {t|t− < t ≤ t+}, and R = {t|t > t+}.

We further define κ = t+− t− as the size of the interval, in terms of time periods, of variables to be optimized

and ∆ as the size of the interval, in terms of time periods, for which the binary variables are fixed to a certain value

after a specific iteration. Coincidentally, ∆ is the number of additional periods whose corresponding variables

are fixed at the subsequent iterations. The relax-and-fix heuristic is described in Algorithm 1.

Algorithm 1 Relax-and-fix heuristic (RF)

1: Initialization: t− = 0, t+ = κ

2: Build sets F ,O and R

3: while all variables are not binary do

4: Solve the resulting mixed-integer problem taking into account F ,O and R

5: t− = t− +∆, t+ = min{|T |; t+ +∆}

6: Update sets F ,O and R

7: end while

Note that in our case, the RF heuristic did not provide infeasible solutions.

4.2. Fix-and-optimize

The feasible solution built by the RF heuristic will be used as initial solution for the FO heuristic. The FO

heuristic (see, e.g., Toledo et al. [35]) is similar to RF, where several MILP problems are solved iteratively. The

main difference is that no variables are relaxed: we re-optimize variables whose values are already integer. We

then use the same set O and F , except that F is defined as follows: F = {t|t ≤ t− and t > t+}. The parameters
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κ and ∆ are defined in the same way as for RF. In each iteration, we move several integer variables from F

to O. The main aim of the FO is to improve the solution obtained after RF. The FO heuristic is detailed in

Algorithm 2. We denote by RFFO the global heuristic that executes the FO heuristic from the solution given by

the RF heuristic.

Algorithm 2 Fix-and-optimize heuristic (FO)

1: Input: a feasible solution

2: Initialization: t− = 0, t+ = κ

3: Build sets F ,O

4: while all variables are not binary do

5: Solve the resulting mixed-integer problem taking into account F and O

6: t− = t− +∆, t+ = min{|T |; t+ +∆}

7: Update sets F ,O

8: end while

5. Computational experiments

This section presents the results obtained in our numerical campaign. We first describe the instances used

and give the details of the experiments. Then, we analyze the results obtained from the MIP models, to analyze

the impact of the degradation function and of the presence or absence of the Y variables. Finally, we analyze

the performance of the RF-FO heuristic compared to the MIP approach.

5.1. Experimental setting

This section presents the instances used in the experiments with both solvers and RF-FO heuristic. The

models are implemented in Julia with the library JuMP using Gurobi 11.0.0. The relax-and-fix and fix-and-

optimize are also implemented in Julia. All the computational tests are carried out using a computer with an

Intel Xeon Gold 6258R CPU @ 2.70GHz. We use only one thread in all the experiments. We keep all other

Gurobi parameters at their default values. The tested instances and numerical experiments are discussed as

follows.

Given the variety of settings encountered in the literature regarding maintenance features, we decide to

generate our own instances. The instances we use are inspired from the work of Shamsaei and Van Vyve [32].

We set the number of items |P | to {5, 20, 50, 100} and the number of periods |T | to {5, 10, 25}. The demand for

each item in each time period is generated from U [0; 50]. The nominal capacity of the machine is generated from

U [40|P |; 50|P |]. The setup costs are generated from U [500; 1000]. The unit holding costs are generated from

U [5; 10]. We finally consider three ways to generate the maintenance costs: (i) from U [500; 1000], i.e., similar to

a single setup cost, (ii) we take the value of (i) that we multiply by |P |, to have maintenance costs closer to setup

costs, and (iii), we take the value of (i) that we multiply by |P |
2 , to have an value in between the one from (i)

and the one from (ii). Those different ways of generating the maintenance costs also allows us to see the impact
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of the repartition of costs on the difficulty of the instances. For each combination of number of items, number of

periods, maintenance costs, we generate 10 different instances.

For each instance, we further test different values for the parameters of the degradation function. For the

exponential degradation, the parameter α is set to {0.7; 0.8; 0.9}. For the linear degradation, the parameter β is

set to {0.05; 0.1; 0.15}. For the dirac degradation, the parameter γ is set to {2; 3; 5}, and the parameter δ is set

to {0.1; 0.2; 0.5}. It results in a total of 10,800 instances to be solved.

5.2. Analysis of the MIP solutions

In this section, we report the results obtained when using the solver only. The objective is to analyze the

impact of the different instances settings. In that regards, we look at the LP relaxation value, the time taken to

solve the LP relaxation, the value of the MIP solution, the time taken to solve the problem, the gap between the

best lower and upper bounds at the end of the time limit, the number of nodes explored, the number of optimal

solutions obtained, the integrality gap, the proportion of maintenance, setup and inventory holding costs. Table 3

reports the results obtained. In Table 3, the different metrics measured are displayed in columns LP, LP time,

UB, UB time, Gap, Nodes, Opt, I-Gap, M cost, S cost and H cost, respectively. We also run each instance with

classical maintenance variables zt, i.e., variables that indicate if maintenance takes place in period t. We refer

the reader to Shamsaei and Van Vyve [32] for the full model. We give the solver a time limit of two hours to

solve each instance.

We can draw several conclusions from Table 3. For the sake of readability, we just highlight the main findings

from the results. Regarding the type of the degradation function, one can see that the degradation function

has no impact on the repartition of costs. We however see that the linear degradation generally leads to better

performances in terms of time to solve the MIP, final gap, number of nodes explored, and integrality gap. On

the contrary, the dirac degradation function has a negative impact on the value of the linear relaxation.

Regarding the values chosen for the different parameters in the maintenance degradation functions, the

changes in the different metrics are not always linear with the evolution of the parameters values. The evolution

of the values of α, β, δ and γ has expected impacts on the metrics. For instance, lower capacity reduction leads

to easier instances to be solved.

The value chosen for maintenance costs has an impact on the difficulty of the instances. Having low main-

tenance costs leads to easier instances, as stated by the time to solve the MIP, the number of optimal solutions

obtained, the final gap and the integrality gap. We also note that the proportion of inventory holding costs is

not sensitive to the choice of maintenance degradation function.

In terms of modeling, our newly proposed maintenance variables have limited benefits. The number of nodes

explored is reduced by around 12%, and the time taken to solve the MIP is around 3% lower with those new

variables. This is aligned with the improved LP relaxation obtained by using the new maintenance variables.

If we consider that the capacity decreases if and only if production occurs, i.e., when variables Y are present

in the model, we obtain more difficult instances. This can be seen in particular through the final gap, the number

of nodes explored, and the time taken to solve the MIP. We however observe that the time limit of two hours
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Table 3: Analysis of the instance settings

Para-
Value LP

LP time
UB

UB time Gap
Nodes Opt

I-Gap M cost S cost H cost

meter (s) (s) (%) (%) (%) (%) (%)

Maintenance type

Dirac 234578 0.1 242880 962 0.3 92876 9 2.9 12 30 58

Exponential 241015 0.1 248568 999 0.1 77614 9 2.9 14 28 58

Linear 236847 0.1 241568 590 0 57393 9 2 12 29 59

α

0.7 250056 0.1 260275 1206 0.2 89895 9 3.9 17 28 55

0.8 240884 0.1 248928 1119 0 87344 9 3.1 14 28 58

0.9 232104 0.1 236500 672 0 55602 10 1.7 11 29 60

β

0.05 230312 0.1 232721 114 0 9306 10 1.2 11 29 61

0.1 236596 0.1 241905 879 0 116622 9 2.2 12 30 58

0.15 243633 0.1 250077 776 0 46252 9 2.5 15 28 57

δ

0.1 240967 0.1 251329 683 0.2 58366 9 3.3 14 30 56

0.3 234769 0.1 245581 1157 0.7 156523 9 3.5 13 30 58

0.5 227999 0.1 231732 1046 0 63738 9 1.8 10 29 60

γ

2 237824 0.1 247949 1165 0.5 117325 8 3.5 13 30 57

3 234444 0.1 242395 1127 0.4 117265 9 2.7 12 29 58

5 231466 0.1 238297 593 0.1 44037 9 2.4 11 30 59

Maintenance costs

sc 212251 0 213022 15 0 1367 10 0.9 2 31 66

sc ∗ |P | 259939 0.1 274027 1537 0.5 154299 8 4.5 22 27 51

sc ∗ |P |
2 236768 0.1 244217 1133 0.1 92515 9 2.6 13 29 58

Model
zt 234551 0.1 243759 909 0.2 87488 9 3.4 13 29 58

zkt 238088 0.1 243752 881 0.2 77966 9 1.9 13 29 58

Y
no 236319 0.1 243777 822 0 89517 9 2.7 13 29 58

yes 236319 0.1 243734 967 0.4 75937 9 2.6 13 29 58

|T |

5 101789 0 103003 0 0 24 10 1.5 16 23 61

10 181701 0 186485 311 0.1 94664 10 2.7 12 31 58

25 425467 0.3 441778 2373 0.5 153493 7 3.9 11 34 56

|I|

5 27751 0 29153 41 0 7893 10 4 14 28 58

20 107394 0 110943 663 0.2 101197 9 2.4 12 29 58

50 269248 0.1 277478 1305 0.3 127245 9 2.2 12 30 58

100 540884 0.3 557448 1570 0.3 94572 8 2.2 12 30 58
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RF FO

|T | κ ∆ κ ∆

5 2 1 3 1

10 3 1 5 2

25 6 3 10 4

Table 4: Heuristic setting

Method Obj CPU time (s) gap MIP (%) Best (%)

MIP 243998 869 0 95

RF 245245 30 0.4 32

RFFO 244410 80 0.2 49

Table 5: Heuristic performance

is sufficient to obtain a similar number of optimal solutions obtained as when capacity decreases regardless of if

production occurs.

Finally, we see that the number of periods has a much stronger influence on the difficulty of the instances

compared to the number of items. This can be easily explained by the increased number of maintenance variables.

5.3. Heuristic performance

In this Section, we analyze the performance of the RFFO heuristic in terms of CPU time taken and gap

compared to the solution given by the FL-EM model. Note that we only kept this model in the analyses since

it gives the best results (see Table 3 when comparing the parameters zt and zkt). The values of κ and ∆ are

determined based on |T | for each heuristic. They are presented in Table 4 and were set after several preliminary

tests on the instances. The execution of heuristics and the resolution of MILP subproblems with Gurobi are

performed on a single core. For relax-and-fix, each MILP subproblem is limited to 180 seconds, while for fix-and-

optimize, the limit is 300 seconds. Additionally, the maximum execution time allocated to each heuristic is set

to 3600 seconds.

We display the results obtained in Table 5. In Table 5, for a specific method, i.e., a specific line, the columns

Obj, CPU time, gap MIP and Best report the average solution value, average CPU time taken by the method,

average gap compared to the solution given by the MIP model, and proportion of instances where the method

obtained the best objective, respectively. The gap is computed as objH−objMIP

objMIP
where objH and objMIP denote

the objective function obtained from heuristic H and from the MIP model, respectively.

In terms of quality of the objective function, the RF heuristic has on average solutions that are 0.4 % more

costly than the best solution found by the solver. This slightly higher cost comes, however, at the benefit of a

much shorter average CPU time taken. Indeed, the RF heuristic takes on average close to 30 times less time

than the use of Gurobi. This objective value is further improved by the use of the FO heuristic, to reach an

average gap of 0.2 % compared to the solution given by Gurobi. This additional gain comes this time, however,
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at a higher CPU time. The CPU time taken by the RFFO is yet, on average, 11 times less than that taken by

Gurobi. We can therefore see the gain given by the use of the RFFO heuristic.

Still related to the quality of the objective function, the number of best solutions obtained by RFFO is 49%.

We are even able to obtain a better solution, in terms of objective function, compared to Gurobi, for 5% of the

instances (see the following subsection).

In the following subsections, we analyze in more detail the quality of the objective function and the CPU

time gains.

5.3.1. Quality of the solution

We display in Table 6 the detailed results obtained by the RF and RFFO heuristics. In Table 6, we report

the solution value obtained from Gurobi, the solution value obtained from the RF and RFFO heuristics, the gap

between the solution of the heuristic and Gurobi, the proportion of instances where the RFFO heuristic obtains

the best solution quality, and the proportion of instances where the RFFO strictly obtains the best solution

quality. Those values are reported in columns UB MIP, RF Obj, RFFO Obj, RF gap, RFFO gap, RFFO Better,

and RFFO Strictly better, respectively.

In Table 6, one can see that the performance of both the RF and RFFO heuristics are quite stable in terms

of gap compared to the solution obtained by Gurobi. This illustrates the robustness of the approaches, which is

a main strength. We also see that the RFFO heuristic obtains a quite reasonable proportion of solutions with

the best objective, always more than 50%. The proportion of instances where the RFFO strictly obtains the

best solution is however quite low, close to 5% on average. In Table 6, one can see that for instances with 5 time

periods, the proportion of best solution obtained is quite high. This is in line with the performance of Gurobi

on such instances, as shown in Table 3. We finally see that for harder instances, i.e., instances with 100 items,

the RFFO heuristic has the strictly best solution value for 12% of the instances, more than twice the average

performance on this metric.

5.3.2. CPU time gains

In terms of CPU times, we note that the CPU gains vary depending on the instance setting. Table 7 displays

the distribution of CPU time gains compared to the use of Gurobi, and the repartition of the CPU time between

RF and FO for the RFFO heuristic. The CPU time gains are measured as the ratio between the CPU time taken

by Gurobi, and the CPU time taken by the heuristic. We report in this table the minimum, maximum, median,

first and third quartiles, and average values for such metrics.

One can see in Table 7 that the CPU time gains for RF heuristic ranges between 0.02 times faster and 4077

times faster, with an average of 34.5 times faster. The CPU time gains for the RFFO heuristic ranges between

0.02 time faster and 3217 times faster, with an average of 13.9 times faster. Finally, the repartition of time

between RF and FO ranges between 0.6% and 96%, with an average of 53%. This illustrates that the instance

setting has a strong impact on the performance of the heuristic, in terms of CPU time. The distribution of CPU

time gains also indicates that a large number of instances do not offer strong gains, as observed with the median
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Table 6: Detailed analysis of quality of the solution for the heuristics

Para-
Value

UB
RF Obj

RF gap
RFFO Obj

RFFO gap RFFO RFFO Strictly

meter MIP (%) (%) better (%) better (%)

Maintenance type

Dirac 243288 244571 0.4 243656 0.1 56 5

Exponential 248572 249723 0.5 248977 0.2 49 5

Linear 241554 242791 0.4 242105 0.2 60 4

α

0.7 260283 261562 0.6 260578 0.3 38 7

0.8 248932 250028 0.5 249341 0.2 50 4

0.9 236501 237578 0.3 237012 0.1 58 6

β

0.05 232721 233117 0.1 232907 0.1 78 6

0.1 241906 243875 0.8 242878 0.4 50 4

0.15 250035 251381 0.4 250531 0.1 52 3

δ

0.1 252551 254067 0.6 253042 0.2 54 5

0.3 245581 246731 0.4 245829 0.1 54 7

0.5 231732 232915 0.3 232096 0.1 59 5

γ

2 247937 249455 0.6 248359 0.2 51 4

3 243624 244822 0.4 243904 0.1 57 7

5 238303 239437 0.3 238705 0.1 59 5

Maintenance costs

sc 213022 213110 0.1 213065 0.1 63 5

sc ∗ |P | 274026 276319 0.7 274680 0.2 52 7

sc ∗ |P |
2 244946 246307 0.5 245485 0.2 51 4

Y
no 244264 245330 0.4 244681 0.2 54 4

yes 243732 245161 0.5 244139 0.2 56 6

|T |

5 103003 103132 0.2 103042 0.1 81 6

10 186658 187664 0.6 187040 0.2 45 3

25 442333 444941 0.6 443148 0.2 39 7

|I|

5 29172 29362 0.6 29246 0.2 69 0

20 111039 111658 0.4 111277 0.2 59 3

50 277746 278979 0.3 278176 0.1 46 5

100 558035 560983 0.4 558941 0.1 46 12

Average 243998 245245 0.4 244410 0.2 55 5

Table 7: Detailed analysis of CPU time gains for the heuristics

CPU time RF gain CPU time RFFO gain Prop RF time (%)

Min 0.02 0.02 0.6

Max 4077 3217 96

1st quartile 0.4 0.2 40

Median 0.9 0.5 52

3rd quartile 5.2 2.9 67

Average 34.5 13.9 53
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Figure 1: Profile curves on CPU time gains

value. A closer look at the detailed results indicates that instances with 5 time periods, i.e., easy instances, make

the use of the heuristic useless.

To better illustrate the CPU time gains, we report in Figure 1 the profile curve for the different CPU time

gains on a logarithmic scale. The x-axis indicates the number of instances solved, while the y-axis indicates, for

a given x, the CPU time gains in increasing order.

One can see on Figure 1 that the RF heuristic has gains after 5568 instances, i.e., roughly half of the instances,

and the RFFO heuristic has gains after 6939 instances, i.e., roughly two third of the instances solved. We further

see that the CPU time gains tend to explode after instance 9000, showing the usefulness of our approach for harder

instances. Similar to Table 7, we report in Table 8 the CPU time gains obtained by the heuristics depending on

the instance settings.

In Table 8, one can see that the cost configuration has a strong impact. Indeed, when the maintenance costs

follow the setup costs (first cost configuration), the CPU time gains are much lower than on average, with the

RF heuristic being 2.9 times faster on average, and the RFFO heuristic being just 1.3 time faster on average. On

the contrary, difficult instances, i.e., instances with higher maintenance costs, come with higher CPU time gains.

In terms of capacity degradation function, the dirac degradation brings higher CPU time gains, the RF

heuristic being on average 37.8 times faster, and the RFFO one being on average 15.6 times faster.

The instances with a higher number of items (50 or 100), come also with higher CPU time gains. With 100

items, the RF heuristic is even 48.1 times faster than Gurobi on average.

We also note that the consideration or not of production decisions on capacity degradation has no impact

on the CPU time gain for the RF heuristic, but its presence has a positive impact on the gains for the RFFO

heuristic.

We finally note that for instances with a low number of periods (5 periods), the heuristics are not competitive.

This contrasts with instance with 10 periods where the RFFO has the highest CPU time gains.
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Table 8: Detailed analysis of CPU time gains for the heuristics

Para-
Value

CPU time CPU time Prop RF

meter RF gains RFFO gains time (%)

Maintenance type

Dirac 37.8 15.6 53

Exponential 26 12.6 53

Linear 33.2 10.5 50

α

0.7 31 12.8 54

0.8 25.3 13.2 54

0.9 21.7 11.7 52

β

0.05 4.8 1.9 48

0.1 74.2 19.3 48

0.15 20.7 10.3 54

δ

0.1 12.7 7.1 59

0.3 76.1 33.1 53

0.5 24.7 6.4 48

γ

2 51.5 24.6 54

3 49.9 18 53

5 12.1 4.1 53

Maintenance costs

sc 2.9 1.3 51

sc ∗ |P | 64.2 24.7 53

sc ∗ |P |
2 36.5 15.8 54

Y
no 34.2 10.6 51

yes 34.9 17.3 54

|T |

5 0.7 0.3 45

10 61.9 23.1 62

25 41.1 18.4 51

|I|

5 9.3 4.8 61

20 36.5 18.2 57

50 44.2 20 51

100 48.1 12.8 42

Average 34.5 13.9 53
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6. Conclusion

In this paper, we address an integrated lot sizing and maintenance problem. We consider a single machine

whose capacity decreases with time. We test different capacity degradation functions: an exponential one, a

linear one, and a dirac one, to cover a broader spectrum of potential degradations. We further consider that the

capacity decreases even if no production occurs. We model the problem using newly introduced maintenance

variables compared to the literature. Those new variables are inspired from the transportation formulation for

the lot sizing problem. We further develop a relax-and-fix fix-and-optimize heuristic to solve the problem, and

compare the results of using a solver compared to the heuristic approach. The results indicate that the heuristic

is very robust in terms of quality of the solution obtained, and is even able to obtain better solutions than the

solver for difficult instances (5% of the instances). The heuristic obtains CPU time gains for numerous instances,

and the CPU time gains can be quite large. On average, the RF heuristic is 34 times faster than the use of

Gurobi, and the RFFO is 14 times faster.

In future research we would like to explore the possibility of having a decrease of capacity based on the

production quantities. We would also like to explore different strategies for the RFFO approach in terms of

variables to be relaxed and variables to be fixed.
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Appendix A. Proof of Proposition 1

In this section we present the proof of Proposition 1

Proposition. Let V1 be the value of the linear relaxation of (FL−EM) formulation and V2 be the value of the

linear relaxation obtained with the (FL−MDW ) formulation, then V1 = V2.

Proof. Let R be the polyhedron induced by constraints (2)-(4), (11)-(12) modeling the facility location constraints,

and let Q1 be the polyhedron modeling the maintenance:

Q1 = {zkt ∈ [0, 1], ct ∈ R+, satisfying constraints (5)-(10)} (A.1)

The solution space of the linear relaxation of the (FL-EM) model is R∩Q1. Meanwhile, the (FL−MDW ) model

is obtained by applying a Dantzig-Wolfe decomposition to the polyhedron Q1. Thus, the solution space of its

linear relaxation is R ∩ Q2 where Q2 is the convex envelope of points of Q1 corresponding to integer values of

zkt. In order to show that the value of both linear relaxations is the same, we will show that Q1 = Q2 and thus

that the solution space of both formulations is the same.
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The inclusion Q2 ⊆ Q1 is implied by the fact Q2 is the convex envelope of integer points of Q1 and that Q1

as a polyhedron is convex. Thus, let us now show Q1 ⊆ Q2.

To that end, consider an assignment of the variables zkt satisfying constraints (5)-(10). We will show that

there exists an assignment of the variables wj of the (FL−MDW ) model inducing the same maintenance actions,

the same capacity and the same cost. This will mean any point of Q1 can be expressed as a point of Q2; i.e.

that Q1 ⊆ Q2. We now explain Algorithm 3 which computes such an assignment of the variables wj from an

assignment of the variables zkt.

Note that each variable wj is associated with a maintenance plan and that an assignment of the variables wj

is a set of coefficients in a convex combination of maintenance plans. In what follows, we will call partial plan,

a boolean vector corresponding to the beginning a maintenance plan (i.e. indicating for the first time-steps if a

maintenance action is taken). The operator ⊕ will be used to add a maintenance action to a partial plan; e.g.

[1, 1, 0] ⊕ 1 = [1, 1, 0, 1]. Let us denote πt the set of partial plans created at iteration t ∈ T by the algorithm

together with their coefficients in the convex combination, πt = [(Pi, wPi)]i∈It , where Pi is a partial plan and wPi

its associated coefficient. Let also πk
t be the subset of πt which contains plans that have no maintenance since

period k. For π a set of partial plans created by the algorithm, let W (π) be the sum of the coefficients associated

to these partial plans.

Algorithm outline. The algorithm constructs a set of maintenance plan as well as their coefficients in the convex

combination. To that end, a set of partial plans containing only the action for the first time-step π0 = [((1), 1)]

is initialized. Note that a maintenance action is required at the first time-step. Then at iteration t ∈ T \ {0},

the partial plans in πt−1 are extended with a maintenance action for time-step t. Note that one plan P can be

extended with two maintenance actions. In this case, two plans P⊕0 and P⊕1 are created and their coefficients in

the convex combination must satisfy wP⊕0+wP⊕1 = wP . This construction has two underlying objectives. First,

we want in the end that the plans in convex combination decide the same maintenance actions as the variables

zkt (this will imply the same maintenance cost). If denote P j
t the boolean maintenance action taken by plan j

at time-step t then we precisely want for all t ∈ T , ztt =
∑

j P
j
t wj . This means the proportion of maintenance

plans extended with a one at each iteration is decided by ztt. We also want that the maintenance plans created

to induce the same capacity as the variables zkt; the highest capacity possible with these maintenance actions.

In particular, this induces that we will always extend with a 1 the plan whose last maintenance action is the

earliest because this resets to Cmax the capacity of the plan with the lowest current capacity.
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Algorithm 3 Decomposition algorithm

Require: z = {ztt|t ∈ T} ▷ z11, z22, ... ∈ [0, 1] are the maintenance actions realized.

1: Output : π|T | a set of maintenance plans with a coefficient in the convex combination

2: π0 = [((1), 1)]

3: for t ∈ T \ {0} do

4: temp = ztt

5: while temp > 0 do

6: Set P to be the unextended plan in πt−1 whose last maintenance action is the earliest

7: if temp ≥ wP then

8: πt = πt ∪ (P ⊕ 1, wP )

9: temp = temp− wP

10: else

11: πt = πt ∪ (P ⊕ 1, temp)

12: πt = πt ∪ (P ⊕ 0, wP − temp)

13: temp = 0

14: end if

15: end while

16: for all unextended maintenance plans P ∈ πt−1 do

17: πt = πt ∪ (P ⊕ 0, wP )

18: end for

19: end for

20: return π|T |

We now show that the solution given by Algorithm 3 has the same cost and capacity as the optimal solution

of the (FL-EM) model. To that end, we will show that the two solutions use the same maintenance action, i.e.

W (πk
t ) = zkt for all k, t ∈ T with k ≤ t. Indeed, in this case the costs are the same:∑

j

Mjwj =
∑
j

∑
t

mctP
j
t wj (A.2)

=
∑
t

mct
∑
j

P j
t wj (A.3)

=
∑
t

mctW (πt
t) (A.4)

=
∑
t

mctztt (A.5)

and — denoting δjkt the boolean indicating if the last maintenance before time-step t in plan j is at time-step k

— the capacities are the same:

∑
j

cjtwj =
∑
j

Cmax

t∑
k=0

αt−kδjktwj (A.6)
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= Cmax

t∑
k=0

αt−k
∑
j

δjktwj (A.7)

= Cmax

t∑
k=0

αt−kW (πk
t ) (A.8)

= Cmax

t∑
k=0

αt−kzkt (A.9)

But first, let us show that, there is an optimal solution of the (FL-EM) model for which the variables

zkt for k < t will take the value min{zkk, 1 −
∑t

i=k+1 zit}. Let us consider a specific pair (k, t) ∈ T 2 with

k < t. If constraints (7) and (8) are satisfied, zkt must be lower than min{zkk, 1 −
∑t

i=k+1 zit}. Moreover, if

zkt is strictly lower than min(zkk, 1 −
∑t

i=k+1 zit), then we can construct an optimal solution of the (C-EM)

model with a higher zkt as follows. If
∑t

i=1 zit < 1 then one can just increase zkt by a small amount without

breaking any constraint. Otherwise (
∑t

i=1 zit = 1), having zkt < 1 −
∑t

i=k+1 zit means that
∑t

i=k zit < 1

which means at least one of the variables zk′t for k′ < k is higher than zero. Let ϵ ∈ R be small enough. One

can modify the solution by adding ϵ to zkt and subtracting ϵ to zk′t. This remains an optimal solution for a

small enough ϵ since zkt < zkk and this process just increases the capacity ct (since α ≤ 1). In other words,

if we do not have zkt = min{zkk, 1 −
∑t

i=k+1 zit}, we can always build an optimal solution where we do have

zkt = min{zkk, 1−
∑t

i=k+1 zit}.

In line 7 and 12, Algorithm 3 extends maintenance plans with a 1 until the sum of the coefficients of the

extended plans equals ztt. This exactly means W (πt
t) = ztt.

We will now show that for every k, t ∈ T, k < t, we have W (πk
t ) = zkt. To that end, we will show W (πk

t ) =

min{zkk, 1−
∑t

i=k+1 zit}. This will be shown by induction on the pairs (k, t) with k ≤ t in the following order :

(0, 1) → (1, 2) → (0, 2) → (2, 3) → (1, 3) → (0, 3) → (3, 4) → (2, 4) → (1, 4) → (0, 4) → (4, 5)...

When considering the induction step of a pair, the hypothesis will be that W (πk
t ) = zkt = min(zkk, 1 −∑t

i=k+1 zit) for all the previous pairs.

Base Case. W (π0
1) = w[1,0] = 1− w[1,1] = 1− z11 and w[1,0] ≤ w[1,] = z00. Thus Wπ0

1
= min(z00, 1− z11).

Inductive step. Let us now prove that W (πk
t ) = zkt for a specific (k, t) ∈ T 2 with k < t. The partial plans

in πk
t are the partial plans of πk

t−1 that have been extended by the algorithm with a zero. Let us now do the

following case disjunction:
∑

k′<k W (πk′

t−1) ≤ ztt or
∑

k′<k W (πk′

t−1) > ztt. This case disjunction decides whether

some of the partial plans in πk
t−1 are extended with a one or not. This is because the algorithm prioritizes

extending with a one the partial plans whose last maintenance action is the earliest.

Case
∑

k′<k W (πk′

t−1) ≤ ztt: In this case, all the partial plan of πt−1 finishing with more than t− 1− k zeros

are extended with a one at time-step t. Thus, none of the plans in πt finish with more than t − k zeros. Thus,∑t
k′=k W (πk′

t ) =
∑t

k′=0 W (πk′

t ) = 1. This means that W (πk
t ) = 1−

∑t
k′=k+1 W (πk′

t ) = 1−
∑t

k′=k+1 z
k′

t because

of the induction hypothesis. Moreover, W (πk
t ) ≤ W (πk

t−1) since the partial plans in πk
t are the partial plans

of πk
t−1 that have been extended by the algorithm with a zero. This leads to by the induction hypothesis to
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W (πk
t ) ≤ zk,t−1 = min(zkk, 1−

∑t
i=k+1 zi,t−1) ≤ zkk. This finishes to show thatW (πk

t ) = min(zkk, 1−
∑t

i=k+1 zit)

in this case.

Case
∑

k′<k W (πk′

t−1) > ztt: In this case, at least one partial plan of πt−1 finishing with more than t− 1− k

zeros is extended with a zero at time-step t. Thus, at least one plan in πt finishes with more than t − k zeros.

Thus,
∑t

k′=k W (πk′

t ) < 1 which means W (πk
t ) < 1−

∑t
k′=k+1 W (πk′

t ) = 1−
∑t

k′=k+1 z
k′

t because of the induction

hypothesis. Moreover, since only partial plans with more than t− 1− k zeros were extended with a one, all the

plans finishing with t−k zeros were extended with a zero by the algorithm. Thus, W (πk
t ) = W (πk

t−1) = zk,t−1 =

min{zkk, 1−
∑t−1

i=k+1 zi,t−1}. Moreover, by the induction hypothesis we have
∑k−1

k′=0 zk′,t−1 =
∑k−1

k′=0 W (πk′

t−1) >

ztt ≥ 0. This means in conjunction with constraints (8) that zk,t−1 < 1−
∑t−1

i=k+1 zi,t−1 which means zk,t−1 = zkk

and in turn W (πk
t ) = zkk. This finishes proving that W (πk

t ) = min{zkk, 1−
∑t

i=k+1 zit} in this case.
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