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makers (drivers) respond by choosing routes that minimize their individual travel 
times, resulting in user equilibrium. In this work, we propose two novel single 
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reformulations, as well as their computational performance on academic test 
instances of the NDP. We then apply our methods to the EV charging station 
capacity expansion problem. We define a metric, the cost of sustainability, to 
measure the service quality experienced by individual EV drivers, and optimize 
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experiments using the road network in Quebec, including public fast EV 
charging stations. 

Keywords: Network design, bilevel programming, user equilibrium, fairness 

Acknowledgements. This research was supported by Hydro-Québec, NSERC 
Collaborative Research and Development Grant CRDPJ 536757 - 19, and the FRQ-
IVADO Research Chair in Data Science for Combinatorial Game Theory. 

 
 
 
 
 
 
Results and views expressed in this publication are the sole responsibility of the authors and do 
not necessarily reflect those of CIRRELT. 
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la 
position du CIRRELT et n'engagent pas sa responsabilité. 
 
_____________________________ 

* Corresponding author: nagisa.sugishita@gmail.com 

Dépôt légal – Bibliothèque et Archives nationales du Québec 
                          Bibliothèque et Archives Canada, 2025  

© Sugishita, Sevim, Carvalho, Dems, Atallah and CIRRELT, 2025 



1 Introduction

This study addresses the bilevel network design problem (NDP) with congestion. At the upper-level, a
network designer determines which arcs to add to an existing transportation network. Meanwhile, at
the lower-level, drivers respond by selecting routes that minimize their individual travel times, resulting
in the so-called Wardrop user equilibrium. The effect of congestion is modeled by using arc travel time
functions that depend on their traffic volumes. One can formulate the computation of the equilibrium
as a convex optimization problem (Beckmann et al. [1955]). Thus, the NDP can be seen as a bilevel
programming problem where the leader represents the network designer and the follower represents the
drivers using the transportation network.

An emerging application of the NDP is the design of sustainable transportation systems. As concerns
over climate change grow, the transportation sector faces increasing pressure to enhance its environmental
sustainability. Electric vehicles (EVs) are expected to play a key role to this end. To promote EV adop-
tion, it is crucial to ensure reliable access to public fast-charging stations through effective deployment.
The NDP offers a framework to model the optimal sizing and placement of these stations by considering
the behaviors and interactions of EV drivers.

Exact solution methods for the NDP have been studied actively in the past decades. To the best
of our knowledge, they exclusively assume that the objective of the upper-level problem is the total
travel time (see, e.g., Farvaresh and Sepehri [2013], Rey and Levin [2024] and references therein). The
solution methods are tailored to this specific objective function and it is not straightforward to extend
the approaches to handle different objective functions or extra constraints.

However, in some contexts, there are metrics other than the total travel time that may interest the
network designer. One example of such a metric is fairness. Consider a road network with conventional
cars of the same specifications. The user equilibrium can be considered fair because, at the equilibrium,
two drivers with the same origin and destination experience the same travel time (Patriksson [2015]).
However, if we compare different setups, drivers may perceive some sort of unfairness. For example, if
there is no congestion on the road (e.g., during an off-peak period), they can travel in a shorter time.
This difference is referred to as free-flow unfairness by Jahn et al. [2005].

We can also consider the discrepancy between different modes of transportation. As an example,
suppose we are given a road network with EVs and conventional cars. Typically, an EV requires a non-
negligible amount of time to charge the battery. Furthermore, often EV charging stations are scarce and
EV drivers need to deviate from their preferred routes to visit a charging station. Therefore, EV drivers
may spend extra time visiting and using charging stations along their trips, which would not be necessary
if they used conventional cars. This extra time spent by EV drivers can be seen as a metric to indicate
the inconvenience/inefficiency experienced by the EV drivers. The fast EV charging station operator may
be interested in finding the fast charging station locations accounting for such a metric.

In this paper, we present new approaches to model the NDP. Our approaches are based on single-level
reformulations of the NDP as convex mixed-integer nonlinear programs (MINLP). Such reformulations can
be solved with a standard convex MINLP solver and benefit from techniques developed in the literature.
Furthermore, our reformulations are flexible so that we can formulate variants of the NDP that optimize
different metrics other than the total travel time, such as free-flow unfairness. We also demonstrate that
the capacity expansion (sizing) problem of fast EV charging stations can be modeled as the NDP. We
apply our reformulations to optimize the total travel time and other inefficiency metrics (formally defined
later) related to EV usage in a case study of the province of Quebec. Our computational results showcase
the sensitivity of the solution to the objective, highlighting the importance of appropriately choosing the
objective for the upper-level problem.

The paper is organized as follows. Section 2 provides a literature review. In Section 3, we introduce
the overall network design problem. We also outline formulations of the traffic assignment problem, the
lower-level problem of the NDP. Section 4 presents our single-level reformulations of the network design
problem. We provide numerical experiments using test instances of the NDP in Section 5. In Section 6,
the capacity expansion problem of fast EV charging stations is formulated as the NDP, and we provide
numerical experiments based on the Quebec road network. We conclude the paper in Section 7.
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2 Literature Review

The NDP involves the modification or installation of transportation network components, such as arcs.
The decisions can be either continuous (e.g., the capacity of arcs) or discrete (e.g., the addition of new
arcs), as discussed in Magnanti and Wong [1984]. In this work, we focus on the NDP with discrete
decisions, and below we review related solution methods. We also examine models related to the siting
and sizing of EV charging stations that are relevant to position our case study.

Discrete Network Design Problem. One of the most popular approaches for solving the NDP is
the branch-and-bound algorithm. Leblanc [1975] points out that the high-point relaxation (HPR) can
be used to compute a bound for each node in the branch-and-bound algorithm. He further relaxes an
upper-level budget constraint, yielding a relaxation of the HPR that allows for a quicker computation of
a lower bound. To solve the HPR efficiently, Farvaresh and Sepehri [2013] use an outer-approximation
method, while Bagloee et al. [2017] apply Benders’ decomposition. More recently, Rey and Levin [2024]
combine an outer-approximation algorithm with a column generation technique.

Another popular approach is to approximate nonlinear functions with piecewise linear ones. Farvaresh
and Sepehri [2011] replace the lower-level problem with the Karush–Kuhn–Tucker (KKT) conditions and
linearize the nonlinear terms, transforming the problem into a single-level mixed-integer linear program-
ming problem. Fontaine and Minner [2014] linearize the travel time functions and approximate the
lower-level problem with linear programming, which can then be reformulated as a single-level mixed-
integer linear programming problem. While these methods are not exact due to the piecewise linear
approximation, their numerical experiments show that they can produce high-quality solutions.

All the methods mentioned above assume that the objective function is the total travel time and rely
on the problem-specific structure. Modifying these methods to consider objective functions other than
total travel time is not straightforward.

Sizing and Placement of EV Charging Stations. In EV infrastructure planning, bilevel program-
ming is often used to model the interaction between an EV charging station operator and EV drivers.
Typically, the upper-level problem seeks to minimize costs, emissions, or travel times, while the lower-
level problem captures the behavior of the drivers, taking into account factors such as route choices,
waiting times at charging stations, and vehicle range constraints. For example, Kınay et al. [2023] use
logic-based Benders’ decomposition to minimize the installation costs of charging stations. Zhang et al.
[2023] consider a bilevel programming problem where the upper-level is a multi-objective optimization
problem aimed at minimizing both total costs and total service time. However, neither Kınay et al. [2023]
nor Zhang et al. [2023] account for the interaction between drivers, such as congestion in the lower-level
problem.

Tran et al. [2021] use the NDP to model EV infrastructure planning. In this model, the upper-level
decision-maker determines the locations of charging stations, while the lower-level problem is a user
equilibrium problem under congestion. Similarly, Jing et al. [2017] consider a bilevel NDP problem where
the lower-level problem models drivers’ behavior as stochastic user equilibrium. Both studies focus on
road congestion rather than congestion at EV charging stations and use heuristics to find feasible solutions
quickly. In our case study, we model congestion at charging stations, optimize various metrics–including
those related to fairness–by expanding stations’ capacities, and use an exact MINLP solver to optimize
our reformulation.

3 Model

In this section, we present the formulation of the NDP as a bilevel programming formulation.
Let G = (V,A) be a directed graph. The set A contains all the existing arcs as well as candidate

arcs that can be built. For each arc a ∈ A, we associate a binary variable xa to indicate its availability:
The value of xa is 1 if arc a is available and 0 otherwise. We write the set of feasible values of x as
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X ⊂ {0, 1}A. For example, X can model a budget constraint. If arc a ∈ A already exists, we have xa = 1
for any x ∈ X.

Denote by K the index set of the origin-destination (OD) pairs of nodes in the network. For each
k ∈ K, we denote its origin, destination and demand volume by ok, dk and ek, respectively. Furthermore,
for each a ∈ A, let θa be the travel time function, the function that maps the link flow on a (total traffic
volume on a) to its travel time.

Throughout this paper, we assume the following:

Assumption 1. 1. For each demand k ∈ K, there is a path from ok to dk that only uses existing
arcs.

2. For each arc a ∈ A, given the link flow s ≥ 0, the travel time function is given by

θa(s) = fa + gas
p, (1)

where fa ≥ 0 and ga ≥ 0 are non-negative real values and p ≥ 1 is a positive integer.

These assumptions are not restrictive. If the road network is already well-connected, all the OD
pairs are traversable even without building any new arcs. We also note that the family of travel time
functions modeled by (1) includes the Bureau of Public Roads (BPR) function (Patriksson [2015]) as well
as a constant travel time. All the test instances we use in our numerical experiments (Sections 5 and 6)
satisfy Assumption 1.

One of the popular formulations (for example, see Farvaresh and Sepehri [2013], Wang et al. [2013]
for example) of the NDP models the flow of each demand k ∈ K along each arc a ∈ A. Let y ∈ RK×A

be the variable representing the individual flows. The NDP is written as

min
x,y

∑
a∈A

(∑
k∈K

yka

)
θa

(∑
k∈K

yka

)
(2)

s.t. x ∈ X, y ∈ Y (x),

where Y (x) is the set of user equilibria parametrized by x, which will be discussed in Section 3.1. The
objective function is the total travel time experienced by all the demands, which is convex in y. In this
paper, we also consider variants of the NDP that optimize other metrics (see Sections 4.1 and 6.3).

Problem (2) contains a large number of variables, in particular those related to the flow. However,
it is possible to aggregate the flow variables if the origins of the corresponding OD pairs are identical
without altering the optimal objective value and the optimal values of x. Such aggregation can make
the formulation size smaller but weaken the formulation (the resulting continuous relaxation will give a
weaker lower bound). Thus, whether such aggregation leads to a speed-up depends on the instance. This
technique is well-known in the multicommodity flow literature. See the discussion by Chouman et al.
[2017] and references therein. To the best of our knowledge, this flow aggregation is not exploited in the
literature on the bilevel NDP under user equilibrium. However, our earlier experiments revealed that
aggregating the flow variables reduced the solution time (see Appendix A). Therefore, in this paper, we
consider formulations where the flow variables are aggregated.

Let O = {v ∈ V : ∃k ∈ K, ok = v} be the set of origins, and for each o ∈ O, let Ko = {k ∈ K : ok = o}
be the set of demands whose origins are o. We also denote the flow aggregated by origins as

zoa =
∑
k∈Ko

yka.

Then, problem (2) can be rewritten as

min
x,z

∑
a∈A

(∑
o∈O

zoa

)
θa

(∑
o∈O

zoa

)
(3)

s.t. x ∈ X, z ∈ Z(x),
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where Z(x) is the set of aggregated flow at the user equilibrium given x.
As we will see in Section 3.1, the equilibrium flows Z(x) can be modeled as the solution set of an

optimization problem, and thus formulation (3) is a bilevel program. In particular, it corresponds to the
optimistic formulation. If multiple user equilibria exist, we assume that the most desirable one (i.e., the
one with the smallest total travel time) will be realized. The contrary is the pessimistic formulation,
where we assume that the least desirable one (i.e., the one with the largest total travel time) will be
realized. However, as stated by Roughgarden and Tardos [2000], in the case of multiple user equilibria,
all user equilibria have the same total travel time:

∑
a∈A

(∑
o∈O

zoa

)
θa

(∑
o∈O

zoa

)
=
∑
a∈A

(∑
o∈O

z′oa

)
θa

(∑
o∈O

z′oa

)
, ∀x ∈ X, z, z′ ∈ Z(x).

For completeness, we provide a proof in Appendix C. Therefore, under Assumption 1, there are no
distinctions between the optimistic and pessimistic formulations.

3.1 Wardrop Equilibrium Conditions

In this section, we assume x ∈ X is given and illustrate how the set of user equilibria Z(x) is modeled.
Let G(x) = (V,A(x)) be the subgraph of G that only contains available arcs:

A(x) = {a ∈ A : xa = 1}.

Furthermore, we define the graph G = (V,A) consisting of the existent arcs, i.e.,

A =
⋂
x∈X

A(x).

To describe a set of feasible flows, define for each k ∈ K and v ∈ V

e′kv =


−ek, if v = ok,

ek, if v = dk,

0, otherwise,

and the aggregated variant for each o ∈ O and v ∈ V by

eov =
∑
k∈Ko

e′kv.

Then, a feasible flow must satisfy the flow conservation constraint∑
a∈A+

v (x)

zoa −
∑

a∈A−
v (x)

zoa = eov, ∀o ∈ O, v ∈ V,

where A+
v (x) and A−

v (x) correspond to the set of incoming and outgoing arcs of v.
We also assume each driver is self-driven and chooses the route so that their travel time is minimized.

This is referred to as Wardrop’s second principle. It is shown by Beckmann et al. [1955] that the user
equilibrium is given as the optimal solution to the following problem:

ϕ(x) = min
z

∑
a∈A(x)

∫ ∑
o∈O zoa

0

θa(s)ds (4a)

s.t.
∑

a∈A+
v (x)

zoa −
∑

a∈A−
v (x)

zoa = eov, ∀o ∈ O, v ∈ V, (4b)

z ≥ 0. (4c)
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The KKT condition of (4) is given by∑
a∈A+

v (x)

zoa −
∑

a∈A−
v (x)

zoa = eov, ∀o ∈ O, v ∈ V, (5a)

θa

(∑
o∈O

zoa

)
− πot + πoh ≥ 0, ∀o ∈ O, a = (h, t) ∈ A(x), (5b)(

θa

(∑
o∈O

zoa

)
− πot + πoh

)
zoa = 0, ∀o ∈ O, a = (h, t) ∈ A(x), (5c)

z ≥ 0. (5d)

When the travel time function θa is given by (1) for all a ∈ A(x), it can be shown (see Appendix B)
that the Lagrangian dual of (4) is given by

max
π,η

∑
k∈K

ek(πokdk
− πokok)−

∑
a∈A(x)

p

g
1/p
a (p+ 1)

η
p+1
p

a (6)

s.t. ηa ≥ πot − πoh − fa, ∀o ∈ O, a = (h, t) ∈ A(x),

ηa = 0, ∀a ∈ A(x) : ga = 0,

η ≥ 0,

where ga = ga if ga > 0 and otherwise ga = 1. This dual formulation is exploited in the literature. For
example, Fukushima [1984] develops a solution method based on this dual formulation. We denote the
set of optimal values of π for formulation (6) by Π(x).

Under Assumption 1, for any x ∈ X, the primal problem (4) and dual problem (6) have a feasible
solution, strong duality holds and the primal/dual variables are optimal if and only if they satisfy the
KKT condition (5). This is a standard result in the literature. See Rockafellar et al. [1981] for more
details. Furthermore, as discussed by Patriksson [2015], for any x ∈ X, k ∈ K and π(x) ∈ Π(x),
πokdk

(x) − πokok(x) is the travel time experienced by each individual of OD pair k to travel from ok to
dk under the congestion at the user equilibrium.

In particular, strong duality implies that Z(x) = projz(Z
′(x)), where

Z ′(x) =



z
π
η

 :

∑
a∈A(x)

∫ ∑
o∈O zoa

0

θa(s)ds

≤
∑
k∈K

ek(πokdk
− πokok)−

∑
a∈A(x)

p

g
1/p
a (p+ 1)

η
p+1
p

a ,∑
a∈A+

v (x)

zoa −
∑

a∈A−
v (x)

zoa = eov, ∀o ∈ O, v ∈ V,

ηa ≥ πot − πoh − fa, ∀o ∈ O, a = (h, t) ∈ A(x),
ηa = 0, a ∈ A(x) : ga = 0,

z, η ≥ 0



.

We will use this property to derive one of our single-level reformulations of the NDP in Section 4.

3.2 Capacity Expansion as Multigraph

Before discussing our solution methods, we would like to note that the NDP can model the expansion of
existing roads as well as the installation of new roads. For example consider the traffic assignment on
graph G1 in Figure 1 with a single OD pair (i.e., K = {1}) from node 1 to node 3. For any demand
volume e1 ≥ 0, there is a unique user equilibrium given by

z1a = e1, ∀a ∈ {1, 2},
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and the total travel time (the upper-level objective in the NDP (3)) is

∑
a∈A

(∑
o∈O

zoa

)
θa

(∑
o∈O

zoa

)
= e1 · 1 + e1 · e1/3 = e21/3 + e1.

Now consider the case where we build another arc from node 2 to node 3 with travel time s/2 as shown
in graph G2. For any demand volume e1 ≥ 0, the user equilibrium is unique and given by

z11 = e1, z12 = 3e1/5, z13 = 2e1/5,

with the total travel time e21/5+e1. Similarly, we can show that graph G3 has the unique user equilibrium

z1a = e1, ∀a ∈ {1, 2},

with the total travel time e21/5+ e1. The total travel times of G2 and G3 are the same for any e1, and we
can view these two graphs “equivalent”. Intuitively, the reciprocal of the coefficient ga in the travel time
function θa can be seen as the capacity of the road. In this regard, graph G2 has two arcs of capacities
3 and 2, while graph G3 has an equivalent arc of capacity 5. In general, if there are multiple parallel
arcs with the same free-flow travel times and non-constant travel times (i.e., ga ̸= 0), we can aggregate
them into a single arc while maintaining the total travel time at user equilibrium. See Section 8N of
Rockafellar [1998] for more formal arguments.

Now, consider the NDP instance shown in graph G4 in Figure 1. Suppose that arcs 1 and 2 are already
built (existing arcs) and X = {x(1) = (1, 1, 0), x(2) = (1, 1, 1)}. If we do not build arc 3, the graph is
equivalent to G1. If we build arc 3, the graph coincides with G2, which is equivalent to G3. Therefore,
the binary decision to add a new arc is equivalent to the decision of the capacity expansion of the road.
We will use the equivalences described here in Section 6.

1 2 3

G1

arc 1: θ1(s) = 1 arc 2: θ2(s) = s/3

1 2 3

G2

arc 1: θ1(s) = 1

arc 2: θ2(s) = s/3

arc 3: θ3(s) = s/2

1 2 3

G3

arc 1: θ1(s) = 1 arc 2: θ2(s) = s/5

1 2 3

G4

arc 1: θ1(s) = 1

arc 2: θ2(s) = s/3

candidate arc 3: θ3(s) = s/2

Figure 1: Example of graphs used to observe the effect of parallel arcs

4 Methodology

In this section, we propose our single-level reformulations of problem (3). The resulting formulations are
convex MINLP and thus potentially solvable by existing optimization tools.

One natural approach would be replacing the optimality constraint z ∈ Z(x) with the KKT condition
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of the lower level problem (4):

min
x,z,π

∑
a∈A

(∑
o∈O

zoa

)
θa

(∑
o∈O

zoa

)
(7a)

s.t.
∑
a∈A+

v

zoa −
∑

a∈A−
v

zoa = eov, ∀o ∈ O, v ∈ V, (7b)

zoa ≤
∑
k∈Ko

ekxa, ∀o ∈ O, a ∈ A, (7c)

θa

(∑
o∈O

zoa

)
− πot + πoh +N(1− xa) ≥ 0, ∀o ∈ O, a = (h, t) ∈ A, (7d)(

θa

(∑
o∈O

zoa

)
− πot + πoh

)
zoa ≥ 0, ∀o ∈ O, a = (h, t) ∈ A, (7e)

x ∈ X, z ≥ 0. (7f)

where for each v ∈ V , A+
v and A−

v are defined as

A+
v = {(h, t) ∈ A : t = v}, A−

v = {(h, t) ∈ A : h = v},

and N is a sufficiently large constant. However, this formulation is a non-convex MINLP. In particular,
constraint (7d) is a level-set of a concave function. It is not straightforward to reformulate this as convex
MINLP.

Instead, we seek a single-level reformulation based on strong duality. Based on the observation that
Z(x) is given as the projection of Z ′(x), we obtain the following formulation of the NDP:

min
x,y,π,η

∑
a∈A

(∑
o∈O

zoa

)
θa

(∑
o∈O

zoa

)
(8a)

s.t.
∑
a∈A

∫ ∑
o∈O zoa

0

θa(s)ds

≤
∑
k∈K

ek(πokdk
− πokok)−

∑
a∈A

p

g
1/p
a (p+ 1)

η
p+1
p

a , (8b)∑
a∈A+

v

zoa −
∑

a∈A−
v

zoa = eov, ∀o ∈ O, v ∈ V, (8c)

zoa ≤
∑
k∈Ko

ekxa, ∀o ∈ O, a ∈ A, (8d)

ηa ≥ πot − πoh − fa −Moa(1− xa), ∀o ∈ O, a = (h, t) ∈ A, (8e)

ηa = 0, ∀a ∈ A : ga = 0, (8f)

z ≥ 0, η ≥ 0, x ∈ X, (8g)

where M ∈ RO×A is a constant such that for any x ∈ X there exists (π, η) ∈ Π(x) satisfying

πot − πoh − fa ≤ Moa, ∀o ∈ O, a = (h, t) ∈ A \A(x).

We will examine approaches to compute valid values of M in Section 4.2.
Another formulation is based on the value function of the lower-level problem. Recall that ϕ(x) is the

CIRRELT-2025-13 7

Fair Network Design Problem: An Application to EV Charging Station  Capacity Expansion 



optimal objective value of (4). Therefore, we obtain a single-level reformulation of (3) as

min
x,z

∑
a∈A

(∑
o∈O

zoa

)
θa

(∑
o∈O

zoa

)

s.t.
∑
a∈A

∫ ∑
o∈O zoa

0

θa(s)ds ≤ ϕ(x),∑
a∈A+

v

zoa −
∑

a∈A−
v

zoa = eov, ∀o ∈ O, v ∈ V,

zoa ≤
∑
k∈Ko

ekxa, ∀o ∈ O, a ∈ A,

z ≥ 0, x ∈ X.

It can be shown that the value function ϕ(x) is non-increasing in x (see Rey and Levin [2024] for example).
Therefore, the constraint involving the value function can be linearized as

min
x,z

∑
a∈A

(∑
o∈O

zoa

)
θa

(∑
o∈O

zoa

)
(9a)

s.t.
∑
a∈A

∫ ∑
o∈O zoa

0

θa(s)ds ≤ ϕ(x′) + ϕ̂(x′)
∑
a∈A

x′
a(1− xa), ∀x′ ∈ X, (9b)∑

a∈A+
v

zoa −
∑

a∈A−
v

zoa = eov, ∀o ∈ O, v ∈ V, (9c)

zoa ≤
∑
k∈Ko

ekxa, ∀o ∈ O, a ∈ A, (9d)

z ≥ 0, x ∈ X. (9e)

where ϕ̂(x′) = (ϕ(0) − ϕ(x′)) for x′ ∈ X. Rey and Levin [2024] use a closely related cut based on the
value function.

Below, we make important remarks regarding formulations (8) and (9).

1. Formulations (8) and (9) are convex MINLP problems and various solution methods have been
proposed. See Bonami et al. [2012] for a survey. In our implementation, we use the so-called
LP/NLP-Based Branch-and-Bound algorithm as described in Appendix D.

2. Formulation (9) has a large number of constraints, whereas formulation (8) has a number of variables
and constraints polynomial in |V |, |A| and |K|. Nonetheless, as we will see in our computational
experiments, by handling the constraints lazily, formulation (9) can be more efficient than formu-
lation (8).

3. Formulation (9) is based on the value function ϕ(x). Even if the travel time function θa does not
belong to the family of functions given in (1), it is still possible to compute the user equilibrium
by solving (4) and evaluate ϕ(x). On the other hand, formulation (8) relies on the dual (6) of the
traffic assignment problem. If the travel time function θa is not as in (1), the dual (6) may not be
available explicitly. In such a case, formulation (8) is not applicable.

4.1 Optimization of Other Objectives

Formulation (8) contains more variables than formulation (9). These extra variables can be used to model
different objective functions or constraints. For example, for each k ∈ K, as discussed in Section 3.1,
πokdk

−πokok gives the individual travel time of OD pair k at the user equilibrium. Let νk be the shortest
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travel time from ok to dk assuming there is no congestion. Then, the ratio of the extra travel time each
driver of OD pair k experiences due to congestion is given by

(πokdk
− πokok − νk)/νk.

This metric is referred to as free-flow unfairness by Jahn et al. [2005]. We can modify the NDP (8) to
optimize the total free-flow unfairness as

min
∑
k∈K

(πokdk
− πokok − νk)/νk (10)

s.t. (8b)− (8g).

and the worst free-flow unfairness as

min ξ (11)

s.t. ξ ≥ (πokdk
− πokok − νk)/νk, ∀k ∈ K,

(8b)− (8g).

Theorem 2.5 by Patriksson [2015] states that the equilibrium travel times are unique. Therefore, the
total free-flow unfairness and the worst free-flow unfairness are the same across user equilibria. Similarly
to the argument in Appendix C, we conclude that there is no distinction between the optimistic and
pessimistic formulations of problems (10) and (11).

Note that given

πokdk
− πokok =

∑
a∈A

ykaθa

(∑
k∈K

yka

)
/ek

provides an alternative formulation of the travel time of OD pair k ∈ K, problem (10) can be reformulated
without the dual variables as

min
∑
k∈K

(∑
a∈A

ykaθa

(∑
k′∈K

yk′a

)
/ek − νk

)
/νk

s.t. x ∈ X, y ∈ Y (x).

However, the objective function of this problem is non-convex.

4.2 Computing Big-M

This subsection presents our approach to compute a valid value of big-M . This can be done by bounding
the difference of optimal dual values in Π(x). The following proposition gives a bound for a specific
x ∈ X, k ∈ K and a pair of nodes (h, t).

Proposition 1. Let x ∈ X, o ∈ O, h, t ∈ V and δ > 0. Let z ≥ 0 be such that for each o′ ∈ O and
v ∈ V , we have

∑
a∈A+

v (x)

zo′a −
∑

a∈A−
v (x)

zo′a =


eo′v − δ, if o′ = o and v = h,

eo′v + δ, if o′ = o and v = t,

eo′v, otherwise,

Then, under Assumption 1, for any π(x) ∈ Π(x), we have

πot(x)− πoh(x) ≤
1

δ

 ∑
a∈A(x)

∫ ∑
o′∈O zo′a

0

θa(s)ds− ϕ(x)

 .
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Proof. Let L be the Lagrangian of problem (4) (Appendix B). Using strong duality, for any optimal dual
values π(x) ∈ Π(x), we obtain

ϕ(x) = min
z′≥0

L(z′, π(x))

≤ L(z, π(x))

=
∑

a∈A(x)

∫ ∑
o′∈O zo′a

0

θa(s)ds−
∑
o′∈O

∑
v∈V

πo′v(x)

 ∑
a∈A+

v (x)

zo′a −
∑

a∈A−
v (x)

zo′a − eo′v


=

∑
a∈A(x)

∫ ∑
o′∈O zo′a

0

θa(s)ds− δ (πot(x)− πoh(x)) .

By rearranging the terms, we obtain the desired result. □

Here we make an intuitive argument regarding the preceding proposition. The dual variable π is the
sensitivity of the optimal objective value with respect to the RHS perturbation on constraint (4b). In
particular, πot(x)− πoh(x) gives an underestimate of the increase in the objective value if we are forced
to “consume” a unit flow at t and “reproduce” the same amount of flow at h. Let Zδ be the set of such
flows on G(x): z ∈ Zδ if and only if z ≥ 0 and for each o′ ∈ O and v ∈ V , we have

∑
a∈A+

v (x)

zo′a −
∑

a∈A−
v (x)

zo′a =


eo′v − δ, if o′ = o and v = h,

eo′v + δ, if o′ = o and v = t,

eo′v, otherwise.

Now, observe

ϕ(x) + δ(πot(x)− πoh(x)) ≤ min
z∈Zδ

∑
a∈A(x)

∫ ∑
o′∈O zo′a

0

θa(s)ds,

or

πot(x)− πoh(x) ≤
1

δ

min
z∈Zδ

∑
a∈A(x)

∫ ∑
o′∈O zo′a

0

θa(s)ds− ϕ(x)

 .

The above proposition replaces the minimum value in the RHS with the objective value of a feasible
solution.

A flow in Zδ above can be obtained by combining a flow on G satisfying the demand and a δ-unit of
flow on G from h to t, in the sense described in the next proposition.

Proposition 2. Let h, t ∈ V and δ > 0. Let z ≥ 0 be any flow on graph G satisfying the OD pairs K:∑
a∈A+

v

zoa −
∑

a∈A−
v

zoa = eov, ∀o ∈ O, v ∈ V.

Furthermore, let z′ ≥ 0 be any flow on graph G such that for each v ∈ V

∑
a∈A+

v

z′a −
∑

a∈A−
v

z′a =


−δ, if v= h,

δ, if v= t,

0, otherwise.

Then, under Assumption 1, for any x ∈ X, o ∈ O and π(x) ∈ Π(x), we have

πot(x)− πoh(x) ≤
1

δ

∑
a∈A

∫ z′
a+

∑
o′∈O zo′a

0

θa(s)ds− ϕ

 ,

where ϕ = min
x∈X

ϕ(x).
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Proof. Fix x ∈ X, o ∈ O and define for each o′ ∈ O, a ∈ A

ẑo′a =

{
zo′a, if o′ ̸= o,

z′a + zo′a, if o′ = o.

Flow ẑ satisfies the condition in Proposition 1 and is feasible on graph G(x). Thus, for any π(x) ∈ Π(x),
we obtain

πot(x)− πoh(x) ≤
1

δ

 ∑
a∈A(x)

∫ ∑
o′∈O ẑo′a

0

θa(s)ds− ϕ(x)


=

1

δ

∑
a∈A

∫ z′
a+

∑
o′∈O zo′a

0

θa(s)ds− ϕ(x)


≤ 1

δ

∑
a∈A

∫ z′
a+

∑
o′∈O z′

o′a

0

θa(s)ds− ϕ

 ,

as required. □

This proposition is useful since one can obtain a bound valid for multiple graphs and demands.
In our implementation, we compute the values of big-M as follows. First, we solve the traffic assign-

ment problem (4) on G (i.e., the graph with all the existing and candidate arcs) to obtain a lower bound
on ϕ: In light of the monotonicity of ϕ, we have ϕ ≤ ϕ(x) for any x ∈ X. Then, we solve the traffic
assignment problem (4) on G to obtain a flow z as well as travel times of the arcs under the congestion.
Lastly, for each pair h, t ∈ V , we obtain the shortest path on G under the congestion induced by the flow
z. We consider δ unit of flow along the shortest path and use it as z′. Then we invoke Proposition 2 with
these z and z′. We choose the value of δ by grid search (δ ∈ {10−2, 10−1, 100, 101, 102}).

5 Computational Performance

In this section, we compare the performance of our single-level reformulations. We use instances generated
by Rey and Levin [2024]. Two transportation networks, SiouxFalls and Easter Massachusetts, are used,
and their statistics are shown in Table 1. For each transportation network, there are 10 test instances
created by perturbing the set of candidate arcs. Let A1 and A2 be the sets of existing and candidate
arcs, respectively. Then, set X is defined by the knapsack constraint

X =

{
x :

∑
a∈A2

caxa ≤ b, xa = 1, ∀a ∈ A1, xa ∈ {0, 1}, ∀a ∈ A2

}
, (12)

where ca is the cost to construct candidate arc a ∈ A2 and b is the budget. For more details on the
instance generation, see Rey and Levin [2024]. All the methods are implemented with Python 3.9 with
Gurobi 12.0. Formulation SD (8) requires two computations of the traffic assignment to compute the big-
M value at the beginning, as described in Section 4.2. In formulation VF (9), constraint (9b) is generated
lazily: Every time an integer solution is found, we compute the corresponding traffic assignment and
check whether constraint (9b) is satisfied, adding it if necessary. To compute these user equilibria, we
use the column generation technique as described by Leventhal et al. [1973].

5.1 NDP to Minimize the Total Travel Time

First, we observe the computational performance of formulations (8) and (9) to optimize the total travel
time. Table 2 shows the number of test instances solved within the two-hour time limit (Solved), the
average computational time in seconds (Time), the average number of branch-and-bound nodes (# B&B
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Table 1: Statistics of the test instances

Network Nodes Arcs Candidate Arcs Budget (%) OD pairs

SiouxFalls 24 76 10 50 528
Easter Massachusetts 74 258 10 50 1113

Nodes), and the average number of traffic assignment computations, i.e., the average number of user
equilibria computed (# TA Solution). The computational time reported in this table includes the time
to compute user equilibria. For the test instances that are not solved within the time limit, the time
is set to 2 hours, and the number of branch-and-bound nodes and traffic assignments computed within
this 2-hour limit are used. In the column labeled “Formulation”, SD (standing for strong duality) and
VF (value function) refer to formulations (8) and (9), respectively. In this experiment, all the test
instances are solved within the 2-hour time limit. Formulation SD (8) has a shorter average solution
time on SiouxFalls, but on Easter Massachusetts, formulation VF (9) tends to be faster on average.
Formulation VF (9) requires less branch-and-bound nodes than formulation SD (8), especially on Easter
Massachusetts. Interestingly, both formulations require on average fewer branch-and-bound nodes and
traffic assignment computations on Easter Massachusetts, a larger transportation network.

Table 2: Performance of formulations SD (8) and VF (9) to solve the NDP to minimize the total travel
time

Network Formulation Solved Time # B&B Nodes # TA Solution

SiouxFalls
SD 10 217.0 294.5 2.0
VF 10 558.8 252.6 138.0

Easter Massachusetts
SD 10 1,383.2 166.5 2.0
VF 10 810.0 111.3 66.8

5.2 NDP to Optimize the Fairness

We next evaluate the capability of our formulations to optimize metrics other than the total travel
time, as discussed in Section 4.1. To be more specific, we solve the NDP to optimize the total free-flow
unfairness (10) and the NDP to optimize the worst free-flow unfairness (11). Table 3 shows the number
of the test instances solved within the two-hour time limit (Solved), the average computational time
in seconds (Time) and the average number of branch-and-bound nodes (# B&B Nodes). Compared
to the optimization of the total travel time (8), the optimization of the total free-flow unfairness (10)
tends to require more time on SiouxFalls, and more branch-and-bound nodes on both transportation
networks. The optimization of the worst free-flow unfairness (11) requires even more computational time
and branch-and-bound nodes than the optimization of the total free-flow unfairness (10) on average, and
there is one test instance on which the optimal solution was not found in two hours.

We speculate that the reason why optimizing unfairness seems harder than optimizing travel time
is as follows: Intuitively, we observe that the total travel time, the objective value of problem (8), is
close to the objective value of the lower-level problem (4). In fact, when there is no congestion (ga = 0
for all a ∈ A), the two objective values coincide for any feasible flow. In this setup, constraints (8b),
(8e) and (8f), along with dual variables π and η, are redundant in the sense that the optimal solution of
problem (8) does not change even if they are removed. Thus, these constraints are only necessary when
congestion affects the system, and the “effective” formulation size might be smaller. These observations
do not hold for the other objective functions used in problems (10) and (11).
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Table 3: Performance of formulation SD to optimize the total travel time (8), the total free-flow unfair-
ness (10) and the worst free-flow unfairness (11)

Network Objective Solved Time # B&B Nodes

SiouxFalls
Travel time 10 217.0 294.5
Total free-flow unfairness 10 293.9 640.5
Worst free-flow unfairness 10 505.9 705.3

Easter Massachusetts
Travel time 10 1,383.2 166.5
Total free-flow unfairness 10 1,754.4 479.9
Worst free-flow unfairness 8 2,628.4 556.3

6 Case Study: Fast EV Charging Station Capacity Expansion
Problem

In this section, we formulate the capacity expansion problem for EV fast charging stations as the NDP.
This formulation enables us to optimize charging infrastructure capacity expansion decisions, aiming to
minimize either the total travel time or a specific fairness metric related to EV drivers.

In Section 6.1, we describe the setup of the problem. In Section 6.2, we present our approach for
modeling the behavior (i.e., the routing decision) of EV drivers as a traffic assignment problem. This
traffic assignment-based modeling allows us to formulate the capacity expansion problem of EV fast
charging stations as the NDP. Section 6.3 introduces a metric quantifying the inefficiency experienced by
EV drivers. Section 6.4 presents the results of the numerical experiments using the Quebec road network.

6.1 Problem Setup

Suppose we have a highway road network with fast charging stations installed at some of the nodes. We
are interested in EV drivers who travel long distances through this road network, represented as OD
pairs. Specifically, we focus on the drivers who need to charge their EVs along their trips in order to
reach their destinations. These EV drivers consider the time required to charge their vehicles and choose
their routes in a way that minimizes their total travel time. Given the current road network with fast
charging stations and their associated demands, our goal is to select a subset of fast charging stations for
capacity expansion to improve a specified metric, such as the total travel time of EV drivers.

We make the following assumptions:

Assumption 2.

1. All EVs have the same vehicle range.

2. Each OD pair is traversable, assuming the battery is fully charged at the origin and that intermediate
charging at existing stations along the route is allowed.

3. The travel time on a road does not depend on the number of EV drivers using that road.

4. The time required to charge an EV at a fast charging station (including waiting time) can be modeled
as in Equation (1).

The first assumption is standard in the literature (e.g., Kınay et al. [2023]). The assumption that travel
time is independent of the number of EV drivers can be justified when the ratio of EVs to conventional
vehicles is small. Under Assumption 2, the traffic flow of EV drivers can be modeled as a standard traffic
assignment problem after appropriate network transformation, as described in the next section.
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6.2 Electric Vehicle Traffic Assignment

Let G′ = (V ′, A′) be a road network. Let O,D ⊂ V ′ denote the sets of nodes used as origins and
destinations by the OD pairs, respectively, and let C ⊂ V ′ represent the set of nodes with fast charging
stations. By duplicating nodes if necessary, we assume that O,D, and C are mutually disjoint.

An EV driver must choose a path that can be completed without running out of battery. For example,
consider graph G1 in Figure 2. A filled node indicates the presence of a fast charging station, while an
open node denotes the absence of one. Given that the vehicle range is 200 km, path (1, 4, 5, 3, 8) is not
feasible, as it is not possible to travel from node 1 to node 3 (nodes 4 and 5 do not have fast charging
stations).

MirHassani and Ebrazi [2013] propose a technique to transform the road network to facilitate handling
the vehicle range. For a detailed discussion, we refer to Arslan et al. [2019]. Roughly, the transformed
graphG = (V,A) has V = O∪D∪C, and for each (o, d) ∈ O×D, a path from o to d in graphG corresponds
to a path in road network G′ that respects the vehicle range (and vice versa). The construction of A is
straightforward: for each h, t ∈ V , we have (h, t) ∈ A if and only if the distance from h to t is less than
or equal to the vehicle range of an EV, and (h, t) ∈ O×C, C×C, or C×D. For example, consider again
road network G1 shown in Figure 2. If there is a single OD pair (i.e., K = {1}) from node 1 to node 8,
and the vehicle range of an EV is 200 km, we obtain G2 after this transformation. Path p1 = (1, 2, 6, 8)
in graph G2 corresponds to path p′1 = (1, 4, 2, 4, 6, 7, 8) in graph G1. The intermediate nodes 2 and 6 in
path p1 correspond to the nodes to charge an EV.

We note that the cost (travel time) of a path in the transformed network consists of both arc costs
(time spent on the road) and node costs (time spent at the fast charging stations). By introducing
auxiliary nodes and arcs, the node costs can be represented as costs associated with the auxiliary arcs.
For example, if the time to charge an EV at a fast charging station is given by 1/2 + s4, graph G2 can
be further transformed into graph G3.

6.3 Cost of Sustainability

On the transformed graph, the traffic assignment can be used to model the user equilibrium flow of EV
drivers. For example, on graph G3 in Figure 2, if the demand volume is e1 = 1, the user equilibrium
results in the flow shown in Figure 3. The corresponding user equilibrium flow in the original road
network G1 can be computed, as shown in Figure 3.

In equilibrium, the travel time experienced by each EV driver is 17/4 hours. On the other hand, if we
consider a conventional car, it is possible to travel from node 1 to node 8 in graph G1 in 3 hours using path
(1, 4, 5, 8).1 We define the extra travel time that an EV user experiences compared to a conventional car
driver as the cost of sustainability. In the example above, the cost of sustainability is (17/4−3)/3 = 5/12.

We note that the cost of sustainability is closely related to the free-flow unfairness objectives discussed
in Section 4.1. Here, we use the travel time of a conventional car driver as the “baseline”, whereas free-
flow unfairness is based on the shortest travel time assuming that all travel time equals the free-flow
travel time (i.e., travel time without congestion). Following the argument to derive formulations (10) and
(11) to minimize free-flow unfairness, optimization of the total cost of sustainability is written as

min
∑
k∈K

(πokdk
− πokok − ν′k)/ν

′
k (13)

s.t. (8b)− (8g)

and the worst cost of sustainability as

min ξ (14)

s.t. ξ ≥ (πokdk
− πokok − ν′k)/ν

′
k, ∀k ∈ K,

(8b)− (8g).

1We assume that conventional cars are internal combustion engine (ICE) vehicles and any path is feasible for them given
the abundant presence of gas stations. We further assume that the time to refuel a conventional car is negligible.
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Figure 2: Graphs illustrating network transformation: Road network G1 is transformed into the extended
graph G2, which is further converted into G3, where the node costs in G2 are represented as arc costs.
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where ν′k is the shortest time from ok to dk using a conventional car. In our numerical experiments, we
will use the total and worst cost of sustainability as objectives to be optimized.
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Figure 3: User equilibrium on the transformed network and on the original road network

6.4 Numerical Experiments with Quebec Road Network

Experimental Setup. To illustrate the applicability of our method, we run experiments on the road
network in Quebec, including public fast EV charging stations. We use the 2021 Statistics Canada
census data2 to determine population centers. We consider the 20 population centers with the largest
populations. We assume the vehicle range of an EV is 200 km and remove OD pairs whose distances are
less than this vehicle range, resulting in 92 OD pairs. The demand volumes of the OD pairs are computed
using the gravity model (Hodgson [1990]). We consider two demand scenarios: a low-demand scenario
and a high-demand scenario where the demand volume of each OD pair is increased by 50% from that of
the low-demand scenario. The histogram of the OD demand volumes is presented in Appendix E.1.

The location data of fast charging stations is obtained from Circuit électric3. We use OpenStreetMap (Open-
StreetMap contributors [2024]) with OSMnx (Boeing [2024]) to compute the distances between fast
charging stations and population centers using the highway network in Quebec. Based on the computed
distances, we construct the transformed network as described in Section 6.2. We consider 370 fast charg-
ing stations. The resulting network has a large number of arcs. To make the instance size moderate,
we run the traffic assignment and compute the user equilibrium using the existing fast charging stations.
We then remove the arcs with zero flows at equilibrium since they are unlikely to be used after capacity
expansion. The statistics of the resulting graphs are shown in Table 4.

Table 4: Statistics of the graph before and after filtering arcs

Network Nodes Arcs Candidate arcs OD pairs
Original 924 65,888 370 92
Low Demand 924 354 87 92
Hight Demand 924 421 108 92

Table 5: Frequecy of c

c Frequency

1 89
2 228
3 18
4 24
5 1
6 7
7 2
8 1

2https://www12.statcan.gc.ca/census-recensement/2021/dp-pd/prof/
3https://lecircuitelectrique.com/en/
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The time to charge an EV at a fast charging station (including waiting time) is modeled as 1/2 +
(s/c)4/100, where s is the amount of demand served at this fast charging station and c is the number of
outlets of this fast charging station. The frequency of c is shown in Table 5.

We consider the capacity expansion of each charging station by 1 unit (if we have a charging station
of capacity c = 2, we may expand it to capacity c = 3). For each charging station (candidate arc a), we
sample the cost of the capacity expansion (the construction cost ca of the candidate arc) from a uniform
distribution between 0.5 and 1.5. We use X as defined in Equation (12).

We propose a simple greedy heuristic as a baseline. The method works as follows: We first evaluate
the user equilibrium with the current set of fast charging stations in place. Next, we compute the “utility”
of each fast charging station. This is defined as the ratio of the total demand served by the station to
its capacity. We then sort the charging stations in decreasing order of their utility, from the most to the
least used. Starting from the highest utility, we choose the stations until we reach a budget limit. After
selecting the stations, we perform another traffic assignment to evaluate the objective value (e.g., total
travel time). Thus, this greedy method requires two traffic assignment computations: one for evaluating
the user equilibrium and another for evaluating the objective after selecting the charging stations.

Results and Discussion. First, we present the performances of our single-level formulations (8) and
(9) to seek the capacity expansion decisions that minimize the total travel time of EV drivers. Table 6
shows the upper bound4 (UB), the improvement of the upper bound relative to the greedy method (Rel.),
the lower bound (LB), the gap between upper and lower bound (Gap), and the number of branch-and-
bound nodes (# B&B Nodes). We set the time limit to one hour. In all the setups, formulations SD (8)
and VF (9) provide tighter upper bounds (better solutions) than the greedy method. Formulation VF (9)
tends to give tighter bounds than formulation SD (8), and the optimality gap is smaller in all the setups.
The demand volume does not seem to have a clear impact on the optimality gaps. However, the number
of branch-and-bound nodes decreases when we use the high-demand scenario. There are no clear trends
in terms of methodologies’ performance regarding budget variations. Thus, as long as the objective is
the total travel time, formulation VF (9) seems to be more competitive than formulation SD (8) and the
greedy method.

Next, we use formulations (13) and (14) to optimize the total and worst costs of sustainability, as
described in Section 6.3. Recall that the cost of sustainability is defined as the extra travel time EV drivers
experience compared to the drivers of conventional cars. Tables 7 and 8 show the upper and lower bounds
obtained after the one-hour time limit among other statistics. The definition of each column is the same
as in Table 2. Similar to the optimization of the total travel time, we observe that increasing demand
makes the problem harder: the optimality gap tends to get worse and fewer branch-and-bound nodes are
explored. The budget seems to have little impact on the performance of the method. It is interesting to
note that the worst cost of sustainability is harder to optimize than the total cost of sustainability, which
is harder than the total travel time. On any setup, we explore the fewest branch-and-bound nodes and
tend to have the worst optimality gap when optimizing the worst cost of sustainability.

Figure 4 shows the total cost of sustainability before and after capacity expansion, as suggested by
the greedy method and formulation SD (13). Unsurprisingly, in both demand scenarios, the total cost
of sustainability decreases after capacity expansion. Furthermore, a larger budget results in greater
improvements. In each setup, formulation SD (13) produces a solution (i.e., a capacity expansion plan)
that leads to a larger improvement compared to the greedy method.

A similar trend is observed for the worst cost of sustainability, as shown in Figure 5. Formulation
SD, which optimizes the worst cost of sustainability (14), produces a solution with a smaller worst cost
of sustainability than the greedy method. Interestingly, the marginal improvement in both total and
worst costs of sustainability remains significant even with the largest budget of 20. This suggests that
increasing the budget beyond 20 could likely result in further major improvements in these metrics.

Figures 6, 7 and 8 show the best solutions (i.e., the locations of fast charging stations for capacity
expansion) found within a one-hour time limit by formulation SD to minimize the total travel time (8),
the total cost of sustainability (13), and the worst cost of sustainability (14). These figures are generated

4The best incumbent value.
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Table 6: Performance of formulations SD (8) and VF (9) to solve the NDP to minimize the total travel
time

Budget Demand Formulation UB (Rel.) LB Gap # B&B Nodes

5

Low
Greedy 1,424.72 - - -
SD 1,414.09 (-0.75 %) 1,376.14 2.76 % 1713
VF 1,406.94 (-1.25 %) 1,376.25 2.23 % 3724

High
Greedy 2,657.46 - - -
SD 2,605.22 (-1.97 %) 2,528.32 3.04 % 987
VF 2,581.72 (-2.85 %) 2,529.71 2.06 % 2776

10

Low
Greedy 1,399.55 - - -
SD 1,385.52 (-1.00 %) 1,350.34 2.60 % 1576
VF 1,379.23 (-1.45 %) 1,350.28 2.14 % 4300

High
Greedy 2,563.26 - - -
SD 2,515.46 (-1.86 %) 2,431.67 3.45 % 1053
VF 2,486.97 (-2.98 %) 2,432.16 2.25 % 3050

20

Low
Greedy 1,351.52 - - -
SD 1,348.91 (-0.19 %) 1,319.55 2.22 % 1771
VF 1,344.84 (-0.49 %) 1,319.57 1.91 % 3743

High
Greedy 2,416.45 - - -
SD 2,398.83 (-0.73 %) 2,313.38 3.69 % 1198
VF 2,371.61 (-1.86 %) 2,313.93 2.49 % 2756

Table 7: Performance of formulation SD (13) to solve the NDP to minimize the total cost of sustainability

Budget Demand Formulation UB (Rel.) LB Gap # B&B Nodes

5
Low

Greedy 173.37 - - -
SD 169.77 (-2.08 %) 142.90 18.80 % 3074

High
Greedy 462.55 - - -
SD 453.59 (-1.94 %) 339.59 33.57 % 1755

10
Low

Greedy 163.79 - - -
SD 157.51 (-3.83 %) 130.24 20.94 % 2720

High
Greedy 426.30 - - -
SD 404.35 (-5.15 %) 298.91 35.27 % 1618

20
Low

Greedy 145.36 - - -
SD 144.08 (-0.88 %) 119.33 20.75 % 2897

High
Greedy 370.35 - - -
SD 360.21 (-2.74 %) 261.76 37.61 % 1881
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Table 8: Performance of formulation SD (14) to solve the NDP to minimize the worst cost of sustainability

Budget Demand Formulation UB (Rel.) LB Gap # B&B Nodes

5
Low

Greedy 0.56 - - -
SD 0.55 (-1.85 %) 0.44 26.44 % 840

High
Greedy 1.02 - - -
SD 1.02 (-0.36 %) 0.73 38.95 % 729

10
Low

Greedy 0.56 - - -
SD 0.51 (-8.95 %) 0.40 28.14 % 889

High
Greedy 0.98 - - -
SD 0.91 (-6.93 %) 0.64 43.54 % 668

20
Low

Greedy 0.50 - - -
SD 0.50 (0.00 %) 0.36 38.48 % 833

High
Greedy 0.90 - - -
SD 0.86 (-4.07 %) 0.53 62.79 % 736
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Figure 4: Improvement in the total cost of sustainability after capacity expansion suggested by the greedy
method and formulation SD (13)
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Figure 5: Improvement in the worst cost of sustainability after capacity expansion suggested by the
greedy method and formulation SD (14)

using the low-demand scenario with a budget of 5. However, the figures illustrate that changing the
objective function leads to different solutions, emphasizing the importance of selecting the appropriate
objective function. It should be noted that the solutions obtained within the time limit are not proven
to be optimal, and extending the time limit could lead to improvements.

We emphasize the importance of formulations SD (13) and (14). The total travel time experienced
by all EV drivers is one metric to measure the quality of service provided by the fast charging station
operator. However, from each user’s perspective, arguably, they are more interested in the time they
personally experience, rather than the total travel time experienced by all EV drivers. In this regard,
our formulations (13) and (14) optimize metrics relevant to each driver’s experience. Last but not least,
while we focused on the cost of sustainability in this experiment (i.e., the difference between an EV driver
and a conventional car driver with the same origin and destination), it is straightforward to modify the
formulation to consider the absolute (rather than relative to conventional car drivers) time experienced
by EV drivers.

We refer the reader to Appendix E for additional analyses, including a detailed comparison of how
the best solutions found by our methodologies perform across the three considered objectives. This
provides further insight into how decision-makers can use the proposed methods to develop prioritization
strategies.

7 Conclusions and Future work

In this paper, we studied single-level reformulations of the network design problem. One of the re-
formulations was based on strong duality of the traffic assignment problem that characterizes the user
equilibrium, while the other was based on the value function. Both reformulations were convex MINLPs
that can be solved with a standard solution method. Furthermore, the reformulation based on strong
duality introduced additional variables, providing the flexibility to formulate different objective functions
or constraints. As examples, we presented the application of our reformulation to optimize the total and
worst free-flow unfairness. Numerical experiments using test transportation networks were presented to
analyze the performances of our reformulations. Furthermore, we demonstrated that a capacity expansion
problem for electric vehicle fast-charging stations can be modeled as the network design problem. We
compared the solution found by our reformulations to that of a greedy heuristic and showed improvements
in the objectives, including total travel time and the cost of sustainability, i.e., the unfairness caused by
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Figure 6: Selected charging stations in the low-demand scenario with a budget of 5 to optimize the total
travel time
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Figure 7: Selected charging stations in the low-demand scenario with a budget of 5 to optimize the total
cost of sustainability
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Québec

Sorel-Tracy

Trois-Rivières

Expanded charging station

Unchosen charging station

Population center

Figure 8: Selected charging stations in the low-demand mand scenario with a budget of 5 to optimize the 
worst cost of sustainability
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the adoption of electric vehicles.
The reformulation based on strong duality assumes that the travel time function follows the BRP

function. It also assumes that the OD pairs are connected, even in the absence of candidate arcs. It
would be valuable to extend our method to handle more general instances with relaxed assumptions.
Furthermore, in our case study on fast-charging stations, we focused primarily on capacity expansion
decisions. The siting of new charging stations can be modeled either with an SOS1 constraint or by
extending the logic to compute a valid value of big-M, which is left as future research. Additionally,
developing a faster, decomposition-based solution method to solve our reformulation more efficiently is
of interest.
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Online supplement

Fair network design problem: an application to
EV charging station capacity expansion

A Comparison of Aggregated and Disaggregated Models

In this section, we compare the performance of the disaggregated model (formulation with disaggregated
flow variable y) and the aggregated model (formulation with aggregated flow variable z) (8).

The arguments in Sections 3 and 4 can be extended to use disaggregated flow variable y. For example,
we obtain a formulation of the NDP corresponding to formulation (8) but with disaggregated flow variable
y as follows:

min
x,y,π,η

∑
a∈A

(∑
k∈K

yka

)
θa

(∑
k∈K

yka

)
(15)

s.t.
∑
a∈A

∫ ∑
k∈K yka

0

θa(s)ds

≤
∑
k∈K

ek(πkdk
− πkok)−

∑
a∈A

p

g
1/p
a (p+ 1)

η
p+1
p

a ,∑
a∈A+

v

yka −
∑

a∈A−
v

yka = e′kv, ∀k ∈ K, v ∈ V,

yka ≤ ekxa, ∀k ∈ K, a ∈ A,

ηa ≥ πkta − πkha
− fa −M ′

ka(1− xa), ∀k ∈ K, a = (h, t) ∈ A,

ηa = 0, a ∈ A : ga = 0,

y ≥ 0, η ≥ 0, x ∈ X,

where M ′ is a sufficiently large constant, which can be computed using a routine similar to Proposition 2.
Analogously, we can modify formulation (9) to use disaggregated flow variable y as

min
x,y

∑
a∈A

(∑
k∈K

yka

)
θa

(∑
k∈K

yka

)
(16)

s.t.
∑
a∈A

∫ ∑
k∈K yka

0

θa(s)ds ≤ ϕ(x′) + ϕ̂(x′)
∑
a∈A

x′
a(1− xa), ∀x′ ∈ X,∑

a∈A+
v

yka −
∑

a∈A−
v

yka = e′kv, ∀k ∈ K, v ∈ V,

yka ≤ ekxa, ∀k ∈ K, a ∈ A,

y ≥ 0, x ∈ X.

For each of the 10 test instances using SiouxFalls transportation network, we measure the performances
of the four formulations (8), (15), (9) and (16). Table 9 shows the number of test instances solved within
the two-hour time limit and the average computational time. The disaggregated formulations are always
worse than the aggregated correspondents on average, in terms of the number of instances solved within
the timelimit and the average computational time.
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Table 9: Performances of disaggregated and aggregated models

Formulation Aggregation Equation Solved Time

SD
No (15) 1 3,428.6
Yes (8) 10 217.0

VF
No (16) 6 2,305.8
Yes (9) 10 558.8

B Dual of Traffic Assignment Problem

In this section, we derive the dual traffic assignment problem (6). We start with a lemma.

Lemma 1. Let p ≥ 1, a ≥ 0 and b ∈ Rn. For z ∈ Rn
+, define

f(z) =
a

p+ 1

(
n∑

i=1

zi

)p+1

−
n∑

i=1

bizi.

1. If a > 0 then

min
z∈Rn

+

f(z) = − p

a1/p(p+ 1)

(
[max {bi : i = 1, . . . , n}]+

)(p+1)/p

,

where [x]+ = max{x, 0}.

2. If a = 0, then

min
z∈Rn

+

f(z) =

{
0, if bi ≤ a for all i = 1, . . . , n,

−∞, otherwise.

In particular, Lemma 1 implies that

min
z≥0

f(z) =


max
η≥0

{
− p

ā1/p(p+ 1)
η(p+1)/p : η ≥ bi, ∀i = 1, . . . , n

}
, if a > 0,

max
η≥0

{
− p

ā1/p(p+ 1)
η(p+1)/p : η = 0, η ≥ bi, ∀i = 1, . . . , n

}
, otherwise,

(17)

where ā = a if a > 0 and otherwise ā = 1.

Proof. It is straightforward to show the case when a = 0. In the following, we assume a > 0. Pick i′ such
that bi′ ≥ bi for any i = 1, . . . , n. For every z ∈ Rn

+, we have f(z) ≥ f(z′), where

z′i =


n∑

i=1

zi, i = i′,

0, i ̸= i′.

It follows that
min
z∈Rn

+

f(z) = min
u∈R+

g(u),

where
g(u) =

a

p+ 1
up+1 − bi′u.

By computing the derivative of g, we can obtain the minimizer as

min
u∈R+

g(u) = g

((
[bi′ ]+
a

)1/p
)

= − p

a1/p(p+ 1)

(
[bi′ ]+

)(p+1)/p

.
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Now, we derive the dual of problem (4). Fix x. Let π be the dual variable corresponding to con-
straint (4b). Then, the Lagrangian is

L(z, π) =
∑

a∈A(x)

∫ ∑
o∈O zoa

0

θa(s)ds−
∑
o∈O

∑
v∈V

πov

 ∑
a∈A+

v (x)

zoa −
∑

a∈A−
v (x)

zoa − eov


=

∑
a∈A(x)

fa

(∑
o∈O

zoa

)
+

ga
p+ 1

(∑
o∈O

zoa

)p+1


−
∑
o∈O

∑
a=(h,t)∈A(x)

(πot − πoh)zoa +
∑
k∈K

ek(πokdk
− πokok)

=
∑

a=(h,t)∈A(x)

 ga
p+ 1

(∑
o∈O

zoa

)p+1

−
∑
o∈O

(πot − πoh − fa)zoa

+
∑
k∈K

ek(πokdk
− πokok)

=
∑

a∈A(x)

La(za, πa) +
∑
k∈K

ek(πokdk
− πokok),

where

La(za, πa) =
ga

p+ 1

(∑
o∈O

zoa

)p+1

−
∑
o∈O

(πot − πoh − fa)zoa.

The Lagrangian dual problem is

max
π

min
z≥0

L(z, π) =max
π

 ∑
a∈A(x)

min
z≥0

La(za, πa) +
∑
k∈K

ek(πokdk
− πokok)

 .

In light of Lemma 1 and equation (17), this problem is equivalent to problem (6).

C Uniqueness of Equilibrium Travel Time

As stated in Section 3, the optimistic formulation and the pessimistic formulation of the NDP (3) coincide.
In other words, if there are multiple user equilibria, all of them have the same total travel time. This is
exploited by Roughgarden and Tardos [2000], but we also provide the proof for completeness.

Proposition 3. Suppose Assumption 1 holds. For any x ∈ X and z(x), z(x)′ ∈ Z(x), we have

∑
a∈A

(∑
o∈O

zoa(x)

)
θa

(∑
o∈O

zoa(x)

)
=
∑
a∈A

(∑
o∈O

z′oa(x)

)
θa

(∑
o∈O

z′oa(x)

)
.

Proof. Pick any x ∈ X and π(x) ∈ Π(x). For any o ∈ O and z(x) ∈ Z(x), by summing (5c) for all
a ∈ A(x), we obtain:

∑
a∈A(x)

zoa(x)θa

(∑
o′∈O

zo′a(x)

)
=
∑
v∈V

 ∑
a∈A+

v (x)

zoa(x)−
∑

a∈A−
v (x)

zoa(x)

πov(x) =
∑
v∈V

eovπov(x).

Therefore, for any z(x) ∈ Z(x), the total travel time is

∑
a∈A

(∑
o∈O

zoa(x)

)
θa

(∑
o∈O

zoa(x)

)
=

∑
a∈A(x)

(∑
o∈O

zoa(x)

)
θa

(∑
o∈O

zoa(x)

)
=
∑
o∈O

∑
v∈V

eovπov(x).

This implies the desired result.
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D Outer approximation methods

In this section, we present the outer-approximation method used to solve formulation (9). The method
to solve formulation (8) is similar.

Using the definition of the travel cost function (1), we can rewrite formulation (9) as

min
x,z,θ

∑
a∈A

fa

(∑
o∈O

zoa

)
+ gaθa

s.t.
∑
a∈A

fa

(∑
o∈O

zoa

)
+

ga
p+ 1

θa ≤ ϕ(x′) + ϕ̂(x′)
∑
a∈A

x′
a(1− xa), ∀x′ ∈ X,∑

a∈A+
v

zoa −
∑

a∈A−
v

zoa = eov, ∀o ∈ O, v ∈ V,

zoa ≤
∑
k∈Ko

ekxa, ∀o ∈ O, a ∈ A,

θa ≥

(∑
o∈O

zoa

)p+1

z ≥ 0, x ∈ X.

Let us define

u(X ′, I ′) = min
x,z,u

∑
a∈A

fa

(∑
o∈O

zoa

)
+ gaθa

s.t.
∑
a∈A

fa

(∑
o∈O

zoa

)
+

ga
p+ 1

θa ≤ ϕ(x′) + ϕ̂(x′)
∑
a∈A

x′
a(1− xa), ∀x′ ∈ X ′,∑

a∈A+
v

zoa −
∑

a∈A−
v

zoa = eov, ∀o ∈ O, v ∈ V,

zoa ≤
∑
k∈Ko

ekxa, ∀o ∈ O, a ∈ A,

θa ≥ αp+1 + (p+ 1)αp

(∑
o∈O

zoa − α

)
, ∀a ∈ A,α ∈ I ′a,

z ≥ 0, x ∈ X.

Problem u(X ′, I ′) is equivalent to problem (9) if X ′ = X and I ′a = R for all a ∈ A. However, if X ′ ⊊ X
or I ′a ̸= R for some a ∈ A, u(X ′, I ′) is a relaxation of problem (9). In our implementation, we let
X ′ = I ′a = ∅ for all a ∈ A and pass u(X ′, I ′) to Gurobi. Every time Gurobi solves a branch-and-bound
node or finds a candidate integer solution, we search for a violated constraint (up to a tolerance of 10−6),
and add it as a lazy constraint.

E Additional Analyses

In this section, we provide additional analyses on the experiments in Section 6.

E.1 Histogram of Demands

Figure 9 shows the histogram of demand volumes. The histogram uses the low-demand scenario. However,
the demand volumes for the high-demand scenario are obtained by scaling the low-demand volumes by
50%. Thus, the shape of the histogram for the high-demand scenario remains the same.
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Figure 9: Histogram of the demands volumes in the low-demand scenario

E.2 Comparison of Equilibria

Figures 10 and 11 show the total travel time and the total/worst costs of sustainability of the equilibria
computed by formulation SD to optimize the total travel time (8), the total cost of sustainability (13)
and the worst cost of sustainability (14). The color and shading pattern of each marker indicates the
metric being optimized, while the shape of the marker corresponds to the budget: a square, triangle, and
circle represents a budget of 5, 10, and 20, respectively.

For larger budgets, optimizing for one objective tends to yield near-optimal values for the other
objectives as a byproduct. However, for smaller budgets, differences start to emerge, highlighting the
need for decision-makers in these cases to carefully choose their priorities.

E.3 Comparison of Charging Station Locations for Capacity Expansion

Figures 12 and 13 show the selected charging stations for capacity expansion in the two demand scenarios,
with a budget of 5. These figures are generated using the outputs of formulation SD, which optimizes
the total travel time (8). The outputs differ between demand scenarios, indicating the sensitivity of the
results to the demand data.
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Drummondville

Ottawa Sherbrooke

Granby

Québec
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