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Abstract. The Production Routing Problem (PRP) is a complex integrated problem that 
allows for the achievement of competitive advantages, such as better management of 
inventory, reduction in operational costs and lead times, improvement in efficiency and 
customer service, and better response to market changes. Most of the literature on PRP 
considers only deterministic data, and the papers that take stochastic parameters into 
account focus mainly on uncertain demand. In this study, we consider a PRP with a single 
capacitated production facility, a single product type, and a homogeneous fleet of 
capacitated vehicles. The availability of these vehicles is assumed uncertain and formulated 
as a stochastic parameter. The problem is modeled using two types of chance-constraints, 
and the sample approximation approach method is used to linearize the formulations, 
which are then solved using Benders decomposition (BD) and partial BD (PBD). Results 
show that PBD outperforms the standard BD method, and it is able to produce good 
optimality gaps for most instances within two hours of CPU time. In the remaining 
experiments, which are performed using PBD, results show that the problem becomes 
significantly more difficult to solve as the number of periods and retailers increase. 
Moreover, one of the mathematical formulations allows more flexibility to decision makers, 
resulting in higher feasibility, and smaller costs. 
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1 | INTRODUCTION

In the last decades, supply chain planning has become one of the major concerns of companies in the fierce environ-
ment that they now face, forcing them to focus on the improvement of their performance. While firms have long
been optimizing the functions in the supply chain sequentially and separately [5, 7], it is well known that optimizing
the activities of the supply chain separately often prevents the achievement of better solutions overall [3, 27]. One
way of coping with this situation is to consider integrated problems, such as the Production Routing Problem (PRP),
in which one performs the joint and simultaneous optimization of production, inventory, distribution, and routing
decisions. This is a recognized approach, which allows for a greater opportunity to achieve competitive advantages,
such as better management of inventory, reduction in operational costs and lead times, improvement in efficiency and
customer service, and better response to market changes [9, 10, 27].

Most of the literature on PRP considers only deterministic data. This is a significant concern, as uncertainty is a
major issue in supply-chain management, and some of the critical information necessary for decision-making is often
only approximated by forecasts. Special attention should be given to risk management in the transportation phase,
due to the worldwide capacity shortage [26, 16, 14]. In the specific case of road transportation, this has been caused
mainly by the cargo growth, the reduction of the number of vehicles owned by carriers, the drivers shortage, and the
reduction of the number of sub-contractors, a situation not expected to improve in the coming years [26, 14, 20, 33].
As a consequence, shippers become more dependent on carriers, and are faced with an uncertain and unreliable
transportation process [16]. This aspect has been neglected in the context of the PRP, but it is essential to avoid
transportation disruptions and compromises in the operational performance [26].

In this paper, we study a PRP with a discrete and finite time horizon. The production-distribution network con-
sists of a single capacitated production facility that can produce a single type of product, and a set of geographically
dispersed retailers that require regular deliveries. A fleet of homogeneous capacitated vehicles is available to perform
the latter. In order to characterize the aforementioned source of uncertainty, we assume that the number of read-
ily available vehicles to perform the deliveries at each period is a stochastic parameter. Guaranteeing the feasibility
of the problem for all the possible values of the stochastic parameter may result in costly and highly conservative
solutions, thus, in many practical applications, it is common to relax this conservativeness up to an admissible risk tol-
erance by enforcing chance-constraints [25, 21]. We adopt this modelling approach and propose two mathematical
chance-constrained formulations for the problem under study, one more conservative (aggregated), which guarantees
a minimum feasibility amongst all scenarios, and one more flexible (disaggregated), which imposes the risk level with
respect to the periods in each scenario. The sample approximation approach (SAA) method is used, and it was chosen
because it deals with the type of chance-constraints under study, which include randomness in the right-hand side
and non-linearities, and it is also appropriate for problems in which very small risk levels do not need to be enforced,
allowing the decision maker to choose between the competing goals of cost and risk. One of the models is initially
solved for a subset of the considered instances, using traditional Benders decomposition (BD) and partial Benders
decomposition (PBD) as an acceleration strategy. The results of both methods are compared and the best performing
is used for the remaining computational experiments. Finally a sample analysis is performed in order to verify the
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stability and validity of the samples used in the experiments.

The remainder of the paper is organized as follows. In Section 2, a literature review is performed, followed by the
problem description in Section 3. In Section 4, we define the mathematical formulations. Section 5 includes the ap-
proaches used to solve the problem, followed by the computational experiments and results in Section 6. Conclusions
are drawn in Section 7.

2 | LITERATURE REVIEW

The PRP has received an increasing amount of attention in the last years [2, 5, 34] and it has proved very successful in
theory and practice, being able to reduce the logistic costs of several companies. The great majority of the literature
focuses on deterministic versions of the problem, and on the use of heuristic algorithms as solution approaches. Many
variants of the deterministic PRP have been explored and include, but are not limited to, perishable products, time
windows, cross-docking satellites, backlog allowance, environmental and social aspects. More details concerning the
existing studies can be found in the work of Adulyasak et al. [5]. When one considers the stochastic variants of the
problem, the literature is scarce, and the existing studies focus on uncertain demand. In the remainder of this section,
we present a summary of the works on the stochastic PRP and its variations.

The seminal work that considers stochastic parameters in the context of PRP is attributed to Adulyasak et al.
[4], who assumed the existence of uncertain demand. The authors study a single-product PRP, with a capacitated
production facility, and a homogeneous fleet of vehicles. Two formulations are proposed, namely a two-stage and a
multi-stage stochastic program. In the first, scenarios are independent, while in the latter a scenario tree is considered,
thus some scenarios have common elements and non-anticipativity constraints are necessary. To solve themodels, the
authors propose an exact method, a Benders-based branch-and-cut (BBC) algorithm, and incorporate computational
enhancements for both formulations. Results show that the regular branch-and-cut (BC) algorithm outperforms the
BBC for smaller instances with a small number of scenarios. Nevertheless, for large instances and cases with a large
number of scenarios, its enhanced version is better than the BC, both in computational times and results.

An extension of the PRP, also considering uncertain demand, is proposed by Zhang et al. [35] to include reverse
logistics and carbon emission regulations. The authors assume the existence of multiple manufacturing and reman-
ufacturing plants, simultaneous pickups and deliveries of worn out items and finished goods, a heterogeneous fleet
of vehicles, and carbon cap-and-trade policy. Two formulations for the problem are introduced, a deterministic and
a stochastic one. The latter is a two-stage model with stochastic demand of finished and worn-out products. The
authors employ the commercial solver Cplex to solve the models and conclude that the carbon price is the parameter
with the most significant impact on the total supply chain profit.

A similar work is developed by Shuang et al. [31] aiming at selecting the best carbon emissions control policy
while maximizing the total network profit. Two case studies are performed to demonstrate the application of the
proposed modelling approaches, which include a deterministic and a two-stage stochastic formulation with uncertain
demand and quantity of worn-out items. Both models are solved using Cplex. Similarly to [35], the authors confirmed
the effects of carbon prices on the profits of the supply chain.

A commercial solver is used by Ji et al. [19] to solve a PRP with uncertain demand, multiple products, multiple
production facilities, a heterogeneous fleet of vehicles, backlog allowance and physical internet (PI) hubs. The devel-
oped formulation is solved using Cplex and the authors report that PI hubs allow for a reduction in total costs when
compared to traditional supply chains with dynamic configuration and lateral transshipment.

The effectiveness of PI hubs in a context of uncertain demand is also studied by Peng et al. [28], but a heuristic
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procedure is used to solve the proposed formulation. The authors consider the PRP in a multi-layer network, with
multiple production plants, PI hubs, open distribution centers (DCs), transshipments and en-route consolidation. The
authors also consider the occurrence of disruption events at the plants and/or DCs, which can compromise the produc-
tion, storage and handling capacities, as well as some links of the network. The problem is modelled with a two-stage
formulation, and two disruption management strategies are evaluated. A two-level heuristic algorithm is proposed
to solve the model, and its results are generally better than those of the commercial solver Gurobi. The authors also
conclude that the total cost and the service level are substantially improved whenmitigation strategies are considered
in the problem.

Another heuristic procedure is used to solve a PRP with uncertain demand, and backlog allowance [6]. The
authors propose a two-stage formulation and use two different approaches to solve the problem. In the first one,
called static, a sample average approximation procedure is applied in combination with branch-and-bound (BB). The
problem is solved independently for different sample sets in order to generate candidate solutions. A time limit is
imposed in the solution process, and the best solution is chosen. In the adjustable approach, the sample average
approximation is applied and the same heuristic is used to produce a set of candidate solutions; the latter are then
used to fix part of the first-stage solution, and the new restricted problem is solved again for a new larger sample. To
improve the generated solutions, two alternatives are used in conjunction with both solution strategies: iterative local
search, and a simplification of the model by the predefinition of routes, making the restricted model easier to solve.
Results show that the adjustable approach produces better quality solutions, and using the enhancement strategies
helps to improve the results and computational times, mainly for larger-sized instances.

A PRP with multiple perishable products, a heterogeneous fleet of vehicles, distribution with time windows, and
stochastic demand is studied by Vahdani et al. [32]. A heuristic based on a large neighborhood search algorithm
is presented to solve the proposed problem, as well as the water cycle algorithm, a metaheuristic founded on the
observation of the water cycles that occur in nature. The computational results obtained show that the metaheuristic
generally outperforms the software LINGO and the proposed heuristic.

Metaheuristics procedures are also adopted to solve a PRP that considers demand uncertainty, multiple perish-
able products, multiple production sites, production in two different phases, a heterogeneous fleet of vehicles, time
windows, and gas emissions in the supply chain [29]. The authors propose a non-linear formulation and solve it using
a cuckoo search algorithm (CSA) and the flower pollination algorithm (FPA). Results show that the CSA outperforms
the FPA both in solution quality and computational times.

Workforce planning is introduced in the context of PRP by Majidi et al. [24], who also consider price-dependent
uncertain demands, transportation emissions, and the existence of multiple perishable products. A non-linear multi-
objective formulation is proposed, aiming at maximizing profits, and minimizing emissions and workforce fluctuations.
The model is linearized using continuous prices and discrete demands, and it is initially solved using an ϵ-constraint
method. This approach allows one to obtain up to 50% of feasible solutions in small instances and none in the larger
ones, within a time limit of one hour of CPU time. As an alternative, the authors use the metaheuristic NSGA-II, which
is enhanced by dynamic mutation, dynamic crossover and fuzzy domination. The results obtained by the enhanced
NSGA-II are generally better than those of the traditional version of the algorithm.

A problem with the same characteristics, with the exception of the gas emissions, is studied by Farghadani-
Chaharsooghi et al. [15]. In addition to the stochastic demands, the authors also consider uncertain travel times. A
two-stage scenario-based stochastic formulation is developed, and a matheuristic that combines a progressive hedg-
ing algorithm, BD and a genetic algorithm is used to solve it. Results show that, in comparison with a formulation that
considers all the scenarios of a scenario tree, the model decomposed by scenario produced solutions in shorter time
and with low optimality gap. The proposed approach also outperforms Cplex.
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An extension of the PRP, the collection disassembly problem, is proposed by Habibi et al. [18]. In this problem,
a single end-of-life product, composed of multiple components, must be collected by a homgeneous fleet of vehicles
at several centers. Then, the products are taken to a plant, where they are disassembled to release the requested
components. Three parameters are considered as stochastic by the authors: the quantity of products returned to
the collection centers; the quantity of components in each item and; the demand for the components. The problem
is modeled as a two-stage stochastic program and solved using and adaptation of the two-phase iterative heuristic
of Absi et al. [1], which is known for its good performance in solving the PRP. To deal with the large number of
scenarios, the SAA is also applied. The computational results show that obtaining the perfect information is too costly
for managers, since the expected value of the perfect information is, on average, at least 39%. On the other hand,
solving the problem using the average value of the uncertain parameter can make the managers pay at least 1.4% and
up to 10.6% more than by solving the proposed stochastic formulation.

As it is possible to see, there are many opportunities to be explored while contemplating uncertainty in the supply
chain. In this study, we investigate the PRP with uncertainty in the availability of vehicles. This is a problem setting
not considered by previous studies, but commonly found in industrial environments.

3 | PROBLEM DESCRIPTION

The PRP under study is defined on a complete graph G = {N,A}, where N = {0, . . . , n } is the set of nodes and
A = { (i , j ) : i , j ∈ N, i , j } is the set of arcs. The plant is denoted by the node 0 and Nc = N \ {0} is the set
of retailers. A single product is produced by a single plant, with production capacity C , along a finite discrete time
horizon T = {1, . . . , l }. When production takes place in a period t , we assume that there are no delays, and products
can be fabricated and distributed in the same period; moreover, a fixed setup cost f and a variable production cost u
per unit are incurred for the product considered.

The demand of retailer i ∈ Nc for the product considered, in each period t ∈ T is denoted by di t . The product
can be stored by the plant and by the retailers up to an inventory limit of Li , incurring an inventory holding cost of hi ,
[i ∈ N. We observe that the holding costs vary depending on the node.

A fleet of homogeneous vehicles Kt = {0, . . . ,Kt }, each with capacity Q , is available at the plant in period t ∈ T
to distribute the product to the retailers. When a vehicle travels directly from i to j , a cost ci j is incurred, [i , j ∈ N.
As the fleet is rented from a third party that cannot always provide the minimum number of trucks required by the
company, the actual number of vehicles available in each period is uncertain and is given by the random parameter
Kt , which is independent with respect to period t ∈ T, and follows a given probability distribution. It is also assumed
that each tour starts and ends at the plant, no limit is imposed on the duration of the trips, each vehicle can perform
at most one trip per period, and split deliveries are not allowed (each retailer can be served by only one vehicle per
period).

The goal of the problem is to simultaneously minimize production, inventory, and routing costs at the plant and
retailers, satisfying the demands, and respecting inventory limits and the production capacity.

4 | PROBLEM FORMULATION

In order to formulate the problemdescribed in the previous section, we decided to use the chance-constraint approach
to model the uncertainty in the number of vehicles available in each period (Kt ). This can be done using an aggregated
or disaggregated approach with respect to the time horizon. In the first one, the risk level is imposed over all the
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scenarios, i.e., we require a minimum number of scenarios to be feasible. In the second one, the risk level is imposed
with respect to the periods in each scenario, i.e., we check how many periods, over all the scenarios, are feasible.
These two approaches are respectively presented in subsections 4.1 and 4.2.

4.1 | Aggregated Chance-Constraint

In order to model an aggregated chance-constraint with respect to the time horizon, we require that k̄ t vehicles be
available in all the periods with probability 1− ϵ, where k̄ t is the largest integer such that P r {Kt ≥ k̄ t , [t ∈ T} ≥ 1− ϵ

and ϵ is the nominal risk level. Considering ut as the actual number of vehicle routes designed for period t , we have
to guarantee that:

ut ≤ k̄ t ⇒ P r {ut ≤ Kt , [t ∈ T} ≥ 1 − ϵ (1)

Assuming the existence of the vector of decision variables u = (u1, . . . ,u l ) , the random vectorK = (K1, . . . ,K l ) ,
and the constant vector 1l = (1, . . . , 1) ∈ Òl we can rewrite (1) as

P r {u ≤ K } ≥ (1 − ϵ )1l (2)

and the probabilistic constrained problem [PCP] can then be formulated as:
Parameters
n number of retailers
l number of periods
C production capacity
f fixed production setup cost
g unitary production cost
hi unitary inventory holding cost at node i

Li inventory limit at node i

di t demand of retailer i in period t

ci j transportation cost over arc (i , j )
Q capacity of each vehicle
Kt number of vehicles available in period t

ϵ nominal risk level
Decision variables
xi j t binary variable equal to 1 if node i is visited immediately before node j in period t

yt binary variable equal to 1 if a production set up occurs in period t

zi t binary variable equal to 1 if retailer i is visited in period t

z0t number of vehicles that leave the plant in period t

ut number of routes to be performed in period t

pt quantity produced in period t

qi t quantity delivered to retailer i in period t

Ii t quantity in inventory at node i at the end of period t
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[PCP ] = min
x,y,z,u,
p,q,I

∑
t ∈T

©­«f yt + gpt +
∑
i ∈N

hi Ii t +
∑

(i ,j ) ∈A
ci j xi j t

ª®¬ (3)

s.t. I0,t−1 + pt = I0t +
∑
i ∈Nc

qi t , [t ∈ T (4)

Ii ,t−1 + qi t = Ii t + di t , [i ∈ Nc , t ∈ T (5)

pt ≤ B ′yt , [t ∈ T (6)

I0t ≤ L0 , [t ∈ T (7)

Ii ,t−1 + qi t ≤ Li , [i ∈ Nc , t ∈ T (8)

qi t ≤ B ′′zi t , [i ∈ Nc , t ∈ T (9)∑
j ∈N

xi j t = zi t , [i ∈ Nc , t ∈ T (10)∑
j ∈N

xi j t +
∑
j ∈N

xj i t = 2zi t , i ∈ N, t ∈ T (11)

zi t ≤ z0t , [i ∈ Nc , t ∈ T (12)

Q
∑
i ∈S

∑
j ∈S

xi j t ≤
∑
i ∈S

(Qzi t − qi t ) , [S ⊆ Nc , |S | ≥ 2, t ∈ T (13)∑
i ∈S

∑
j ∈S

xi j t ≤ |S | − 1 , [S ⊆ Nc , |S | ≥ 2, t ∈ T (14)

P r {u ≤ K } ≥ (1 − ϵ )1l (15)

z0t = ut , [t ∈ T (16)

xi j t ∈ {0, 1} , [(i , j ) ∈ A, t ∈ T (17)

yt ∈ {0, 1} , [t ∈ T (18)

zi t ∈ {0, 1} , [i ∈ Nc , t ∈ T (19)

z0t ∈ {0, . . . ,Kt } , [t ∈ T (20)

ut ∈ {0, . . . ,Kt } , [t ∈ T (21)

pt ≥ 0 , [t ∈ T (22)

qi t ≥ 0 , [i ∈ Nc , t ∈ T (23)

Ii t ≥ 0 , [i ∈ N, t ∈ T (24)

where B ′ = min{C ,
l∑

t ′=t

∑
i ∈Nc

di t ′ } and B ′′ = min{Li ,
l∑

t ′=t
di t ′ ,Q }.

The objective function (3) minimizes the sum of production, inventory and transportation costs. Constraints (4)
and (5) are the inventory balance at the production facility and the retailers, respectively. The inequalities (6) are
responsible to force a setup if there is production in period t and to limit the production to the minimum between the
production capacity and the total demand in the remaining periods. The inventory limit at the production facility is
imposed by constraints (7) and the quantity of products at the retailers cannot exceed their inventory capacity after
the deliveries are made, as imposed with constraints (8). Constraints (9) limit the quantity of products that can be
loaded in each vehicle, and a positive delivery to retailer i in period t is allowed only if this node is visited in that
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period. The latter constraints also impose the delivered quantity to node i to be the minimum between the inventory
limit at the retailer, the remaining demand at the node, and the vehicle capacity. Moreover, each retailer can be
visited at most one time per period (10) and the degree constraints are represented by (11). Inequalities (12) are used
to strengthen the formulation, and they guarantee that if a retailer is visited in period t , at least a vehicle leaves the
plant. Constraints (13) ensure the respect of vehicle capacity and also work as subtour elimination constraints (SECs).
In order to speed up the solution process, another SECwas introduced (14), as it is stronger than (13). The probabilistic
constraint (15) states that a sufficient number of vehicles needs to be available to perform the designed routes, in all
periods, with a probability of 1 − ϵ. Additionally, we ensure that the number of vehicles used in a period is equal to
the number of designed routes (16). Constraints (17) - (24) impose the non-negativity and integrality requirements
on the decision variables of the optimization model.

4.2 | Disaggregated Chance-Constraint

Alternatively, one can see the probabilistic constraint (15) in a disaggregated fashion, looking at periods separately,
and producing a less conservative formulation. In this case, one needs to enforce that in each period we have enough
vehicles to perform the schedule routes with a probability of 1 − ϵ. This is guaranteed by substituting inequality (15)
by

P r {ut ≤ Kt } ≥ 1 − ϵ , [t ∈ T (25)

The [PCP] that considers the period-based probabilistic constraints is called [PCP-D], and is defined by (3)-(14)
and (16)-(25).

Due to the difficulty of calculating P r {u ≤ K } and P r {ut ≤ Kt }, both the [PCP] and [PCP-D] models need
to be converted into manageable forms. This can be done by using information about the underlying distribution of
the random parameter Kt , by means of a sampling method [8]. Due to the characteristics of the problem and of the
probabilistic constraint, we decided to make use of the SAA proposed by [22], which is discussed in Section 5.

5 | SOLUTION PROCEDURE

In this section we present the procedures used to solve the proposed model. In Subsection 5.1, we introduce the
SAA approach, which is applied in order to produce a solvable model through the use of Monte Carlo sampling. The
resulting scenario basedmodel is then solved bymeans of the BD and PBDmethods, which are respectively described
in Subsections 5.2 and 5.3.

5.1 | Sample Approximation Approach

The SAA aims at solving a sample approximation problem (SAP) using a Monte Carlo sampling to empirically approxi-
mate the general distribution of the random vector. Some probabilistic constraints do not need to be strictly enforced
(“soft" constraints), which means that the assumed risk level α is positive. In these cases, the decision maker would
like the constraints to be respected, but would compromise if the violated constraints lead to a sufficient decrease in
the cost of the solution. This allows for more flexibility, once one is now able to choose from the efficient frontier
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between competing objectives.

The SAA method allows to tackle cases where α is positive and the uncertainty appears in the right-hand side
of the constraints, which is the condition in constraints (15) and (25). Moreover, the methodology can be applied to
both finite and continuous feasible regions and distributions, and also guarantees that one can obtain lower bounds
(LB) to the optimal value of a general probabilistic constrained problem with high confidence, producing good quality
feasible solutions [22].

To be able to approximate the original probabilistic constrained problem by solving a SAP, one needs to redefine
the feasible region Xϵ of the former model, where ϵ is the nominal risk parameter. Considering that, for a given
deterministic feasible region X , x ∈ X are the problem variables, ξ is the random vector, and G (x , ξ ) is the constraint
mapping, the feasible region of the probabilistic constrained problem is given by

Xϵ = {x ∈ X : P r {G (x , ξ ) ≤ 0} ≥ 1 − ϵ} (26)

In the case herein studied, X is the feasible region defined by constraints (4)-(14) and (16)-(24), ξ is the random
vectorK , and G (x , ξ ) = G (u,K ) = u − K.

Assuming that we make an independent Monte Carlo sampling of the random vector ξ, then, for a fixed risk level
α ∈ [0, 1) , the feasible region of the equivalent SAP can be defined as

X N
α = {x ∈ X : 1

N

N∑
s=1

É(g (x ) ≥ ξs ) ≥ 1 − α } (27)

where ξs is the random vector in scenario s ∈ {1, . . . ,N }, G (x , ξs ) = ξs − g (x ) is the constraint mapping under
scenario s , and É( ·) is the indicator function, which takes value one when · is true and zero otherwise. Making use of
the previous considerations, we assume in our case that the random vector in scenario s is given byKs = (K s

1 , . . . ,K
s
l
) ,

whereK s
t is the number of vehicles available in period t ∈ T under scenario s . Then, we can define the SAP formulation

of the [PCP] model as follows:

[SAP ] = min
x,y,z,u
p,q,I

∑
t ∈T

©­«f yt + gpt +
∑
i ∈N

hi Ii t +
∑

(i ,j ) ∈A
ci j xi j t

ª®¬ (28)

s.t. (4) − (14), (16) − (19), (22) − (24)

1

N

N∑
s=1

É
(
Ks ≤ u

)
≤ α1l (29)

z0t ∈ {0, . . . ,max
s

K s
t } , [t ∈ T, s ∈ {1, . . . ,N } (30)

ut ∈ {0, . . . ,max
s

K s
t } , [t ∈ T, s ∈ {1, . . . ,N } (31)

To solve the [SAP] as a mixed-integer linear program, constraint (29) still needs to be linearized. Hence, the
indicator function É( ·) is replaced by the binary variablew s , which equals 1 if, for a given scenario s , \t ∈ T : K s

t < ut ,
and 0 otherwise. The constraint (29) then becomes
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1

N

N∑
s=1

w s ≤ α (32)

w s ∈ {0, 1} , [s ∈ {1, . . . ,N } (33)

To complete the linearization, the following constraints need to be added to the [SAP] model

ut ≤ K s
t + Aw s , [s ∈ {1, . . . ,N }, t ∈ T (34)

where A is a positive number large enough to make the model feasible whenever w s = 1. Thus, the final [SAP]
formulation for the [PCP] is given by (3)-(14), (16)-(19), (22)-(24) and (30)-(34).

Similarly, for the [PCP-D] model, we can define the feasible region of its equivalent SAP as

X
N
α = {x ∈ X : 1

N

N∑
s=1

É(g (x ) ≥ ξst ) ≥ 1 − α , [t ∈ T} (35)

where ξst is the component of the random vector associated with period t and scenario s , and G (x , ξst ) = ξst − g (x ) is
the constraint mapping under scenario s and period t , [t ∈ T, s ∈ {1, . . . ,N }. Thus, to obtain the SAP version of the
[PCP-D] model, we substitute constraint (29) by

1

l N

l∑
t=1

N∑
s=1

É
(
K s
t ≤ ut

)
≤ α (36)

In order to linearize inequality (36), the indicator function É( ·) is replaced by the binary variablew s
t , which equals

1 if K s
t < ut , [t ∈ T, and 0 otherwise. The constraint (36) is then replaced by

1

l N

l∑
t=1

N∑
s=1

w s
t ≤ α (37)

ut ≤ K s
t + Aw s

t , [t ∈ T, s ∈ {1, . . . ,N } (38)

w s
t ∈ {0, 1} , [t ∈ T, s ∈ {1, . . . ,N } (39)

The SAP version of the [PCP-D] model, here called [SAP-D], is defined by (3)-(14), (16)-(19), (22)-(24), (30)-(31)
and (37)-(39).

5.2 | Benders Decomposition

The [SAP] and [SAP-D] formulations can be considered as NP-hard problems, one of the reasons for that being that
they contain an exponentially increasing number of capacity constraints and SECs. Given the existence of a large
number of decision variables, both discrete and continuous, decomposition methods are appropriate to handle this
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type of problem, as they allow for large-scale optimization models to be split into smaller parts based on a partition
of the decision variables. Therefore, they offer an interesting approach for us to decompose the model in such a way
to isolate the complicating factors, which makes the solution procedure easier.

Considering the aforementioned, we decided to apply the BD method to the proposed models, a decomposi-
tion approach that is able to handle their special structure, and makes use of BC to deal with the high number of
constraints. Furthermore, this approach has been successfully applied to some other versions of the PRP, both deter-
ministic and stochastic [see 15, 36, 4]. We highlight that standard commercial solvers could not be efficiently used
to solve the models directly, as they usually require more computational memory and cannot take advantage of the
problem structure at hand.

The BD approach is composed of three main phases, namely, projection, outer-linearization and relaxation [17].
In the projection phase, also known as partitioning, we project the model into the subspace defined by the so called
complicating variables, those that, when temporarily fixed, make the original problem significantly less complex. The
resulting projected formulation is dualized, and its corresponding extreme rays are used to define the feasibility re-
quirements of the complicating variables (feasibility cuts). The dual problem is then outer-linearized, and its extreme
points define the projected costs of the complicating variables (optimality cuts). In order to obtain the equivalent
formulation to the original problem, we would need to enumerate all the feasibility and optimality cuts, which would
largely increase the complexity of the model. In order to avoid this, we relax these inequalities, and add the feasibility
and optimality cuts as needed. As a result of this procedure, we obtain a master problem (MP), which is defined by the
complicating variables, their related constraints, and the necessary feasibility and optimality cuts. The subproblem
(SP) is obtained in the projection phase, and it is defined by the remainder of the variables and constraints from the
original problem. Both MP and SPs are iteratively solved until the optimal solution is obtained. In cases where the SP
is infeasible, a feasibility cut is added to the MP, otherwise, optimality cuts are generated.

In order to perform the decomposition of both [SAP] and [SAP-D], one needs to define how to partition the
decision variables between the MP and the SP. The integer and binary variables are included in the MP. Moreover,
preliminary tests indicated that we also need to keep the variables qimt in the MP, in order to allow us to eliminate
existent subtours. This means that distribution decisions stay in the MP, while production quantities and inventory
plans are decided in the SP.

Once we perform the decomposition of the final [SAP], we obtain the equivalent Benders decomposition to the
original formulation, herein called [SAP |BD]model, which is composed of aMP ([SAP |BD |MP]) and a SP ([SAP |BD |SP]).
The [SAP |BD |MP] can be formulated as
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[SAP |BD |MP ] = min
x,y,z,u
q,w,η

∑
t ∈T

©­«f yt +
∑

(i ,j ) ∈A
ci j xi j t

ª®¬ + η (40)

s.t. (9) − (14), (16) − (19), (23), (30) − (34)∑
i ∈Nc

(
−α f

1 qi1 + β f
i1 (qi1 − di1 + Ii0 ) + δfi1 (−qi1 + Li − Ii0 )

+
l∑

t=2

(
−α f

t qi t + β f
i t (qi t − di t ) + δfi t (−qi t + Li )

))
+

∑
t ∈T

(
B ′yt γ

f
t

+L0θ
f
t

)
+ I00α

f
1 ≥ 0 , [

(
αf , βf , γf , θf , δf

)
∈ F∆ (41)∑

i ∈Nc

(
−αe

1 qi1 + β e
i1 (qi1 − di1 + Ii0 ) + δei1 (−qi1 + Li − Ii0 )

+
l∑

t=2

(
−αe

t qi t + β e
i t (qi t − di t ) + δei t (−qi t + Li )

))
+

∑
t ∈T

(
B ′yt γ

e
t

+L0θ
e
t

)
+ I00α

e
1 + η ≥ 0 , [ (αe, βe, γe, θe, δe ) ∈ E∆ (42)

η ≥ 0 (43)

where∆ is the polyhedron defined by the constraints of the dual SP, F∆ is the set of extreme rays of∆, and E∆ is the set
of extreme points of∆. The auxiliary variable η establishes a direct link between the SP and theMP,more specifically, it
enables the expression of the costs associated with the SP for given solutions of theMP, allowing for the construction
of the optimality cuts. Therefore, η characterizes a LB in the objective function of the MP provided by the SP, which
prevents the unboundedness of the problem. Furthermore, α,β,γ,θ and δ are the vectors of dual variables of the
SP, where α = (αt free | [t ∈ T),β = (βi t free | [i ∈ Nc , [t ∈ T),γ = (γt ≥ 0 | [t ∈ T),θ = (θt ≥ 0 | [t ∈ T) and
δ = (δi t ≥ 0 | [i ∈ Nc , [t ∈ T) , which are used to define the feasibility (41) and optimality cuts (42).

Once the MP is solved, we let the variables y and q represent respectively the vectors of fixed variables y and q ,
which allow us to obtain the SP of the [SAP |BD] model, given by

[SAP |BD |SP ] = min
p,I

∑
t ∈T

(
gpt +

∑
i ∈N

hi Ii t

)
(44)

s.t. I0,t−1 + pt = I0t +
∑
i ∈Nc

q i t , [t ∈ T (45)

Ii ,t−1 + q i t = Ii t + di t , [i ∈ Nc , t ∈ T (46)

pt ≤ B ′y t , t ∈ T (47)

I0t ≤ L0 , [t ∈ T (48)

Ii ,t−1 + q i t ≤ Li , [i ∈ Nc , t ∈ T (49)

pt ≥ 0 , [t ∈ T (50)

Ii t ≥ 0 , [i ∈ N, t ∈ T (51)

The dual version of the [SAP |BD |SP] is then defined as:
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[SAP |BD |DSP ] = max
α,β,γ
θ,δ

∑
i ∈Nc

(α1q i 1 + βi1 (−q i 1 + di1 − Ii0 ) + δi1 (q i 1 − Li + Ii0 )

+
l∑

t=2

(
αt q i t + βi t

(
−q i t + di t

)
+ δi t

(
q i t − Li

) ))
−

∑
t ∈T

(
B ′y tγt

+L0θt ) − I00α1 (52)

s.t. (α,β,γ, θ, δ) ∈ ∆ (53)

where the polyhedron ∆ can be defined by:

αt − γt ≤ g , [t ∈ T (54)

− αt + αt+1 − θt ≤ h0 , [t ∈ T (55)

− βi t + βi ,t+1 − δi ,t+1 ≤ hi , [i ∈ Nc , t ∈ T (56)

A similar decomposition can be performed for the [SAP-D] formulation, just by replacing constraints (32)-(34) by
(37)-(39). This gives us the [SAP-D |BD] model, and its corresponding MP, [SAP-D |BD |MP], and SP, [SAP-D |BD |SP].

5.3 | Acceleration Strategy

Although the traditional BD is a good alternative to decompose the problem under study, it results in a weak version
of the MP. In fact, the MP loses all the important information related to the non-complicating variables that belong to
the SP [30, 11, 12]. This tends to lead to poor quality solutions being found at the beginning of the solution process,
and an arbitrarily large number of optimality cuts being added in order to converge to an optimal solution. Moreover,
BD often suffers from slow running times [12].

To solve these issues, one can make use of PBD as an acceleration strategy, introducing in the MP explicit infor-
mation from variables of the SP, thus improving the structure of the problem. This should allow for a reduction in the
computational times when solving the problem, as showed by [11, 12].

One manner to do the aforementioned is to reformulate the original problem by introducing new redundant
aggregated variables to the problem. Then, by manipulating some of the constraints, we generate valid inequalities,
which are definedwith respect to the new variables. After that, the traditional BD is applied. The resulting formulation
is equivalent to the original one, and its optimal solution remains the same; the only significant change is in the
complexity of the MP model, which contains a larger number of variables and constraints.

In our case, one can generate the following aggregated constraints, valid for both the [SAP] and the [SAP-D]
models:
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I0t − I0,t−1 + INc t − INc ,t−1 +
∑
i ∈Nc

di t ≤ B ′yt , [t ∈ T (57)

INc t − INc ,t−1 +
∑
i ∈Nc

di t ≤
∑
i ∈Nc

B ′′zi t , [t ∈ T (58)

INc t − INc ,t−1 +
∑
i ∈Nc

di t =
∑
i ∈Nc

qi t , [t ∈ T (59)

I0t ≥ 0 , [t ∈ T (60)

INc t ≥ 0 , [t ∈ T (61)

where I0t and INc t are respectively the total inventory at the production plant and at the retailers at the end of period
t ∈ T.

Moreover, the new aggregated variables can be used to introduce a LB to the variable η, and consequently, to the
objective function (40):

h0I0t + min
i ∈Nc

{hi }INc t ≤ η , [t ∈ T (62)

Once we add the constraints (57)-(62) to the final [SAP] and perform its decomposition, we obtain its partial
Benders reformulation [SAP |PBD], which is composed of a MP ([SAP |PBD |MP]) and of a SP ([SAP |PBD |SP]). The
[SAP |PBD |MP] model can be defined as

[SAP |PBD |MP ] = min
x,y,z
u,q,w

η,I0,INc

∑
t ∈T

©­«f yt +
∑

(i ,j ) ∈A
ci j xi j t

ª®¬ + η (63)

s.t. (9) − (14), (16) − (19), (23), (30) − (34), (41) − (43), (57) − (62)

while the [SAP |PBD |SP] formulation is the same as the [SAP |BD |SP] model. The same procedure can be done for
the [SAP-D] model, by substituting constraints (32)-(34) by (37)-(39). This gives us the [SAP-D |PBD] model, and its
corresponding MP, [SAP-D |PBD |MP], and SP, [SAP-D |PBD |SP].

6 | COMPUTATIONAL EXPERIMENTS

In this section, we describe the main computational experiments performed, as well as the instances used and results
obtained. Initially, we assess the two decomposition approaches, BD and PBD, to identify the most efficient one. This
is done by solving the [SAP |BD] and the [SAP |PBD] formulations on a subset of instances. The best solution method is
then used for the remaining experiments, which are conducted in order to analyze the characteristics of the solutions
when we consider aggregated and disaggregated probabilistic constraints. Finally, we evaluate the accuracy of the
finite approximations of the random distributions by the samples that are generated.

The algorithms are coded in C++ on Visual Studio 2017, and Cplex 20.1.0 is applied to solve the linear programs.
The experiments are performed on Narval, one of the main supercomputers of the Digital Research Alliance of Canada
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[13], and a time limit of 2 hours is imposed. It is important to point out that, in practice, it is not computationally
interesting to add to the problem all the Benders cuts or the constraints (13)-(14) for all the existent subsets of
retailers, as the model would be too large. Thus, we decided to implement the BBC algorithm, where a single BC tree
is constructed and the Benders cuts, SECs, and capacity constraints are added as needed as the tree is explored. In this
case, we identify the existence of subtours using the Lysgaard’s separation procedure, which uses rounded capacity
inequalities [23]. The latter is a well known and used package that makes use of multiple heuristics to detect violated
inequalities, improving the LBs and the speed of the solution process. In the cases where subtours are identified,
the corresponding inequalities (13)-(14) are added to the MP in order to exclude them from the upcoming solutions.
Constraint (13) is also added in the case where real tours are found to guarantee that they respect the vehicle capacity.

In order to further improve the solution process, we set higher branching priorities to the variables w s and ut ,
as they are integer and directly related to the stochastic parameter and the probabilistic constraint. Preliminary tests
showed that, in general, we can achieve better solutions if these variables are decided first. Moreover, the experiments
were performed 10 times for each instance, using different scenarios, under seven different risk levels α , varying from
0.50 to 0.00.

6.1 | Details of the Instances

As this is the first time that the PRP with uncertain number of vehicles is studied, there are no benchmark instances
readily available to conduct the computational experiments. Thus, we generate a set of instances from those used by
[2] in the case of deterministic multi-vehicle PRP (MVPRP). Originally, the authors presented four classes of instances:
standard, higher unit production costs, higher transportation costs, and no retailer inventory costs. For the purposes
of this paper, we use the standard instances, changing only the number of vehicles available, which is our stochastic
parameter. We consider that the number of vehicles follows a discrete triangular distribution of probabilities with
median value MED, and it can assume a value in the set {MED-2, MED-1, MED, MED+1, MED+2}, with probability
(0.1, 0.2, 0.4, 0.2, 0.1), respectively. For most cases, MED is chosen as the number of vehicles of the deterministic
benchmark. For cases where preliminary tests showed consistent infeasibilities, we increased this median by one; the
only exception to this are the benchmark instances with 2 vehicles, in which MED is always maintained as 2, allowing
us to analyze situations in which no vehicles are available.

The stochastic parameters Kt , [t ∈ T are assumed to be independent from one another. In order to obtain a
finite approximation of the random distributions, we generate sets of scenarios by means of a Monte Carlo sampling
approach. For each instance, we sample 30, 50 and 100 scenarios.

To represent instance sizes, we use the notation Ca_Pb_MEDc where a, b, and c are the number of retailers,
periods, and median of vehicles available, respectively. The instances consider 10 to 35 retailers, 3 to 9 periods, and
median of vehicles from 2 to 4, giving us 22 different types of instances. A summary of these stochastic instances can
be found in the supplementary material.

6.2 | Performance of the Reformulations

The initial experiments aim at comparing the performance of the BD and PBD solution approaches, and are performed
on the [SAP |BD] and [SAP |PBD] models using a subset of the generated instances, 5 out of the 22 available. The
chosen instances are those with 10 and 15 retailers and MED = 3. For each instance, we evaluated the value of
the objective function (Z ), the computational time in seconds (CT), the number of feasibility (Feas) and optimality
(Opt) cuts generated, the relative optimality gap (Gap) and the relative difference with respect to the deterministic
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benchmark (RDD) [3].
In comparison to the standard BD, the use of the PBD allows for a significant improvement in the value of the

optimality gaps, on average 50%. This behaviour is even more pronounced in the larger instances, where we can
see up to 72% of gap reduction in some cases. The running times are also substantially lower using PBD, mainly
in the smaller instances. For those cases not solved to optimality, namely the larger instances, one can also obtain
smaller optimality gaps. Furthermore, the PBD approach allows for a major reduction in the number of feasibility
cuts generated, on average approximately 18% less when compared to the BD. Results also show that the number
of optimality cuts does not present a consistent behaviour, however, on average, [SAP |PBD] produces less optimality
cuts than [SAP |BD] as α decreases. In general, the enhanced formulation of the MP, obtained through the application
of the PBD, appears to result in a more targeted overall search process focused on high-quality solutions. Thus, in
turn, diminishes the necessity to generate optimality cuts to steer the algorithm towards the optimum.

It is possible to see that, in general, the PBD method overperforms the classical BD, thus, we decided to adopt
the former in the remaining of this study.

6.3 | Assessment of the Impacts of the Probabilistic Constraints

Given the better performance of the PBD over the standard BD, the [SAP |PBD] and [SAP-D |PBD] reformulations are
used to perform the computational experiments using all the 22 generated instances. The results for the [SAP |PBD]
model under high (α ≥ 0.10) and small (α < 0.10) risk levels are presented in Tables 1 and 2, respectively, while
those for the [SAP-D |PBD] model under high (α ≥ 0.10) and small (α < 0.10) risk levels are presented in Tables 3
and 4, respectively. All the tables display the average values of Z , CT, optimality gaps and RDD. The value of each
cell is obtained by calculating the average of all experiments for a given instance, disconsidering the cases of proven
infeasibility or where we could not find a feasible solution within the time limit.

From the results of the [SAP |PBD] reported in Tables 1 and 2, one can see that reasonable gaps are produced,
mainly for the smaller instances; however, they tend to increase if more retailers and/or periods are considered. Prob-
lems become specially difficult to be solved for 9 periods, even those with a small number of customers.

For the instances with 3 periods, we are able to either find a feasible solution or prove infeasibility for all the
instances. On average, 37% of the experiments produce optimal solutions, 42% produce feasible solutions, while 21%
are infeasible problems. The latter are cases that consider a median of 2 vehicles, which means that sometimes there
are no vehicles to perform the distribution in a given period. This leads to a quick increase on the LHS of constraint
(32), which is not respected for smaller risk levels, mostly for α ≤ 0.15. In the cases considering 6 periods, we are able
to obtain a smaller percentage of optimal solutions, on average 18% of the experiments, while the average of proven
infeasible problems increase to 35%. Similarly to the cases of 3 periods, the latter are experiments that consider a
median of 2 vehicles.
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TABLE 1 Results for the [SAP |PBD] reformulation, α ≥ 0.10.
α = 0.50 α = 0.30

Instance Z CT Gap RDD Z CT Gap RDD
C10_P3_MED2 13924 0.75 0.0 0.0 13927 0.87 0.0 0.0
C10_P3_MED3 14002 0.95 0.0 0.0 14002 0.88 0.0 0.0
C15_P3_MED2 19488 53.86 0.0 0.0 19499 34.02 0.0 0.1
C15_P3_MED3 19680 208.40 0.0 0.0 19680 234.8 0.0 0.0
C20_P3_MED2 22209 87.98 0.0 0.0 22217 63.14 0.0 0.0
C20_P3_MED3 22375 572.84 0.0 0.0 22375 523.52 0.0 0.0
C25_P3_MED2 26055 921.79 0.0 0.0 26065 627.31 0.0 0.0
C25_P3_MED3 26322 7090.67 0.9 0.2 26295 6422.38 0.6 0.1
C30_P3_MED3 29054 7200.00 2.0 0.6 29116 7200.00 2.3 0.8
C30_P3_MED4 29712 7200.00 5.0 1.9 29698 7200.00 5.0 1.9
C35_P3_MED3 36069 7200.00 4.4 1.6 36023 7200.00 4.1 1.5
C35_P3_MED4 36957 7200.00 17.5 3.1 36983 7200.00 11.3 3.1
C10_P6_MED2 29559 60.46 0.0 0.0 29681 43.82 0.0 0.4
C10_P6_MED3 29897 183.79 0.0 0.0 29897 186.30 0.0 0.0
C15_P6_MED2 41643 6805.74 0.5 0.0 42480 4715.06 0.3 2.0
C15_P6_MED3 42523 7200.00 4.8 0.8 42458 7200.00 2.5 0.6
C20_P6_MED2 47606 7200.00 1.9 0.3 48086 6675.85 0.9 1.3
C20_P6_MED3 48128 7200.00 3.2 0.9 48109 7200.00 3.1 0.9
C25_P6_MED2 57252 7200.00 2.9 0.7 58372 7200.00 2.6 2.6
C25_P6_MED4 58017 7200.00 4.8 1.6 58139 7200.00 5.1 1.9
C10_P9_MED2 51363 6880.50 1.3 0.9 55952 3804.25 0.3 9.9
C10_P9_MED3 51979 7200.00 2.7 0.5 52005 7200.00 2.5 0.5

α = 0.15 α = 0.10
Z CT Gap RDD Z CT Gap RDD

C10_P3_MED2 13966 0.58 0.0 0.3 13924 0.37 0.0 0.0
C10_P3_MED3 14002 0.97 0.0 0.0 14002 0.96 0.0 0.0
C15_P3_MED2 19614 33.66 0.0 0.6 19504 4.32 0.0 0.1
C15_P3_MED3 19680 241.32 0.0 0.0 19684 249.48 0.0 0.0
C20_P3_MED2 22323 50.56 0.0 0.5 22209 36.06 0.0 0.0
C20_P3_MED3 22387 742.44 0.0 0.1 22401 1159.58 0.0 0.1
C25_P3_MED2 26203 107.06 0.0 0.6 26055 74.99 0.0 0.0
C25_P3_MED3 26306 6740.04 0.7 0.1 26304 6868.45 0.7 0.1
C30_P3_MED3 29098 7200.00 2.4 0.8 29048 7200.00 2.0 0.6
C30_P3_MED4 29709 7200.00 5.2 1.9 29771 7200.00 5.6 2.1
C35_P3_MED3 36065 7200.00 4.3 1.6 36111 7200.00 4.5 1.7
C35_P3_MED4 36893 7200.00 19.4 2.9 36931 7200.00 8.9 3.0
C10_P6_MED2 30275 25.94 0.0 2.4 30267 10.51 0.0 2.4
C10_P6_MED3 29907 201.72 0.0 0.0 29920 117.79 0.0 0.1
C15_P6_MED2 41627 1912.47 0.0 0.0 - - - -
C15_P6_MED3 42635 7200.00 2.6 1.1 42792 7200.00 2.6 1.4
C20_P6_MED2 49380 5148.84 0.3 4.0 49657 3856.94 0.1 4.6
C20_P6_MED3 48248 7200.00 3.1 1.2 48296 7200.00 3.2 1.3
C25_P6_MED2 57063 7200.00 2.2 0.3 - - - -
C25_P6_MED4 58016 7200.00 4.4 1.6 57913 7200.00 4.2 1.5
C10_P9_MED2 - - - - - - - -
C10_P9_MED3 53749 7200.00 4.2 3.9 54223 7200.00 4.1 4.8

For the cases without data, all the solutions are proven infeasible.
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TABLE 2 Results for the [SAP |PBD] Reformulation, α < 0.10.

α = 0.05 α = 0.01 α = 0.00
Instance Z CT Gap RDD Z CT Gap RDD Z CT Gap RDD

C10_P3_MED2 - - - - - - - - - - - -
C10_P3_MED3 14002 0.84 0.0 0.0 14002 0.77 0.0 0.0 14002 0.68 0.0 0.0
C15_P3_MED2 - - - - - - - - - - - -
C15_P3_MED3 19688 189.86 0.0 0.0 19689 304.91 0.0 0.0 19689 243.37 0.0 0.0
C20_P3_MED2 - - - - - - - - - - - -
C20_P3_MED3 22445 2666.64 0.0 0.3 22460 5192.44 0.1 0.4 22460 6580.50 0.1 0.4
C25_P3_MED2 - - - - - - - - - - - -
C25_P3_MED3 26317 6475.41 0.9 0.2 26316 7145.56 1.0 0.2 26330 7200.00 1.1 0.2
C30_P3_MED3 29019 7200.00 1.8 0.5 29043 7200.00 2.2 0.6 29047 7200.00 2.3 0.6
C30_P3_MED4 29746 7200.00 5.4 2.0 29859 7200.00 5.8 2.4 29846 7200.00 5.9 2.4
C35_P3_MED3 35977 7200.00 4.4 1.3 36047 7200.00 4.7 1.5 36041 7200.00 4.6 1.5
C35_P3_MED4 36892 7200.00 15.4 2.9 36795 7200.00 6.3 2.6 36717 7200.00 6.0 2.4
C10_P6_MED2 - - - - - - - - - - - -
C10_P6_MED3 29936 94.75 0.0 0.1 29937 98.74 0.0 0.1 29937 111.83 0.0 0.1
C15_P6_MED2 - - - - - - - - - - - -
C15_P6_MED3 44323 7200.00 2.4 5.1 45192 7200.00 2.9 7.1 45259 7200.00 3.2 7.3
C20_P6_MED2 - - - - - - - - - - - -
C20_P6_MED3 48552 7200.00 3.5 1.8 48738 7200.00 4.8 2.2 48911 7200.00 5.8 2.6
C25_P6_MED2 - - - - - - - - - - - -
C25_P6_MED4 58005 7200.00 4.4 1.6 58372 7200.00 5.9 2.3 58591 7200.00 7.0 2.7
C10_P9_MED2 - - - - - - - - - - - -
C10_P9_MED3 54749 7200.00 3.7 5.8 54840 7200.00 3.5 6.0 54873 7200.00 3.6 6.1
For the cases without data, all the solutions are proven infeasible

TABLE 3 Results for the [SAP-D |PBD] reformulation, α ≥ 0.10.
α = 0.50 α = 0.30

Instance Z CT Gap RDD Z CT Gap RDD
C10_P3_MED2 13924 0.63 0.0 0.0 13924 0.64 0.0 0.0
C10_P3_MED3 14002 0.68 0.0 0.0 14002 0.96 0.0 0.0
C15_P3_MED2 19488 36.94 0.0 0.0 19488 35.95 0.0 0.0
C15_P3_MED3 19680 171.78 0.0 0.0 19680 220.20 0.0 0.0
C20_P3_MED2 22209 91.77 0.0 0.0 22209 63.13 0.0 0.0
C20_P3_MED3 22375 808.72 0.0 0.0 22375 741.33 0.0 0.0
C25_P3_MED2 26055 823.52 0.0 0.0 26055 879.33 0.0 0.0
C25_P3_MED3 26298 6718.42 0.6 0.1 26299 6691.73 0.7 0.1
C30_P3_MED3 29085 7200.00 2.3 0.7 29081 7200.00 2.2 0.7
C30_P3_MED4 29779 7200.00 5.4 2.1 29712 7200.00 5.0 1.9
C35_P3_MED3 36016 7200.00 4.0 1.4 36079 7200.00 4.4 1.6
C35_P3_MED4 36907 7200.00 17.2 2.9 36879 7200.00 11.0 2.9
C10_P6_MED2 29559 17.93 0.0 0.0 29559 18.13 0.0 0.0
C10_P6_MED3 29897 139.31 0.0 0.0 29897 137.45 0.0 0.0
C15_P6_MED2 41655 7003.06 0.7 0.1 41651 7200.00 0.7 0.1
C15_P6_MED3 42350 7200.00 2.2 0.4 42369 7200.00 2.3 0.4
C20_P6_MED2 47651 7200.00 2.0 0.4 47658 7200.00 2.0 0.4
C20_P6_MED3 48104 7200.00 2.8 0.9 48076 7200.00 2.8 0.8
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TABLE 3 Continued.
α = 0.50 α = 0.30

Instance Z CT Gap RDD Z CT Gap RDD
C25_P6_MED2 57274 7200.00 3.3 0.7 57207 7200.00 3.1 0.6
C25_P6_MED4 57950 7200.00 4.2 1.5 57927 7200.00 4.2 1.5
C10_P9_MED2 51047 6753.42 1.1 0.2 51028 6695.20 1.1 0.2
C10_P9_MED3 52018 7200.00 2.8 0.5 52000 7200.00 2.7 0.5

α = 0.15 α = 0.10
Z CT Gap RDD Z CT Gap RDD

C10_P3_MED2 13924 0.75 0.0 0.0 13930 0.91 0.0 0.0
C10_P3_MED3 14002 0.89 0.0 0.0 14002 1.03 0.0 0.0
C15_P3_MED2 19489 49.10 0.0 0.0 19507 43.80 0.0 0.1
C15_P3_MED3 19680 186.46 0.0 0.0 19680 269.31 0.0 0.0
C20_P3_MED2 22209 70.75 0.0 0.0 22225 54.00 0.0 0.1
C20_P3_MED3 22375 625.23 0.0 0.0 22375 778.17 0.0 0.0
C25_P3_MED2 26055 822.52 0.0 0.0 26076 707.66 0.0 0.1
C25_P3_MED3 26303 7103.59 0.7 0.1 26285 6670.25 0.5 0.1
C30_P3_MED3 29060 7200.00 2.0 0.6 29056 7200.00 2.2 0.6
C30_P3_MED4 29742 7200.00 5.3 2.0 29722 7200.00 7.0 1.9
C35_P3_MED3 36091 7200.00 8.8 1.7 36060 7200.00 6.4 1.6
C35_P3_MED4 37048 7200.00 13.8 3.3 37029 7200.00 22.2 3.3
C10_P6_MED2 29559 29.67 0.0 0.0 29559 22.80 0.0 0.0
C10_P6_MED3 29897 178.26 0.0 0.0 29897 166.50 0.0 0.0
C15_P6_MED2 41654 7124.21 0.7 0.1 41637 6524.70 0.5 0.0
C15_P6_MED3 42359 7200.00 2.3 0.4 42367 7200.00 2.3 0.4
C20_P6_MED2 47579 7200.00 1.9 0.2 47606 7200.00 1.8 0.3
C20_P6_MED3 48168 7200.00 3.2 1.0 48062 7200.00 3.0 0.8
C25_P6_MED2 57273 7200.00 3.1 0.7 57221 7200.00 3.1 0.6
C25_P6_MED4 57925 7200.00 4.1 1.5 57992 7200.00 4.6 1.6
C10_P9_MED2 51022 6406.21 1.0 0.2 51081 6306.78 1.0 0.3
C10_P9_MED3 51991 7200.00 2.7 0.5 52032 7200.00 2.8 0.6

For the cases without data, all the solutions are proven infeasible.

Results show that, for the same risk level, problems with a larger number of periods are generally more difficult
to solve, leading to larger optimality gaps. Similarly, problems with smaller risk levels are more difficult, leading to
more proven infeasibilities. For the instances with 3 periods, when a feasible solution is found, the risk level does not
seem to have significant impact on the objective function or on the optimality gap, which means that one can take the
advantage of solving the problem with a significantly small α . For instances with 6 and 9 periods, on the other hand,
small values of α are usually associated with higher values of Z and RDD. In these cases, it is more difficult to enforce
the tighter chance constraints over all the periods in a scenario, which leads to an increase in value of the objective
function.

The results of [SAP-D |PBD] reformulation reported in Tables 3 and 4 are similar to those of the [SAP |PBD]. A
major difference, however, is that with the [SAP-D |PBD] model we are able to obtain solutions for smaller risk levels
in the instances with MED = 2. This occurs because the disaggregated chance constraints are easier to be enforced,
which allows one to impose lower risk levels and still obtain feasible or optimal solutions. As a consequence, there is a
reduction in the percentage of proven infeasible problems and an increase in the number of optimal solutions, which
represent 13% and 46% of the experiments for instances with 3 periods, and 15% and 24% for those with 6 periods,
respectively.

When solving the [SAP-D |PBD]model, the use of the less restrictive chance constraints also allows for a reduction
on the value of the objective function, followed by a significant reduction of the RDD (on average 40%). This behavior
is even more evident on the instances with 9 periods, which are more difficult to solve. These results show that a
disaggregated chance constraint has a tendency to produce solutions closer to the deterministic ones, in which we
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TABLE 4 Results for the [SAP-D |PBD] reformulation, α < 0.10.

α = 0.05 α = 0.01 α = 0.00

Instance Z CT Gap RDD Z CT Gap RDD Z CT Gap RDD

C10_P3_MED2 13959 0.54 0.0 0.2 - - - - - - - -

C10_P3_MED3 14002 1.15 0.0 0.0 14002 0.83 0.0 0.0 14002 0.71 0.0 0.0

C15_P3_MED2 19594 29.50 0.0 0.5 - - - - - - - -

C15_P3_MED3 19680 257.59 0.0 0.0 19689 213.47 0.0 0.0 19689 219.33 0.0 0.0

C20_P3_MED2 22303 48.68 0.0 0.4 - - - - - - - -

C20_P3_MED3 22387 655.18 0.0 0.1 22454 3043.05 0.0 0.4 22460 6578.72 0.2 0.4

C25_P3_MED2 26177 100.13 0.0 0.5 - - - - - - - -

C25_P3_MED3 26301 7048.43 0.6 0.1 26341 6867.83 0.9 0.3 26391 7200.00 1.6 0.5

C30_P3_MED3 29072 7200.00 2.0 0.7 29059 7200.00 2.1 0.6 29028 7200.00 2.1 0.5

C30_P3_MED4 29784 7200.00 5.4 2.1 29787 7200.00 5.5 2.2 29705 7200.00 5.5 1.9

C35_P3_MED3 36071 7200.00 4.4 1.6 36067 7200.00 9.3 1.6 35903 7200.00 4.2 1.1

C35_P3_MED4 36971 7200.00 11.4 3.1 36982 7200.00 24.2 3.1 36758 7200.00 6.2 2.5

C10_P6_MED2 29880 27.69 0.0 1.1 - - - - - - - -

C10_P6_MED3 29897 141.82 0.0 0.0 29934 95.06 0.0 0.1 29937 120.16 0.0 0.1

C15_P6_MED2 43775 4670.52 0.1 5.2 - - - - - - - -

C15_P6_MED3 42401 7200.00 2.4 0.5 43980 7200.00 2.5 4.2 45245 7200.00 3.2 7.2

C20_P6_MED2 48404 6015.11 0.5 2.0 - - - - - - - -

C20_P6_MED3 48234 7200.00 3.5 1.2 48459 7200.00 3.3 1.6 48989 7200.00 5.2 2.7

C25_P6_MED2 60636 7200.00 4.4 6.6 - - - - - - - -

C25_P6_MED4 58128 7200.00 4.9 1.8 57919 7200.00 4.4 1.5 58556 7200.00 7.0 2.6

C10_P9_MED2 53791 5392.16 0.4 5.6 - - - - - - - -

C10_P9_MED3 52033 7200.00 2.8 0.6 54672 7200.00 4.6 5.7 55002 7200.00 4.2 6.3

For the cases without data, all the solutions are proven infeasible

always have enough vehicles to serve the schedule routes. Thus, it might be interesting option for those decision
makers who are less conservative, and prioritize a modelling approach that is able to produce solutions with smaller
costs while still mitigating the risks associated with the overall production and routing plans becoming infeasible due
to a shortage of available vehicles.

6.4 | Sample Analysis

As a Monte Carlo sampling was made to approximate the real distributions of the random parameters, it is essen-
tial to evaluate the stability and validity of the samples used in Section 6.3. We chose two instances with small

19 CIRRELT-2026-01

A Chance-constrained Model for a Production Routing Problem with Uncertain Availability of Vehicles 



optimality gaps to perform this assessment, cases that allow us to obtain valuable conclusions (C25_P3_MED3 and
C30_P3_MED3), and we performed the analysis on both the [SAP |PBD] and the [SAP-D |PBD] formulations.

Initially, the coefficient of variation (CV) with respect to the values of the objective function is calculated for
each instance, considering the corresponding samples used in the computational experiments. The results for the
[SAP |PBD] and the [SAP-D |PBD] models are presented respectively on Tables 5 and 6. We present the data in per-
centage, and stratify them by sample size (N ) - 30, 50 and 100 scenarios.

TABLE 5 Coefficient of variation for the [SAP |PBD] reformulation.

α

Instance N 0.50 0.30 0.15 0.10 0.05 0.01 0.00

C25_P3_MED3 30 0.3 0.2 0.2 0.2 0.2 0.2 0.2

50 0.2 0.1 0.2 0.2 0.1 0.0 0.0

100 0.2 0.1 0.1 0.1 0.1 0.1 0.0

C30_P3_MED3 30 0.3 0.6 0.6 0.4 0.3 0.5 0.4

50 0.5 0.3 0.5 0.3 0.4 0.0 0.0

100 0.3 0.6 0.7 0.5 0.3 0.3 0.0

All the results are given in percentage.

TABLE 6 Coefficient of variation for the [SAP-D |PBD] reformulation.

α

Instance N 0.50 0.30 0.15 0.10 0.05 0.01 0.00

C25_P3_MED3 30 0.1 0.3 0.1 0.1 0.2 0.3 0.3

50 0.1 0.1 0.1 0.1 0.2 0.1 0.0

100 0.0 0.1 0.2 0.1 0.1 0.1 0.0

C30_P3_MED3 30 0.3 0.3 0.4 0.6 0.7 0.1 0.1

50 0.5 0.3 0.4 0.7 0.4 0.4 0.2

100 0.3 0.3 0.4 0.2 0.3 0.4 0.0

All the results are given in percentage.

It is possible to see that the CV is quite small for all the cases, which demonstrates stability of the results obtained
for a given sample size and risk level. For each instance, if we consider the results for a given risk level, we notice that
the CV does not change a lot across the different sample sizes. This means that the obtained values of the objective
function were reasonably close, and do not depend significantly on the specific scenario set used.

One can also observe that, in general, smaller risk levels are associatedwith lower CVs. This behaviour is expected,
because stricter problems have smaller feasible regions, and, as a consequence, the feasible and optimal solutions are
more likely to be closer in value, which leads to smaller CVs.

Furthermore, we evaluated the validity of the samples used, to ensure that with a relatively small sample size one
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can obtain results that can reflectwell the real distribution of probabilities of the randomparameter. We sampled 5000
scenarios and verified, for each of the two instances, in howmany cases the probabilistic constraint was not enforced,
considering the results for each sample previously used and each risk level. The average percentage results for each
sample size N and risk level α are presented in Tables 7 and 8, respectively for the [SAP |PBD] and the [SAP-D |PBD]
models.

TABLE 7 Percentage of non-respected chance constraints for the [SAP |PBD] reformulation.

α

Instance N 0.50 0.30 0.15 0.10 0.05 0.01 0.00

C25_P3_MED3 30 0.0 1.0 0.0 0.0 0.0 0.0 0.0

50 0.0 0.0 1.0 0.0 1.0 0.0 0.0

100 1.0 0.0 1.0 0.0 0.0 0.0 0.0

C30_P3_MED3 30 0.0 0.0 0.0 1.0 0.0 0.0 0.0

50 0.0 0.0 1.0 0.0 0.0 0.0 0.0

100 0.0 1.0 1.0 0.0 0.0 0.0 0.0

All the results are given in percentage.

TABLE 8 Percentage of non-respected chance constraints for the [SAP-D |PBD] reformulation.

α

Instance N 0.50 0.30 0.15 0.10 0.05 0.01 0.00

C25_P3_MED3 30 0.3 0.0 0.0 0.0 0.0 0.0 0.0

50 0.0 0.0 0.3 0.3 0.7 0.0 0.0

100 0.0 0.0 0.3 0.3 0.3 0.0 0.0

C30_P3_MED3 30 0.0 0.3 0.0 0.0 0.0 0.0 0.0

50 0.0 0.3 0.0 0.0 0.0 0.0 0.0

100 0.3 0.3 0.0 0.0 0.0 0.0 0.0

All the results are given in percentage.

Results show that, on average, the probabilistic constraint is enforced in all the cases, for all the risk levels. This
means that the sample sizes are large enough to represent the behaviour of the distributions of probabilities of the
random parameters and their effects on the considered problem.

7 | CONCLUSION

In this paper, we proposed a novel stochastic optimizationmethod, that involves the use of chance constraints, to solve
the PRP when explicitly considering the uncertainty related to the size of the available fleet of vehicles. Specifically,

21 CIRRELT-2026-01

A Chance-constrained Model for a Production Routing Problem with Uncertain Availability of Vehicles 



we propose two variants of the chance constraints (an aggregated and disaggregated version) and solve the resulting
models using the SAA approach. Two variants of the BD approach are also developed, i.e., the classical BD and PBD
strategies, to solve the scenario-definedmodels produced by the SAA approach. It was observed that the PBD strategy
clearly outperforms the classical variant. Specifically, the computational results showed that the PBD approach was
able to produce reasonable optimality gaps for most instances. As expected, as the number of periods and retailers
increased, so did the complexity of the instances to solve. However, it was observed that this increase of complexity
did not seem to depend significantly on the risk level considered.

The results obtained using the model with disaggregated chance-constraints illustrated how it defined a more
flexible modelling approach, when compared with its aggregated counterpart. The use of disaggregated chance-
constraints led to more instances being solved to optimality, while also providing higher guarantees in terms of proven
feasibility. Additionally, the use of this approach enabled solutions with lower costs to be obtained (especially on the
more challenging larger sized instances involving 9 periods). Therefore, these results indicated that the use of dis-
aggregated chance-constraints might be more interesting for those decision makers who are less conservative, i.e.,
who can benefit from the use of a stochastic optimization approach (to limit risk) while also reducing the costs of
the obtained solutions. Lastly, the results obtained also demonstrated stability across different sample sizes, while
remaining valid when assessed using much larger samples (providing higher-levels of confidence with the conclusions
drawn).

Future work should focus on the development of faster solution methods, or computational enhancements, to
solve the studied problem for larger instances. The adoption of heuristics and metaheuristics procedures is strongly
advised. The consideration of other complicating aspects such as and multiple products should also be considered.
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